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We report the results of pressure-induced semiconductor-metal phase transition of the semiconducting chalcogenide compound
KPSe6 under high pressure using the ab initio methods. *e ground-state energy calculations were performed within density
functional theory and the generalized gradient approximation using the pseudopotential method with plane-wave basis sets. *e
projector augmented-wave (PAW) pseudopotentials were used in our calculation. *e optimized lattice parameters were found
from total energy calculations as 13 Bohr, 1.6 Bohr, and 1.8 Bohr for cell dimensions one, two, and three, respectively, which are in
good agreement with experimental calculations. At zero pressure, the material portrayed a semiconducting property with a direct
bandgap of ≈1.7 eV. As we subjected the material to pressure, the band gap was observed to reduce until it disappeared. *e phase
transition from the semiconductor to metal was found to occur at ∼45GPa, implying that the material underwent metallization as
pressure was increased further.

1. Introduction

In the recent past, research on the effect of pressure on
structural phase transformations and characteristics of
materials by calculations from first principles have attracted
much attention since they give an insight into the nature of
solid-state theories [1, 2], and also assist in determining
values of essential parameters for industrial applications [3].
For example, the structural, electrical, and optical properties
of group III–V semiconducting compounds have been
studied extensively [1, 3–5].

Most elements do undergo structural phase transitions
as pressure is induced [6–9]. When a material is subjected to
compressional forces, its electronic band structure changes
[10, 11] which further results in a change in its structural
properties [10, 12–14]. *is often leads first to the formation
of low-symmetry complex structures which at higher
pressure then transform into high-symmetry close-packed
structures [6, 8, 13]. Besides, the delocalization of bonding
electrons under pressure reduces the differences between the
chemical properties of the elements and their crystal

structures [15]. As a result, numerous new allotropes of the
elements have been discovered [16].

Structural studies of chalcogenides under high pressure
up to 52GPa have been carried out experimentally by using
X-ray diffraction method [9]. For example, CaS, CaSe, and
CaTe alkaline-earth chalcogenides undergo a structural
phase transition at a pressure of 40GPa, 38GPa, and 33GPa,
respectively [9, 14]. *e study of crystalline materials under
pressure in material physics gives very important and useful
material properties [1, 6, 9, 10, 12, 13, 17]. Subjecting a
material to high pressure leads to a reduction of interatomic
spacing which in turn affects the crystal structure and
electronic orbitals [1, 18–23]. Likewise, high pressure can
result in the formation of new material with different fea-
tures from the initial material [24].

Chalcogenide glasses are based on selenium, tellurium,
and the addition of other elements such as arsenic, ger-
manium, antimony, gallium, and potassium [3, 25]. *ey are
well known for their advantages, such as a wide transmit-
tance range (1–12 μm) [3], low intrinsic losses in the mid-IR
[26], low phonon energy [27], and the absence of free-carrier
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effects [3, 28–30]. KPSe6 as a chalcogenide has attracted
much interest because of its promising abilities in techno-
logical applications such as thin films and optical fibers
[3, 25, 27, 30, 31]. KPSe6 crystallizes in the polar ortho-
rhombic space group Pca21 [3, 26, 32]. *is compound is a
semiconductor at zero pressure with a direct bandgap of
1.883 eV [3, 26, 31, 33]. We aimed at investigating the be-
havior of KPSe6 under very high pressure.

We arrange this paper in the following order: we explain
the details of the calculation in Section 2, Section 3 discusses
the results, and conclusions are in Section 4.

2. Computational Details

*e study was done using the density functional theory
(DFT) [34] by employing for the exchange-correlation

