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Abstract 
In this paper, we establish properties for the switch-when-safe mean-variance 
strategies in the context of a Black-Scholes market model with stochastic vo-
latility processes driven by a continuous-time Markov chain with a finite 
number of states. More precisely, expressions for the goal-achieving probabil-
ities of the terminal wealth are obtained and numerical comparisons of lower 
bounds for these probabilities are shown for various market parameters. We 
conclude with asymptotic results when the Markovian changes in the volatil-
ity parameters appear with either higher or lower frequencies. 
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1. Introduction 

In the financial world, an investor is routinely subjected to finding strategies that 
offer higher returns with reduced risks. In his seminal paper [1], Nobel prize 
laureate Markowitz introduced the myopic (single period) mean-variance port-
folio management problem where one calibrates the amount of wealth invested 
in risky assets (stocks) and a riskless asset (bond) in such a way that it minimizes 
the variance of a terminal wealth while targeting an average end return. Since 
then, scores of innovative research problems arose related to his original static 
model as well as dynamic extensions in both discrete and continuous time, as 
seen for example in the following recent papers: [2] [3] [4].  

It’s worth noting that since the unconstrained mean-variance approach is 
solely based on averaged return, then an investor might experience undesired 
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marked scenarios such as returns below a safe investment in a bank account with 
guaranteed interest rate or even worst events such as bankruptcy. In an effort to 
reduce the probability of encountering these undesired scenarios while still aim-
ing for the target wealth at the end of the investment horizon, Zhou and Li [5] 
devised a hybrid strategy that we will call here the switch-when-safe strategy. 
More precisely, in a continuous-time setting under a Black-Scholes market mod-
el with deterministic parameters, the investor follows the optimal unconstrained 
mean-variance strategy up to the first (random) moment, if it occurs, where he 
could reinvest all of his cumulative wealth in a riskless asset so that it would 
generate the desired wealth at the end of the investment horizon. In their paper, 
they discovered the following astonishing properties:  
● The goal-achieving probability depends on neither the initial wealth nor the 

desired terminal wealth;  
● The goal-achieving probability has an explicit expression in terms of market 

parameters and time horizon;  
● The goal-achieving probability has a universal lower bound of 0.80, which 

depend on neither the market parameters nor the time horizon.  
Still, in the context of deterministic market parameters in a Black Scholes 

model with stock prices driven by Brownian motions, these same properties 
were also uncovered when one considers cone-constrained mean-variance strat-
egies such as no short-selling strategies [6] [7]. In this paper, we wish to explore 
if these properties carry on to more general market models for example by con-
sidering a Black-Scholes model with added randomness, more precisely, while 
maintaining deterministic interest for the riskless asset and deterministic drift 
parameters for the risky asset, we will allow the volatility parameter of the risky 
asset to change, depending on the state of a continuous-time Markov chain, in-
dependent of the stock prices driven by Brownian motions. 

2. Market Model and Regime-Switching Mean-Variance  
Strategy 

The market model is composed of a riskless asset and m risky assets with a vola-
tility matrix ( )tασ  depending of an independent Markov chain α . The price 

( )0S t  of the riskless asset a time t follow the dynamics given by the ODE:  

( ) ( ) ( )0 0d dS t r t S t t=  

while the price of the risky assets follow the dynamics given by the SDEs:  

 ( ) ( ) ( ) ( ) ( ),
1

d d d , 1, ,
m

i i i jij t
j

S t S t t t W t i mαµ σ
=

 
= + = 

 
∑   

where jW  are independent standard Brownian motions and ( ){ }: 0t tα ≥  is a 
continuous-time Markov chain with a finite set of states { }1, , S . 

Let  ( ) ( )
1j m

W t W t
×

 =   ,  ( ) ( ),t ij t m mα ασ σ
×

 =   ,  ( ) ( ) ( )
1i m

B t t r tµ
×

= −    and 

( ) ( )
1i m

t tπ π
×

=     be the investor portfolio: ( )i tπ  is the amount invested in  
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the ith stock at time t. Then the self-financing wealth process X of the investor is 
driven by the SDE  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0d d d , 0 .tX t r t X t B t t t t t W t X xαπ π σ= + + =    

A mean-variance strategy ( )MV tπ  is one that minimizes the variance of the 
terminal wealth ( )( )Var X T  under the constraint that the expected terminal 
wealth satisfies ( )( )E X T z=  where ( )0 d

0e
T r s sz x ∫> . 

