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In developing countries such as Nigeria, agriculture is the main source of livelihood with over 70% of the 
population engaged in farming. They are mostly smallholders and subsistence farmers with minimal use 
of technology and low productivity. The use of mobile applications in agriculture can potentially help 
smallholders access agricultural information and financial services, improve access to markets and 
enhance visibility for supply chain efficiency. Unfortunately, due to a lack of uptake of these applications 
many farmers have not realized the benefits of this technology. This study seeks to explore and examine 
the factors that affect the uptake of this technology. A conceptual model which builds on the extended 
Technology Adoption Model (TAM2) was empirically estimated using Structural Equation Modelling 
(SEM) to examine the factors that influence the adoption of mobile applications. Primary data were 
collected from a sample of 261 farmers. Data were analyzed using SEM with the help of IBM SPSS and 
IBM AMOS software. The structural model showed that seven of the hypothesized relationships in the 
research model were supported. Social influence (SI), Perceived usefulness (PU), Information/awareness 
(IA) and Intention to use (ITU) affected the Actual Use (AU) of mobile applications positively, while 
Perceived risk (PR) and Perceived cost had a negative impact on their adoption. This study contributes 
to the literature on farmers’ technology adoption. It provides evidence that the extended TAM is a 
suitable model to explain the factors that influence mobile application adoption behavior.   
 
Key words: Mobile applications, smartphone, Information Communication Technologies (ICT) adoption, 
structural equation modelling, extended technology adoption model.   

 
 
INTRODUCTION 
 
In developing countries such as Nigeria, over 70% of the 
population engages in agriculture and they are made up 
of smallholders who cultivate or own farmland less than 
five hectares (Ofana et al., 2016). These smallholders 
are often subsistence farmers with out-dated technology 
and low productivity (Baumüller, 2015). Despite  this  they 

produce over 80% of all agricultural output in Nigeria. This 
level of production is insufficient to feed the growing 
population of Nigeria, leading to over-dependence on 
imported food (Nwajiuba, 2012). Nigeria has a population 
of 196 million with an annual growth rate of 2.63% 

World Population Review, 2018),  which  intensifies  the 
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need to increase food productivity. 

The main challenges faced by these smallholders are 
access to agricultural information on the use of modern 
technology and practices, access to market, access to 
financial services and poor extension service delivery 
(Baumüller, 2012; IFPRI, 2009; Nwajiuba, 2012). 
International Food Research Institute IFPRI (2009) 
revealed that these challenges were more pronounced 
because these smallholders could not afford the cost of 
using modern technologies and farm practices. However, 
studies have proven that the use of mobile application 
in agriculture can help smallholders get access to 
agricultural information, access financial services, 
improve access to markets and enhance visibility for 
supply chain efficiency (Aker and Mbiti, 2010; 
Baumüller, 2015; Qiang et al., 2012; Vodafone Group 
and Accenture, 2011). 

Mobile applications (mobile apps) are software 
programmes designed to run on a mobile device such as 
smartphones and tablets (Costopoulou et al., 2016). They 
are mostly built to provide users with similar services to 
those accessible on desktop and laptop computers 
(PCs). The use of mobile phone applications has 
helped developing countries like India, Kenya, Uganda, 
South Africa and Tanzania improve their agricultural 
productivity (Qiang et al., 2012). Baumüller (2015) 
asserted that the use of mobile applications for agriculture 
has the potential to effectively reach and assist rural 
smallholders. Among the uses served by the various 
agricultural apps, valuable information was rated the 
most important, because of the high level of information 
asymmetry affecting the rural markets in developing 
countries (Aker, 2010; Qiang et al., 2012; World Bank, 
2017). Qiang et al. (2012), in their study, found that 
the use of mobile applications helps smallholders 
increase income, with lower transaction and distribution 
costs on output sales and input supplies. Studies have 
shown Kenyan farmers increased their farm productivity 
and income by using mobile apps like Virtual City 
AgriManager, M-Pesa, KACE (Kenyan Agricultural 
Commodity Exchange), DrumNet and Kilimo Salama 
(Baumüller, 2013; Kirui et al., 2013). Esoko mobile app 
and Cocoa Link reduced the asymmetric information 
faced by Ghanaian farmers (Aker et al., 2016). Modisar 
mobile app improved livestock production in Botswana 
(Chukwunonso a n d  Tukur, 2012). M-Kilimo helped 
Tanzanian farmers receive extension services and market 
information that ultimately increased their productivity and 
income (Temu et al., 2016). 
 
