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Abstract 

 
Estimating the scale parameter of the Gumbel-Lomax Distribution using the Bayesian method of estimation 

and evaluating the estimators by assuming two non-informative prior distributions and one informative prior 

distribution is very important for the general application of the Gumbel-Lomax distribution. These estimators 

are obtained using the squared error loss function (SELF), Quadratic loss function (QLF) and precautionary 

loss function (PLF). The posterior distributions of the scale parameter of the Gumbel-Lomax distribution are 

derived and the Estimators are also obtained using the above mentioned priors and loss functions. 

Furthermore, a simulation using a package in R software is carried out to assess the performance of the 

estimators by making use of the Mean Squared Errors of the Estimators under the Bayesian approach and 
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Maximum likelihood method. Our results show that Bayesian Method using PLF under all priors produces 

the best estimators of the scale parameter compared to estimators using the Maximum Likelihood method, 

SELF and QLF under all the priors irrespective of the values of the parameters and the different sample sizes. 

It is also discovered that the other parameters have no effect on the estimators of the scale parameter. 

 

 

Keywords: Gumbel-Lomax distribution; Bayesian method; priors; loss functions; MLE; simulation; MSE. 
 

1 Introduction 
 
Research has shown that there are many classical probability distributions proposed and applied in the previous 

decades for modeling real life datasets however it has been discovered that some of these distributions do not 

analyze some of these skewed datasets appropriately and hence generating a problem in statistical theory and 

applications. Over the past years, several compound probability distributions have been studied in the literature 

for modeling real life situations and most of these compound distributions are found to be skewed, flexible and 

perform better in statistical modeling compared to the classical distributions [1-13].  

 

Considering the inventions above, [14] worked on an extension of the Lomax distribution known as Gumbel-

Lomax distribution (GuLD) with four parameters. Some useful properties of this distribution have been 

discussed with applications to a real life datasets. The authors found that the GuLD is flexible and fitted the 

datasets better than other extensions of the Lomax distribution such as gamma-Lomax distribution [15,16], 

exponentiated-Lomax distribution [17], beta-Lomax distribution [18] and the conventional Lomax distributions 

based on the research study [14].  

 

Other features of the GuLD could be obtained from [14]. Following the importance of the GuLD in modeling 

real life situations, it is therefore necessary for us to research and find the best method in estimating the scale 

parameter of the GuLD which will remain useful for practical applications of this model.  

 

The two basic methods of parameter estimation are the classical and the non classical methods. The classical 

method of estimation considers the parameters to be constant but unknown whereas the parameters are taken to 

be unknown and random just like variables under non classical approach. Maximum likelihood estimation is the 

most widely used classical method while the Bayesian estimation method is a non classical theory. However, in 

most real life situations modeled by life time distributions, the model parameters cannot be referred to as fixed 

in the entire duration of life testing [19-21]. With the above facts, it is clear that the classical approach cannot 

adequately solve problems of parameter estimation in life time models and hence the need for Bayesian 

estimation in life time models.  
 

Estimating the parameters of model is very important and each parameter in a model is best obtained by a 

particular method and hence, this study aims at estimating one scale parameter of the GuLD using Bayesian 

approach and evaluating the estimators in comparison with estimators obtained by the method of maximum 

likelihood estimation.  

 

The remaining sections of this article are arranged as follows: maximum likelihood estimation for the scale 

parameter is presented in section 2. Bayesian estimation of the scale parameter based on the three loss functions 

and assumption of three prior distributions (uniform, Jeffrey’s and gamma) is done in section 3. The estimators 

in section 2 and 3 are evaluated  in relation to their mean squared error (MSE) in Section 4. Lastly, the 

conclusion is provided in Section 5. 

 

2 Maximum Likelihood Estimation 
 

Given that 1 2, ,...., nX X X  is a random sample from a population X of size ‘n’ independently and identically 

distributed random variables with probability density function  f x . Given that the values, 

 1 2, ,..., nx x x x  are obtained independently from a GuLD with unknown parameters  ,  ,   and  , the 

likelihood function is given by: 
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     1 2
1

| , , , , ,..., | , , , | , , ,n
i

n
L x P x x x P x           



                                       (1) 

 

The likelihood function,
 
 | , , ,L x      based on the pdf of GuLD is defined to be the joint density of the 

random variables 1 2, ,......, nx x x  and it is given as: 
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      (2) 

 

For the scale parameter of the GuLD,  , the likelihood function is given by; 
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Where 
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  is a constant which is independent of the scale 

parameter,  . 

 

Let the log-likelihood function,
 

 log |l L x 
, 

therefore 
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                                                                    (4) 

 

Taking the partial derivative of   with respect to   gives; 
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Simplifying and working for ̂  gives the result below; 
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where ̂  is the maximum likelihood estimator of the scale parameter,  . More information about the 

estimation of the other three parameters of the GuLD can be seen in [14]. 