Zhou and Yin [8] showed that, for a regime-switching volatility model, this 
optimal strategy is given by  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 de
T
t r s s

MV t tt t t B t X tα απ σ σ λ
− −∫  = − +    

 

where the Lagrange multiplier λ  is given by  

 
( )( ) ( )

( )( ) ( )

0

0

d
0

2 d

0, 0 e

0, 0 e 1

T

T

r s s

r s s

z x P

P

α
λ

α

−

−

∫

∫

−
=

−
 

and ( ),P t k  is the solution to the following ODE system  

 
( ) ( ) ( ) ( ) ( ) ( )

1

,
2 , ,

S

k k k

P t k
t t r t P t k q P t

t
θ θ

=

∂
= − −  ∂ ∑





  

 ( ), 1P T k =  

where ( ) ( ) 1
k kt B tθ σ −=  and [ ]k S S

Q q
×

=


 is the infinitesimal generator of 
Markov chain ( ){ }: 0t tα ≥  . 

Consequently, following Itô’s formula, the wealth process ( )MVX t  of the 
mean-variance startegy can be expressed as  

 ( ) ( )( ) ( ) ( )0 d d
0e e

T T
tr s s r s s

MVX t x Z tλ λ −∫ ∫= + −  

where  

 ( ) ( ) ( ) ( ) ( ) ( )
2

0 0

3exp d d .
2

t t

s sZ t s s s W sα αθ θ = − − 
 ∫ ∫  

This form is well-suited to the computations in the next section. 

3. Switch-When-Safe Mean-Variance Strategy and Goal  
Achieving Probabilities 

Consider the following stopping time:  

 ( ) ( ){ }dinf 0 : e .
T
t r s s

z MVt T X t zτ ∫= ≤ ≤ =  

This time, if it exists, is the first moment at which the wealth is such that, in-
vested in the riskless asset, it would have a final value equal to the targeted ex-
pected terminal wealth of the mean-variance strategy. 

The switch-when-safe mean-variance strategy of [5] is defined as  

 ( ) ( ) if ,
0 otherwise.

MV z
SWS

t t T
t

π τ
π

≤ ∧
= 

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Now observe that  

 ( ) ( )
( )

( )( ) ( )
( ) ( )( ) ( )0

0

0

d
d 2 d0

2 d

e
e 0, 0 e .

1 0, 0 e

T
T T
t

T

r s s
r s s r s s

MV r s s

x z
X t z Z t P

P
α

α

− −

−

∫
∫ ∫

∫

−  − = −  −
 

Since ( )0 d
0e 0

T r s sx z∫ − < , it follows that the equality ( ) ( )de
T
t r s s

MVX t z∫ =  is veri-
fied if and only if  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2

0 0 0

3 d d 2 d ln 0, 0 .
2

t t T

s ss s s W s r s s Pα αθ θ α+ = −∫ ∫ ∫  

From this condition, we see that, as it is the case in [5], the goal-achieving prob-
ability of the switch-when-safe mean-variance strategy for a regime-switching 
volatility model does not depend on either the initial wealth or the desired ter-
minal wealth. 

Now let us find an expression for the goal-achieving probabilities in the case 
of a model with one risky asset that is W is reduced to a one-dimensional brow-
nian motion, let  

 ( ) ( ) ( ) ( ) ( ) ( )2
0 0

3 d d
2

t t

s sY t s s s W sα αθ θ= +∫ ∫  

First, according to Buffington and Elliottt [9], the characteristic function of 
the diffusion process Y is given by 

( ) ( )

2 2
1

2 2

3 1 0
2 2

exp 0 0 0 ,1
3 10
2 2

t S

S

iu u

u Qt t

iu u

θ

φ π

θ

   −      
  = +
  

   −      







 

where 1S  is a S-dimensional vector of ones. 
Let ( ) ( )

0
2 d ln 0,1

T
a r s s P= −∫  represent the barrier, if aT  is the stopping 

time defined by  

( ){ }inf 0 :aT t T Y t a= ≤ ≤ =  

then  

( ) ( )Pr Pr .z aT T Tτ ≤ = ≤  

By introducing the Wiener-Hopf factorization of the process ( ) ( )( ),Y t tα  
that is to say, the couple ( ),Q Q+ −  which solves for every 0u >   