 
Research problem 
 
In Nigeria, the number of mobile apps that could 
potentially aid agricultural productivity is increasing. 
Some applications are still  at  their  development  stage  

 
 
 
 
with a web version already in existence and running. So 
far, there has been very limited study on mobile 
application usage by farmers. Most studies focus on 
mobile phone usage (Asa and Uwem, 2017; Jaji et al., 
2017) and not mobile applications usage. These studies 
do not differentiate between using a mobile phone and 
the use of mobile phone applications. Lim et al. (2014) 
reported that most mobile applications fail because it is 
difficult to understand the needs of users of these apps. 
This study aims to bridge this gap by analyzing the factors 
that affect the usage of agricultural mobile applications. 
The specific objective of the study is to determine the 
factors that influence the adoption of mobile applications. 
The study results helped developers and other 
stakeholders to understand the challenges faced by 
farmers and the necessary improvements that will 
enhance the use of mobile applications by farmers. 
 
 
Technology adoption model 
 
The Technology Adoption Model (TAM) is a theoretical 
model that attempts to explain the adoption of various 
Information Communication Technologies (ICT). Before 
the introduction of TAM, some theories attempted to 
explain user adoption of technology. Theory of Reasoned 
Action (TRA) which was developed by Fishbein and 
Ajzen (1975) was the first that attempted to describe user 
adoption of technology. TRA explains user behavior 
from a social psychology point of view. By 1991, Ajzen 
developed the Theory of Planned Behavior (TPB) as an 
extension of TRA to address the limitations of TRA. Ajzen 
(1991) proposes perceived behavioral control in addition 
to TRA’s attitude and social pressure as a factor that 
influences intentions and actual behavior. TPB tries to 
address situations in which individuals have no control 
over. TAM, which was introduced by Davis (1986), was 
the first to successfully analyze and interpret the adoption 
of various Information Communication Technologies 
(ICT) in different work environments (Kripanont, 2007; 
Tarhini, 2013). Perceived Usefulness (PU) and Perceived 
Ease of Use (PEOU) were the two main factors used in 
TAM to explain the acceptance or rejection of information 
technology by a person. 

The original TAM model was extended in an effort to 
apply TAM beyond the workplace environment and into 
other diverse environments such as entertainment e.g. 
mobile games (Chen et al., 2017), consumer services 
such as mobile commerce (Wu and Wang, 2005) and 
mobile internet (Kim et al., 2007). The first major 
extension was carried out by Venkatesh and Davis (2000) 
who tested four different systems in four organizations. 
They referred to the extended TAM model as TAM2. The 
major difference between TAM and TAM2 is the inclusion 
of social influence processes and cognitive instrumental 
processes  which  they  found  to  significantly  affect  user 
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Figure 1. Research model: Adapted from the Extended TAM Model. 
Source: Venkatesh and Davis (2000). 

 
 
 

acceptance. 
According to Venkatesh (2000), the application of TAM 

outside workplace environments has always 
encountered problems because the main TAM constructs 
do not adequately demonstrate how well a technology 
meets the needs of the work environment and its tasks. 
Similarly, Bagozzi (2007) contended that TAM overlooks 
important aspects of technology adoption such as groups’ 
social and cultural aspects. In support of the first major 
extension of TAM made by Venkatesh and Davis (2000), 
many researchers have emphasized the need to add 
more variables to TAM for the purpose of establishing 
a stronger model (Legris et al., 2003; Wu and Wang, 
2005). As a result of this argument, many studies have 
come up with various extended versions of TAM to suit 
the nature of the technology being studied (Chen et al., 
2017; Hakkak et al., 2013; Park and Kim, 2014; 
Venkatesh and Davis, 2000; Wentzel et al., 2013). 
These studies build upon the original TAM and TAM2 
and modify it by adding or removing constructs to better 
explain the adoption of a technology in a given setting 
(Figure 1). 
 