Figure 1: *e optimized crystal structure of KPSe6 at zero pressure as viewed using the crystalline and molecular structure visualization
program (XCrySDen). *e obtained crystal structure is orthorhombic and is in good agreement with the general crystal structure [32].
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Figure 2: (a) A convergence curve for cell dimension one which gives ∼13.0 Bohr, (b) the optimized value for cell dimension two is ∼1.6
Bohr, and (c) the optimized value for cell dimension three is ∼1.8 Bohr. *ese optimized values were used in subsequent calculations.
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functional, the generalized gradient approximation of
Perdew–Burke–Ernzerhof [34–36] based on Plane Wave
self-consistent field (PWscf ) and Ultrasoft pseudopoten-
tial (USPP) method. Pressure increase was implemented as
follows: starting with the relaxed unit cell, we modified the
input file whereby we changed the “calculation” type from
“scf” to “vc-relax” and then introduced two new segments;
the first segment is called “&ions’ while the second one is
called ‘&cell.” Under the first segment, the ion dynamics
were set to damp while under the second segment, we
entered the target pressure (Kbar) that we wanted to
subject our cell to [35]. *e new atomic positions obtained
were then used to calculate the electronic structure
properties of KPSe6 as at that pressure. *e ab initio

calculations are implemented in the Quantum Espresso
simulation package [36], and pseudopotentials were taken
from the Quantum Espresso database. For pseudopoten-
tials, the valence electrons are 2s for K, 2p for P, and 2p for
Se. *e valence wave functions were expanded in a plane
wave basis set truncated at a kinetic energy of 25 Ry
(340 eV). At ambient conditions, KPSe6 crystallizes in the
polar orthorhombic space group Pca21 [3, 26, 32]. *e
structure has three species of atoms as potassium K,
phosphorous P, and selenium Se. *e primitive unit cell of
the chalcogenide compound KPSe6 has a total of 32 atoms:
4 potassium atoms, 4 phosphorous atoms, and 24 selenium
atoms. Figure 1 shows the optimized crystal structure of
KPSe6.
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Figure 3: A representative convergence curve for total energy versus kinetic energy cutoff. *e optimized energy cutoff at the minima was
∼25 Ry as shown.
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Figure 4: (a) *e electronic band structure and the density of states. *e band structure and density of states show a very close similarity as
seen above. (b) *e curves represent the partial density of states and how each atom contributes to either the valance band or conduction
band. It can be noted that Se 2(p) states contribute more to the valence band compared potassium and selenium, while P 2(p) states
contribute more to the conduction band.
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Figure 5: Induced pressure dependence of the Fermi energy. *ere is a continued increase in Fermi energy with increased pressure,
provided the structure has not undergone distortion [6, 41].
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Figure 6: Calculated pressure-dependent band structures and density of states for the compound KPSe6 at (a) 20GPa, (b) 30GPa,
(c) 40GPa, and (d) 45GPa. *e bandgaps are ∼1.18 eV at 20GPa (a), ∼1.05 eV at 30GPa (b), ∼0.50 eV at 40GPa (c), and 0.00 eV at 45GPa
(d).
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Figure 7: A plot of the calculated band gaps versus the pressure of the chalcogenide compound KPSe6.
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Figure 8: Crystal structures for KPSe6 at pressure (a) 0GPa, (b) 20GPa, (c) 30GPa, (d) 40GPa, (e) 45GPa, and (f) 50GPa, respectively, as
viewed using crystalline and molecular structure visualization program (XCrySDen).*e crystal structure remained undistorted as pressure
was increased. *is implies that the structure remained stable and that there was no structural phase transition.

Table 1: Shows a structural analysis of KPSe6 in terms of bond lengths and bond angles at various pressure intervals.

KPSe6 structure analysis

Pressure (GPa)
Bond length (Å) Bond angle (°)

K-Se P-Se Se-Se K-Se-P
0 2.8002 1.9284 1.9703 83.030
20 2.8460 2.1322 2.2821 85.293
30 2.7130 2.0643 2.2234 84.275
40 2.6131 2.0090 2.1729 83.822
45 2.5707 1.9858 2.1526 84.094
50 2.5317 1.9627 2.1290 84.285

Advances in Condensed Matter Physics 5



3. Results and Discussion

3.1. Structural Optimization. In this section, we report the
graphical representation of the optimized lattice parameters
and kinetic energy cutoff (ecut) for our chalcogenide
compound KPSe6. *e following graphs of Figure 2 rep-
resent how the optimized lattice parameters were obtained.
*e minima in the graphs represent the ground-state energy
which corresponds to the accurate parameter to be used for
the calculations.

*e ground-state calculation for the optimized kinetic
energy cutoff (ecut) was performed, and the graph is plotted
as shown in Figure 3. *e kinetic energy cutoff optimized
value was ∼25 Ry. *is was the value used for the rest of the
calculations.