( ) ( ) 0Q Q+ −Ξ − = Ξ =  

where  

( ) 2 21
2 SP P VP Q uIΞ = Σ + + −  

with ( )1, , Sdiag θ θΣ =  , 2 2
1

3 3, ,
2 2 SV diag θ θ =  

 
 , Q the infinitesimal gener-  

ator and SI  the S S×  identity matrix, then, following Jiang and Pistorius [10], 
the associated Laplace transform aΨ  of the random variable aT  is given by  
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( ) ( )0 exp 1a SaQπ +Ψ =  

therefore, through Laplace transform inversion, we deduce  

( ) ( ) ( )
0

0 1Pr Re e d .
2

a aiu
a

iu
T T u

iu
∞ −Ψ Ψ − 

≤ = −  
 π ∫  

Moreover, since the ratio 
( )

2

2

3
32
2

i

i

θ

θ
=  is constant for 1, ,i S=   then accord-

ing to Hieber [11] the last expression is reduced to  

( ) ( ) ( ) ( ) ( )
0

1 exp 3 exp 3 exp1Pr Re d .
2a T

a a iua iua
T T u u

iu
φ

∞+ + − − 
≤ = − 

π



∫  

Both expressions can easily be evaluated numerically. However, it is worth 
mentioning that, even if one could find explicit forms for the exponential ma-
trices (which is the case for 2S =  for example) appearing in these expressions, 
searching for possible closed-formed formulas for the integrals involved could 
prove to be quite challenging. 

One notable exception is the trivial case where all possible values of the vola-
tility matrix are reduced to a single constant matrix. Then we have ( )tαθ θ≡  
that is ( )Y t  revert to a standard Brownian motion with drift and according to 
[5]:  

 ( )
231 5Pr e .

2 2
T

aT T T Tθθ θ   ≤ = Φ + Φ −   
   

 

Figure 1 shows the probabilities in this case as a function of x Tθ= .  
 

 

Figure 1. Goal-achieving probabilities as a function of x Tθ= . 
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For the numerical study of lower bound probabilities, we will suppose hereon 
that we have one risky asset, the parameters r and µ  are constant, and the vo-
latility parameter σ  follows a 2-state continuous-time Markov chain with an 
infinitesimal generator Q taking the form  

11 11

22 22

q q
Q

q q
− 

=  − 
 

where 11 22, 0q q < . In this case, the constant interest r allows us to have the ex-
plicit solution to the ODE system  

( )
( ) ( )( )( ),1 1

exp
,2 1

P t
T t M Q

P t
   

= − − −   
  

 

with  
2

1
2
2

2 0
.

0 2
r

M
r

θ
θ

 −
=  

− 
 

Furthermore, since α  is 2-state Markov chain, the matrix Q+  can be written 
explicitly [11] as  

( )

( )

2 2
3, 4, 11 1 11 1

3, 4, 3, 4,

22
3, 4, 22 222 2

3, 4, 3, 4,

2 2
3 3

22
3 3

u u

u u u u

u u

u u u u

q u q

Q
q uq

β β θ θ
β β β β

β β θθ
β β β β

+

 − + − −
 

+ + + + =  − + −− 
 + + + + 

 

where 3, 4,u uβ β<  are the real positive roots of the quartic equation  

2 2 2 2 2 2
1 1 11 2 2 22 11 22

1 3 1 3 0.
2 2 2 2

q u q u q qθ β θ β θ β θ β  + + − + + − − =  
  

 

Following the Cayley-Hamilton theorem we then have  

( )
4, 3, 3, 4,

3, 4,
2

3, 4, 3, 4,

e e e eexp
u u u ua a a a

u u

u u u u

aQ I Q
β β β ββ β
β β β β

− − − −

+ +

   − −
 = +    − −  

 

which leads us to an explicit expression for the Laplace transform aΨ . We will use 
it in our numerical computation of the goal-achieving probabilities ( )aP T T≤ . 

As an example, consider a market model with a single asset and a two-state 
volatility:  

1 1
0.10, 0.01, .

1 1
r Qµ

− 
= = =  − 

 

We can compute the goal-achieving probabilities ( )aP T T≤  like in Figure 1 
and find a lower bound for them as a function of the different values of the 
stock’s regime-switching volatility. Table 1 gives the lower bound probabilities, 
assuming the initial regime-switching state is ( )0 1α = . 

Clearly one observes that, in presence of a true regime-switching volatility 
model ( 1 2σ σ≠ ), the lower bound probabilities cross the threshold of its deter-
ministic model counterpart. Moreover, as 1σ  takes on larger values while 2σ  
takes on lower values the lower bound probabilites gets fairly small, for example  
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Table 1. Lower bounds of goal-achieving probabilities. 