 
Model development 
 
The workplace environment in an agricultural setting is 
quite different from the organizational setting in which 
TAM and its extended version were first applied by 
Davis (1989) and Venkatesh and Davis (2000). In 
particular, smallholder farmers’ decision making is 
affected by their socioeconomic characteristics, their 
biophysical environment and the nature of their farming 
operations. The importance of these three factors was 
identified by Baumüller (2012) in his study on the 
facilitation    of  agricultural  technology  adoption  among 

poor farmers. 
The extended TAM has been adopted for this study 

because of its ability to successfully explain and predict 
the adoption of information technologies. It also provides 
the flexibility to adapt to different organizational settings. 
Hence, rather than sticking to the original TAM or TAM2 
constructs, this study will modify TAM by adding 
additional constructs that best describe farmers and their 
farming activities and environment. Although TAM has 
been modified to suit the study setting, the modification is 
based on the original extended TAM and utilizes the 
three factors identified by Baumüller (2012). 

Four main original extended TAM constructs were 
retained in the study proposed model (Perceived 
Usefulness, Intention to Use, Actual Usage and Social 
Influence), while three additional constructs were added 
to modify the original extended TAM to suit the study 
setting. The three added constructs were Perceived 
Risk, Perceived Cost and Information Awareness. These 
constructs were carefully selected from reviewed 
literature on mobile applications and farmer technology 
adoption studies. 

 
 

Perceived Usefulness (PU) 
 
PU is one of the two main TAM constructs introduced by 
Davis (1989) to determine a user’s acceptance or 
rejection of information technology. Davis (p.26) defined it 
as “the degree to which an individual believes that using 
a particular system would enhance his or her job 
performance.” In the context of farmers’ acceptance of 
mobile applications, PU is defined as the relative 
advantage a farmer expects to gain from using a mobile 
app. Apart from Davis (1989) and Venkatesh and Davis 
(2000), many other studies on ICT use have proved that  

 
Information awareness 



 

 

22          Afr. J. Agric. Res. 
 
 
 
PU has a significant positive impact on a user’s 
behavioral intention to use ICT or a system (Kesharwani 
and Singh, 2012; Park and Kim, 2014; Wentzel et al., 
2013).  

Intention to Use (ITU) is one of the constructs in 
Venkatesh’s extended TAM which was originally 
introduced by Fishbein and Ajzen (1975) in their 
Theory of Reasoned Action (TRA). Prior to the 
extension of TAM, Davis (1989) theorized in the original 
TAM that ITU is a major determining factor in whether or 
not a potential user will adopt a particular technology. The 
theory also has it that a person’s behavioral intention to 
use behavioral ITU a given technology is influenced by 
two beliefs: PU and Perceived Ease of Use (PEOU). In 
the study context, a farmer’s behavioral ITU mobile 
apps would be a major determinant of whether he 
eventually uses them.  

Social Influence (SI) is a widely recognized factor that 
influences a person’s technology acceptance behavior. It 
was a factor used in Fishbein and Ajzen (1975) Theory 
of Reasoned Action to explain subjective norms. 
Fishbein and Ajzen (p.302) defined SI as a “person’s 
perception that most people who are important to him 
think he should or should not perform the behavior in 
question.” In Venkatesh and Davis (2000) extended 
TAM, SI was used as a key determinant of TAM’s PU 
and ITU constructs. Unlike Fishbein and Ajzen, Venkatesh 
and Davis used Subjective Norm as one of the factors in 
explaining the SI process. Subsequent studies on 
technology adoption (Al-Gahtani, 2016; Hakkak et al., 
2013; Taylor and Todd, 1995) have used Subjective 
Norm and SI interchangeably to explain the impact of 
other people’s views and opinions on the adoption of 
information technology. Kesharwani and Singh (2012) 
argued that interchanging Social Influence and Subjective 
Norm has led to mixed results and the effect on 
technology adoption has been inconsistent. In most 
farming communities and especially in developing 
countries, extensive social interactions exist between 
farmers and it would be necessary to see the impact on 
their PU of mobile applications and their ITU mobile 
apps. According to Hakkak et al. (2013), such an impact 
could be favorable or unfavorable.  

Perceived Risk (PR) is one of the external variables 
included in the study’s extended TAM. It has been in 
use as early as the 1960s to explain consumers’ attitudes 
towards decision making (Bauer and Cox, 1967). They 
defined PR with regard to the insecurity and unfavorable 
outcomes associated with consumers’ expectations. 
Internet applications are associated with diverse kinds of 
risk and as a result, consumers are careful when 
adopting such technology. PR has been mostly used in 
internet and mobile banking transaction adoption study 
because of the security concerns associated with such 
transactions (Al-Jabri and Sohail, 2012; Kesharwani and 
Singh, 2012; Wentzel et al., 2013). Most of these studies  

 
 
 
 
found PR to negatively influence users’ behavioral 
intention to use such services. The present study takes 
into consideration all mobile applications that could be 
used by farmers, including mobile banking apps, hence 
the inclusion of PR in the study model. This variable is 
also important because subsistence farmers rely on 
their farming output to provide a significant proportion 
of their food supply. Therefore, the implications of 
negative outcomes from technology adoption can 
potentially impact their food security. 