3.2. Electronic Structure Properties. Calculations of the
band structure, partial density of states, and density of
states of the compound KPSe6 are here reported. In order
to determine the band structure properties, we used the
following high symmetry points of Γ(0,0,0), X(1/2,0,0),
Y(0,1/2,0), Z(0,0,1/2), T(0,1/2,1/2), U(1/2,0,1/2), S(1/2,1/
2,0), and R(1/2,1/2,1/2) [16,37,38]. A direct bandgap of
∼1.7 eV was obtained at zero pressure and the gap formed
around the T-symmetry. *is result is in agreement with
the experimental value of 1.883 eV [3, 26, 37, 39] and is
within the error bar range [37]. *e underestimation is
caused by the occupied states being lower in energy as
compared to the unoccupied states [39, 40].*e bands and
curves for the density of states for this compound are as
presented in Figure 4.

3.3. Pressure-Induced Phase Transition. It is established that
the bandgap of a material depends on the magnetic field,
temperature, and pressure [39]. We examined how pressure
affects the bandgap. According to Gulyamov [17, 23, 39], the
pressure band gap relation is given by

Eg(P) � Eg(0) − βP, (1)

where β represents the pressure coefficient which defines the
shift in the position of the valence and conduction bands
with variation in pressure [1, 18]. *e Fermi level pressure
dependence is given by [39]

EF(P, T) �
Eg(P)

2
+
3
4

KT ln
mh

me

, (2)

where EF represents the Fermi energy, T is the absolute tem-
perature, Eg gives the energy gap, m∗e is the mass of an electron,
andm∗h is themass of the hole. A graph showing the relationship
between Fermi energy and pressure is as shown in Figure 5.

On inducing pressure, the number of charge carriers with
respect to the density of state increased which in turn en-
hanced the availability of more electrons responsible for
electrical conductivity [17, 42, 43]. As we introduced more
pressure, there was an overlap between the valence band and
the conduction band which was attributed to the broadening
of the bandwidth of the 2s and 2p atomic orbital [20].*is was
because of their strong interaction with neighboring atoms
that created wider bands than the energy gap, thus availing
electrons to the conduction band [41]. *e phase transition
from the semiconductor to metal was found to occur at
∼45GPa. *erefore, it was an indication that pressure can
lead to the semiconductor-metal transition [42]. *e changes
in the band structure and density of state at different pressure
in relation to Fermi energy are described using Figure 6.

*e variation of bandgaps for pressure calculations was
also plotted as shown in Figure 7.

*e crystal structure was stable and not distorted at high
pressure; this showed that the material can withstand high
compressional forces and thus can be used for various high-
pressure industrial applications. *e crystal structures at
various pressures are as shown in Figure 8.

*e bond lengths and bond angles were investigated as
well at various pressure intervals using crystalline and
molecular structure visualization program (XCrySDen). It
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Figure 9: A plot of pressure versus bond lengths of the atoms. *e green curve shows the variation of the bond length between potassium
and selenium while the blue curve is for the phosphorous-selenium bond lengths, and the maroon curve shows the variation of the bond
length between one selenium atom and another selenium atom. It was observed the bond length increased up to 20GPa after which it
reduced with further application of pressure.
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was observed that the bond lengths reduced as more
pressure was induced while the bond angles decreased and
then increased as from 40GPa as shown in Table 1 and
Figure 9.

*e stability of the material is supported by the pressure-
dependent study of band structures of KPSe6 with respect to
its enthalpy, volume, and density as calculated and analyzed
in Figures 10(a)–10(c).

4. Conclusion

We have performed an ab initio theoretical and computa-
tional study of the chalcogenide compound KPSe6. *e
structural and electronic properties of the chalcogenide
compound were investigated under high pressure. Results
show that the volume and energy gap for this material
decrease while the enthalpy, Fermi energy, and density
increase as we increase pressure.*is shows the conductivity
of this material increases with increasing pressure. From
these calculations, the bands of the chalcogenide KPSe6
overlap at a pressure of ∼45GPa. *is implies that the
material has undergone a semiconductor-metal transfor-
mation with a potential application to high pressure.
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