σ1/σ2 0.05 0.10 0.15 0.20 0.25 

0.05 0.810 0.795 0.783 0.778 0.776 

0.10 0.771 0.810 0.800 0.788 0.777 

0.15 0.706 0.797 0.810 0.806 0.800 

0.20 0.645 0.776 0.806 0.810 0.808 

0.25 0.594 0.753 0.798 0.808 0.810 

 
if we take 1 0.50σ =  and 1 0.01σ =  the lower bound probability decreases to a 
mere 0.166. 

4. Limit Cases of Goal Achieving Probabilities 

Assume now that Q depends on a parameter k:  

 ( ) 11 11

22 22

q q
Q k k

q q
− 

=  − 
 

with 0k > . We will study the first passage time probabilities when either k ↑ ∞  
or 0k ↓ , which corresponds respectively to the case where the regime-switching 
jumps appear with high frequency or are scarce. 
● k ↑ ∞  (average time to next jump tends to zero)  

( )( )
22 11

11 22
11 22 11 22

22 11

11 22 11 22

22 11

11 22 11 22

lim exp e
q q

M M T
q q q q

k

q q
q q q q

T M Q
q q

q q q q

 
− + 

+ + 

→∞

 
 + + − − =
 
 + + 

 

and therefore  

( )
( )

22 11
11 22

11 22 11 22

22 11
11 22

11 22 11 22

0,1 e
.

0,2
e

q q
M M T

q q q q

q q
M M T

q q q q

P
P

 
− + 

+ + 

 
− + 

+ + 

 
  

→   
  
  

 

The barrier ( )( ) ( )22 ln 0, 0a rT P Tα θ∞→ − =  where  

( )2 2 222 11
1 2

11 22 11 22

q q
q q q q

θ θ θ∞ = +
+ +

. 

We can also show after tedious calculations that  
221 1

lim e
u

ak

λ ν
ν λ

 
 − +
 
 

→∞
Ψ =  

where 2
3

Tν =  and ( )2 2Tλ θ∞= . 

This expression corresponds to the Laplace transform of the inverse Gaussian 
(or Wald) density with mean ν  and shape parameter λ , therefore  

( )
2

Pr 1 e 1a
T TT T

T T

λ
νλ λ

ν ν
      ≤ →Φ − + Φ − +               
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( ) ( ) ( )22 231 5e
2 2

TT Tθθ θ∞
∞ ∞

   = Φ + Φ −   
   

 

For the single asset model of the previous section, with regime-switching vola-
tilities 1 0.10σ =  and 2 0.20σ = , Figure 2 below shows the goal-achieving 
probabilites for increasing values of k. 
● 0k ↓  (average time to next jump tends to infinity)  

( )( ) ( )
0

lim exp exp
k

T M Q TM
+→

− − = −  

and therefore  

( )
( )

11

22

0,1 e
.

0, 2 e

M T

M T

P
P

−

−

   
→   

  
 

The barrier ( )( ) ( )02 ln 0, 0a rT P Tαα θ→ − = . 
In this case, we can obtain the limit of the passage-time probability in a 

straightforward manner. Since the average time to the next jumps tends towards 
infinity, the Markov chain ( )tα  will have a tendency to stay at its intital state 
( )0α , thus  

( ) ( ) ( ) ( )2
0 0

3
2

Y t t W tα αθ θ→ +  

and therefore  

( ) ( )
( )

( )

2
03

0 0
1 5Pr e .
2 2

T

aT T T Tαθ

α αθ θ   ≤ →Φ + Φ −   
   

 

For the same example as above, Figure 3 illustrates this result for decreasing 
values of k.  

 

 
Figure 2. Goal-achieving probabilities for increasing k. 
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Figure 3. Goal-achieving probabilities for decreasing k. 

5. Conclusion 

In the context of a Black-Scholes market model with stochastic volatility processes 
driven by a continuous-time Markov chain with finite states, we obtained tracta-
ble expressions for the goal-achieving probabilities of switch-when-safe strate-
gies as first introduced by Zhou and Li [5]. We observed that the goal-achieving 
probabilities are independent of the value of the initial wealth and targeted ter-
minal mean wealth, a property shared with the standard Black-Scholes market 
counterpart. Unfortunately, it appears that a universal lower bound for these 
probabilities does not exist for the set of all possible market parameters and infi-
nitesimal generators of the Markovian process as illustrated by our numerical 
studies. Finally, when the Markovian regime is allowed to either attain higher or 
lower frequencies than the first-passage time probabilities expressions converge 
to closed-form formulas. 
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