Perceived Cost (PC) is another important addition to 
the study to extend TAM. Some mobile applications 
come with a monetary price which must be paid by a 
user before downloading the app from an app store. 
Adoption is affected when there is a price attached to the 
mobile application. Wu and Wang (2005) maintained that 
the cost-benefit pattern is important to both PU and PEOU 
in TAM. When there is an excessive cost involved in 
using an application, such as subscription fees or high 
internet charges, the adoption rate of such an app is 
usually low (Qiang et al., 2012). According to Brown et 
al. (2013), most smallholders are price sensitive, as a 
result, any little change in service fee can drastically 
affect the adoption rate. Studies have found PC to 
negatively influence ITU and AU of internet applications 
(Kim et al., 2007; Wu and Wang, 2005). 

Information Awareness (IA) is a very important construct 
included in the study’s extended TAM. A few researchers 
have included this construct in their technology adoption 
studies (Al-Somali et al., 2009; Hakkak et al., 2013) on 
online banking adoption, Chan et al. (2011) on the 
adoption of e-government technology and Costopoulou 
et al. (2016) on the use of mobile application by 
farmers. They all found IA to have a significant impact on 
a person’s attitude towards the use of these 
technologies. IA is regarded as the prerequisite for the 
adoption of any technology and in the study context, a 
farmer has to be aware of the existence of an application 
before he can decide to use it. Such information could 
be from fellow farmers, media outlets or extension 
agents. Farmers also seek information regarding the 
suitability of an app and the potential risks associated 
with the use of such an app (Baumüller, 2012). 
According to Aker (2011), asymmetric and costly 
information is a major issue in the adoption of new 
technology. Costopoulou et al. (2016) found that 95% of 
Greek farmers did not use mobile agricultural apps 
because they were not aware of their availability. 
 
 
Research hypotheses 
 
(i) PU has a direct positive impact on a farmer’s intention 
to use mobile applications. 
(ii) ITU has a significant positive effect on the Actual 
Usage (AU) of mobile apps. 
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Table 1. Respondents from three agricultural zones in Abia. 
 

Agri-Zones No of respondents Percentage 

Umuahia 90 37 

Aba  85 34 

Ohafia 70 29 

Total 245 100 

Average 82  
 

Source: Author’s work. 
 
 
 

(iii) SI has a significant positive impact on the PU of 
mobile applications.  
(iv) PR has a significant and negative impact on the PU 
of mobile applications. 
(v) PC has a significant and negative impact on the PU 
of mobile applications. 
(vi) IA has a significant positive impact on the ITU of 
mobile applications. 
(vii) IA has a significant positive impact on the AU of 
mobile apps. 
 
 

METHODOLOGY 
 
The study proposes a conceptual model for the adoption of three 
types of mobile applications which are productivity mobile apps, 
information/news mobile apps and social media mobile apps. This 
model builds on the extended Technology Adoption Model (TAM2) 
developed by Venkatesh and Davis (2000) which has a high 

explanatory power (R2) that enables the strength of the 
relationship between the dependent and independent variables to 
be successfully measured (Eisenhauer, 2009). The adopted model 
(TAM2) has the ability to successfully explain and predict the 
adoption of information technologies and also allows the inclusion 
of external variables which studies (Fathema, 2013; Tarhini et al., 
2013) have shown to have a significant impact on technology 
adoption. The study proposes PU and ITU as the mediating 
variables which explain the relationship between the independent 
and dependent variables. 

To answer the research questions and achieve the objectives of 
this study, primary data were used. A structured questionnaire was 
used to obtain data from farmers in the study area (Abia State). 
Data obtained covered farmers’ demographics, attitude and 
behaviors (Dillman et al., 2016). The study survey instrument 
comprised two parts: the first part captures demographic 
characteristics of the farmers while the second part captures 
the measured variables on seven constructs which are 
presumed to have significant effects on the adoption of mobile 
applications by farmers. The measurement variables on the 
seven constructs were adopted from previous studies on the 
adoption of mobile applications (Malik et al., 2017; Lin, 2011; 
Sharma and Mishra, 2014; Al-Jabri and Sohail, 2012) and modified 
to suit this study (Figure 1). 
 
 
Data collection 
 
A cluster sampling technique was used in this study. Farmers in 
the study area were separated into three agricultural zones 
(clusters) (Table 1). Within each cluster, convenience sampling 

technique was used to sample farmers based on their attendance 
at extension meetings. The same standard questions were 
administered to all the farmers. The sampled farmers in the study 
area included livestock farmers, food crop farmers, poultry farmers 
and fish farmers. A total of 261 farmers were interviewed in the 
three agricultural zones in Abia State using a structured 
questionnaire, out of which 245 were valid and useful. Sixteen 
were rejected because they had incomplete answers. A 
combination of online surveys and paper questionnaires were 
used. The online survey was designed using Qualtrics and 
administered using an Android device with the guidance of the 
researcher and a research assistant. 
 
 
Data analysis 
 
Structural Equation Modelling (SEM) was used to analyze the 
causal relationships among the constructs in the proposed model 
(Extended Technology Acceptance Model (TAM2)). A two-step 
procedure to SEM was used. The first process was to conduct 
Exploratory Factor Analysis (EFA) and Confirmatory Factor 
Analysis (CFA), which helped to develop the measurement model. 
The second process was to analyze the causal relationships 
among the constructs in the proposed model using SEM. 

The EFA analysis was carried out using IBM® SPSS® software. 
Principal Component Analysis (PCA) extraction method was used 
with an Oblique rotation method. To ensure that the extracted factors 
were appropriate and reliable, the Kaiser-Meyer-Olkin (KMO) 
measure of sampling adequacy and Bartlett's test of sphericity 
were added in the factor analysis (Field, 2005). The KMO 
measure of sampling adequacy gave a result of 0.914 with 
Bartlett’s test of sphericity highly significant at p ˂ 0.01. This indicates 
that factor analysis is appropriate (Field, 2005). In factor extraction, 
SPSS identified 31 linear components within the data set. Seven of 
these components had eigenvalues greater than one, which 
explained the relatively large amount of variance (Hair et al., 2010; 
Kaiser, 1974). The total variance explained for the seven factors 
stood at 77.2%, which was above the 60% threshold considered as 
satisfactory by Hair et al. (2010) (Tables 2 and 3). The 31 
measurement items extracted from EFA were allowed to load only 
on their specific factors thereby generating a CFA model. The 
model presented the covariance between the latent factors. This 
enabled the testing of goodness-of-fit of the factors in the 
measurement model. It also facilitated the calculation of convergent 
validity, discriminant validity and composite reliability score. 
 
 
Structural equation modelling (SEM) 
 
The correlational relationships found in the CFA model were 
replaced with a structural model using the seven factors extracted 
during EFA. The structural model helped to simultaneously examine  
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Table 2. Principal component analysis. 

 

Pattern matrix 

Variables Component 

Variables 
Actual Perceived Intention Information Perceived Social Perceived 

Cost Usage Usefulness To use Awareness Risk Influence 

Actual Usage_2 0.95 
      

Actual Usage_4 0.94 
      

Actual Usage_1 0.91 
      

Actual Usage_3 0.91 
      

Actual Usage_5 0.9 
      

Actual Usage_6 0.89 
      

Actual Usage_7 0.88 
      

Perceived Usefulness_1 
 

0.97 
     

Perceived Usefulness _2 
 

0.95 
     

Perceived Usefulness _3 
 

0.77 
     

Perceived Usefulness _5 
 

0.75 
     

Perceived Usefulness _4 
 

0.74 
     

Perceived Usefulness _6 
 

0.72 
     

Intension to use_3 
  

0.96 
    

Intention to use _2 
  

0.85 
    

Intention to use _1 
  

0.61 
    

Intention to use _5 
  

0.6 
    

Intention to use _4 
  

0.54 
    

Information awareness_2 
   

0.93 
   

Information awareness _4 
   

0.9 
   

Information awareness _3 
   

0.88 
   

Information awareness _1 
   

0.67 
   

Perceived Risk_4 
    

0.86 
  

Perceived Risk_2 
    

0.84 
  

Perceived Risk_3 
    

0.84 
  

Social Inluence_2 
     

0.82 
 

Social Influence_3 
     

0.8 
 

Social Influence_1 
     

0.66 
 

Perceived Cost_1 
      

0.84 

Perceived Cost_4 
      

0.8 

Perceived Cost_2 
      

0.7 
 

Extraction Method: Principal Component Analysis Rotation Method: Promax with Kaiser Normalization Rotation converged in 7 iterations. 
 
 
 

Table 3. Total variance explained. 
 

Factor 
number 

Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % 

1 12.25 39.51 39.51 

2 3.16 10.18 49.69 

3 3.11 10.02 59.71 

4 1.94 6.26 65.97 

5 1.27 4.09 70.06 

6 1.21 3.89 73.95 

7 1.02 3.28 77.23 
 

Extraction Method: principal component analysis 
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Table 4. Model fit criteria for the structural model. 
 

Measure Measurement Model Threshold 

Chi-square/df (cmin/df) 1.82 ˂ 3 good 

CFI 0.99 ˃ 0.95 great; ˃ 0.9 traditional 

GFI 0.98 ˃ 0.90 good fit 

AGFI 0.94 > 0.80 good 

RMSEA 0.058 ˂ 0.05 good; 0.05 – 0.10 moderate 

PLCLOSE 0.34 ˃0.05 good 
 
 
 

Table 5. The estimation for regression weights of the hypothesized model regression weights: (Group number 1 – Default model). 
 

   Estimate S.E. C.R. P 
Standardized 
coefficients 

Perceived Usefulness <--- Social Influence 1.284 0.1 12.816 *** 0.803 

Perceived Usefulness <--- Perceived Risk -0.175 0.071 -2.46 0.014 -0.137 

Perceived Usefulness <--- Perceived Cost -0.394 0.09 -4.392 *** -0.304 

Intention to Use <--- Information Awareness 0.053 0.029 1.813 0.07 0.069 

Intention to Use <--- Perceived Usefulness 0.767 0.035 22.182 *** 0.847 

Actual Usage <--- Information Awareness 0.796 0.117 6.781 *** 0.41 

Actual Usage <--- Intention to Use 0.861 0.154 5.611 *** 0.34 
 

Significance levels: p<0.01*** 
 
 
 

the direct and indirect relationships between the constructs in the 
proposed model. It also helped to test the study hypotheses as well 
as test the model fit in comparison to the hypothesized structural 
model. 

To successfully assess model fit, Hair et al. (2010) suggest using 
an acceptable goodness-of-fit index. The model for this study 
was made up of a 245 sample size with seven latent factors 
and 31 measurement items (variables). Based on the listed model 

characteristics, Hair et al. (2010: 672) maintained that 
2
 should 

give a significant p-value, CFI should be above 0.92, SRMR should 
be less than 0.90 (with CFI above 0.92) and RMSEA value should 
be less than 0.08 (with CFI above 0.92). Based on Hair et al. (2010), 
the result of the SEM model fit, as shown in Table 4, gave a good 
model fit. The model fit was within the threshold values 
recommended by Schermelleh-Engel et al. (2003) and Hair et al. 
(2010). 

The SEM results from the estimation for regression weights of 
the hypothesized Model in Table 5  showed a significant 
relationship between the dependent and the independent 
variables in the research model. The seven proposed hypotheses 
in the structural model were supported (Table 6). 

The structural model exhibited a strong explanatory power, 
which showed the extent to which the model explains variance in 
the data set (Figure 2). The exogenous variables SI, PR and PC 
accounted for 43% (R2 = 0.43) of the variance of Perceived 
Usefulness (PU) of mobile applications. PU and IA explained 79% 
(R2 = 0.79) of the variance of Intention to Use, while ITU and IA 
explained 46% (R2 = 0.46) of the variance of farmers’ Actual Usage 
(AU) of mobile applications (Figure 2). 
 
 

RESULTS AND DISCUSSION 
 

The proposed extended TAM showed a high predictive 

ability in explaining the factors that influence the 
adoption of mobile applications by farmers. Based on 
previous studies on technology adoption (Kim et al., 
2007; Malik et al., 2017; Wu and Wang, 2005), this study 
affirms the suitability of extended TAM in comprehending 
and explaining the mobile applications adoption 
behaviors of farmers. The results showed that the 
exogenous variable Social Influence (SI) had a 
significant positive impact on the Perceived Usefulness 
(PU) of mobile apps. This result is in line with Hakkak et 
al. (2013), Kesharwani and Singh (2012) and Lee et al. 
(2012). In contrast, some studies found that SI did not 
have a significant effect on the Perceived Usefulness of 
some ICT (Arenas et al., 2015; Venkatesh et al., 2003). 
These researchers argued that SI is only crucial in a 
compulsory situation and especially in the early stages of 
experience when the opinions of the potential user are 
relatively unreliable. The importance of SI on PU in the 
smallholder context may be due to the close social 
connections between these farmers. As a result they 
judge the usefulness of mobile applications from other 
farmers in their network who are using the technology. 
They are more likely to be influenced by respected 
farmers who have adopted the technology and judge 
the usefulness by seeing the benefits they derive from the 
technology. 

Perceived Risk (PR) had a significant negative effect on 
farmers’ Perceived Usefulness (PU). This result is 
consistent with Kesharwani and Singh (2012) and Wu  
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Table 6. Hypotheses result testing. 
 

Hypotheses Path Support Regression weight 

H1: SI has a significant and positive impact on the     
 

Perceived Usefulness of mobile applications SI → PU Yes 0.80*** 

H2: PR has a significant and negative impact on     
 

the Perceived Usefulness of mobile applications. PR → PU Yes -0.14** 

H3: PC has a significant and negative impact on     
 

the Perceived Usefulness of mobile applications. PC → PU Yes -0.30*** 

H4: IA has a significant and positive impact on     
 

farmers’ Intention to Use mobile applications IA → ITU Yes 0.07* 

H5: IA has a significant and positive impact on the     
 

Actual Usage of mobile apps IA → AU Yes 0.41*** 

H6: PU has a significant and positive impact on a     
 

farmers’ Intention to Use mobile applications. PU → ITU Yes 0.85*** 

H7: ITU has a significant and positive effect on Actual 
Usage of mobile apps 

    
 

ITU → AU Yes 0.34*** 
 

Significance levels: p˂0.01 ***, p˂0.05 **, p˂0.1*. 

 
 
 
and Wang (2005), who found PR to have a negative 
impact on Perceived Usefulness of internet banking 
applications. This study showed that smallholders who 
had high levels of Perceived Risk (PR) consequently 
viewed mobile apps not to be useful and therefore had a 
negative Intention to Use (ITU) mobile apps. This was 
because farmers who thought mobile apps were risky to 
use would consider them not to be useful, and therefore 
would have a negative intention towards the usage of 
mobile apps. 

Perceived Cost (PC) also had a significant negative 
impact on the Perceived Usefulness (PU) of mobile 
applications. Similar studies on ICT adoption found PC to 
negatively affect Intention to Use (ITU) (Kim et al., 2007; 
Vassalos and Lim, 2016; Wu and Wang, 2005). 
According to Kim et al. the inclusion of cost prevents 
new customers from trying services they are not sure 
about. Cost is likely to be a large barrier to smallholders 
adopting new technology due to their low incomes. The 
impact of Social Influence (SI), Perceived Risk (PR) and 
Perceived Cost (PC) on the Perceived Usefulness (PU) 
provide considerable insight into the factors impacting 
Perceived Usefulness (PU) of agricultural mobile phone 
apps. These three exogenous variables explain 43% of 
the variation in Perceived Usefulness (PU). Firstly, this 
shows the influence that respected farming leaders 
adopting this technology can have on how other 
farmers perceive its usefulness. Secondly, both 
Perceived Cost (PC) and Perceived Risk (PR) can be 
significant barriers to smallholders’ adoption. 

Information awareness (IA) was the last exogenous 
variable that had a significant direct positive impact on 
farmers’ Intention to Use (ITU) mobile apps and the Actual 

Usage (AU) of mobile apps. This result is in line with 
Aker (2011), Klotz et al. (1995) and Hakkak et al. (2013). 
According to Aker (2011: 6), “information asymmetries are 
often an important constraint to technology adoption in 
developing countries.” This study found that most farmers 
were disadvantaged on the benefits of mobile 
applications because they had no prior knowledge of 
the uses of some of the available agricultural mobile 
applications. The strongest direct effect was from 
Information Awareness (IA) and Actual Usage (AU). This 
strong direct effect implies that most smallholders 
enjoying the benefits of mobile application were well 
informed about the usefulness of these mobile 
applications. Lack of information awareness affects 
intention to use and actual usage negatively. This signifies 
that information on the use of technology is necessary to 
enable the smallholder farmers to actually adopt the 
technology into their farming practices. Without this 
knowledge they may intend to use the technology but 
lack the understanding necessary to implement it. 

Perceived Usefulness (PU) had a significant positive 
impact on farmers’ Intention to Use (ITU) mobile 
applications. This variable acts as a mediating variable 
between SI, PC, PR and ITU. This implies that the effect 
of these variable affect the Intention to Use through the 
effect of Perceived Usefulness. This result is in 
accordance with previous studies e.g. (Hakkak et al., 
2013; Kesharwani and Singh, 2012; Wu and Wang, 
2005) which all found PU to have a significant positive 
impact on ITU of ICT. The highly significant level of this 
result suggests that smallholders were more motivated 
to use mobile apps because of their potential usefulness. 
The  motivation  to  use  comes from the positive impact of 
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Figure 2. Empirical results of the structural model for factors affecting the adoption of mobile applications. 

 
 
 
Social Influence (SI) on smallholder farmers, who have 
been influenced directly or indirectly that mobile 
applications are useful for their farming business. As a 
result, their Intention to Use (ITU) increases and this 
eventually leads to actual adoption of mobile applications. 
The last hypothesized relationship in the proposed 
model between farmers’ Intention to Use (ITU) and actual 
usage (AU) of mobile apps showed that ITU had a directly 
significant positive effect on Actual Usage of mobile 
applications. This result is consistent with Abdekhoda et 
al. (2016), Arenas et al. (2015), Wu and Wang (2005) 
and Venkatesh et al. (2003), who all found a significant 
positive effect between behavioral  intention  to  use  
and the actual usage/adoption of information  
communication technologies. The results indicate that if 
smallholders have strong intention to use mobile 
applications in their farming activities, then they are most 
likely to use them. 
 
 
Conclusion 
 
This research examined the factors that affect the 
uptake of mobile apps technology by farmers in Nigeria 
using SEM. SEM helped to analyze and present the 
causal relationships among the constructs in the 
proposed research model. An extended TAM framework 
was estimated to identify the factors that affected the 
adoption of mobile apps. The study, in general, 
explained the fundamental relationships between the 
proposed  external   variables   and  the  original  TAM 

variables. The results are in line with previous studies, 
and show that SI, PR, PC, IA, PU and ITU are all 
crucially significant variables in deciding the factors that 
affect the adoption of mobile applications by farmers in 
Abia State. However, internet connective which seems to 
have a significant influence on the adoption of ICT in 
developing countries did not stand out as a significant 
factor from the study’s exploratory factor analysis. 
Instead the influence of internet connectivity was 
overlapped in perceived cost as farmers reported that they 
paid a high cost for data subscription. This potentially 
had a negative influence on farmers’ intention to use 
and the actual adoption of mobile applications. The 
study demonstrates that extended TAM is a suitable 
model to explain the factors that influence mobile apps 
adoption for agricultural purposes. The study showed the 
level of importance of information awareness as a 
predictor of behavioral intention and actual usage in the 
context of mobile apps adoption. Most empirical studies 
on technology adoption using TAM have ignored this 
important variable, especially in an agricultural setting. 
The result of this study confirmed that information 
awareness is a key factor in the adoption of agricultural 
mobile applications. This study, therefore, lays a good 
theoretical foundation for other research using extended 
TAM (TAM2) to examine the impact of IA on the 
adoption of the ICT being studied. It also demonstrated 
the empirical applicability of extended TAM (TAM2) in 
studying technology acceptance in a developing country 
context such as Nigeria. The study helped to bridge the 
information gap between agricultural app developers and 
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farmers by revealing the factors that affected the adoption 
and continuing use of mobile apps. 
 
 
RECOMMENDATIONS 
 
(i) More effort should be put into educating farmers on the 
usefulness of mobile apps.  
(ii) App developers should put more effort in putting 
quality and useful content in the applications they 
develop for farmers.  
(iii) App developers and other stakeholders such as 
financial institutions, government agencies and extension 
officers need to action to increase trust amongst the 
farmers.  
(iv) Cost of internet subscriptions can be reduced or 
subsidized for farmers. This would encourage them to 
develop a positive intention towards the use of mobile 
apps. 
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