 

3 Bayesian Estimation 

 
Bayesian estimation uses appropriate choice of prior(s) for estimating each parameter. According to the 

Bayesian estimation theory, no prior distribution for a parameter is considered the best until it is tested and 

validated. Also, most prior distributions are selected according to one’s subjective knowledge and beliefs. 

Hence, if one has enough knowledge of the parameter(s), it is wise to select an informative prior(s); otherwise, it 

is better to consider non-informative prior(s). 

 

For this research, we have selected two non-informative priors (uniform and Jeffrey) and an informative prior 

(gamma). These assumed prior distributions have been used widely by several authors such as, [22-29]. This 

research has considered three loss functions which are squared error, quadratic and precautionary loss functions. 

These loss functions have also been used by other authors including; [30-39] and [40] etc. The definitions of the 

above listed loss functions is presented as follows: 

 

a. The uniform prior is defined as: 

 

  1;0p                                                                                                                                (6) 

 

b. Also, the Jeffrey’s prior is defined as: 

 

 
1

;0p  


   
                                                                                                                       (7) 

 

c. Also, the gamma prior is defined as: 

 

 
 

1
b

b aa
P e

b

   


                                                                                                                       (8) 

 

i. Squared Error Loss Function  

 

The squared error loss function relating to the scale parameter   is defined as: 

 

   
2

, SELF SELFL                                                                                                                    (9) 

 

 where SELF  is the estimator of the parameter   under SELF. 

 

ii. Quadratic Loss Function  

 

The quadratic loss function is defined from [41] as 

 

 
2

,
QLF

QLFL
 

 


 
  
 

                                                                                                             (10) 

 

 where QLF  is the estimator of the parameter   under QLF. 

 



 

 
 

 

Pam et al.; Asian J. Prob. Stat., vol. 20, no. 4, pp. 68-81, 2022; Article no.AJPAS.83451 
 

 

 
72 

 

iii. Precautionary Loss Function  

 

The PLF introduced by [42] is an asymmetric loss function and is defined as 

 
 

2

,
PLF

PLF

PLF

L
 

 



                                                                                                                (11) 

 

 where PLF  is the estimator of the scale parameter   under PLF.  

 

The posterior distribution of a parameter is obtained as follows:  
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where  P x  is the marginal distribution of X and   ( ) ( | )
x

P x p L x 



 

when the prior distribution of 

  is discrete and   ( ) ( | )P x p L x d  



   when the prior distribution of   is continuous. Also note 

that  p   and ( | )L x   are the prior distribution and the Likelihood function respectively.  

 

3.1 Bayesian analysis under uniform prior with three loss functions 
 

He we present a derivation of the posterior distribution for the scale parameter   for a sample of observations 

by assuming a uniform prior distribution. This is obtained from equation (12) using integration by substitution 

as follows: 
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                                                                                   (13) 

 

Based on calculations and algebra, the Bayes estimators with uniform prior using SELF, QLF and PLF are 

derived respectively as: 
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and 
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3.2 Bayesian analysis under Jeffrey’s prior with three loss functions 
 

He we present a derivation of the posterior distribution for the scale parameter   for a sample of observations 

by assuming a Jeffrey’s prior distribution. This is obtained from equation (12) using integration by substitution 

as follows: 
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                                                        (17) 

 

Again the Bayes estimators under Jeffrey’s prior using SELF, QLF and PLF are given respectively as: 
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and 
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3.3 Bayesian analysis under gamma prior with three loss functions 

 

He we present a derivation of the posterior distribution for the scale parameter   for a sample of observations 

by assuming a gamma prior distribution. This is obtained from equation (12) using integration by substitution as 

follows: 
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Also the Bayes estimators under gamma prior using SELF, QLF and PLF are given respectively as: 
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4 Results and Discussion 

 
This section presents the Monte Carlo simulation study using R software with 10,000 replications and random 

samples of sizes n = (23, 77, 126, 200) based on the GuLD. The research has considered the inverse 

transformation method of simulation using the quantile function under the following combination of parameter 

values: 
 

0.8, 0.5, 0.4, 0.9, 1.0a         and 1.0b  ; 1.8, 0.5, 0.4, 0.9, 1.0a         and 

1.0b  ; 0.8, 1.5, 0.4, 0.9, 1.0a         and 1.0b  ; 0.8, 0.5, 1.4, 0.9, 1.0a        and

1.0b  0.8, 0.5, 0.4, 0.9, 2.5a         and 1.0b   and 0.8, 0.5, 0.4, 0.9, 1.0a         

and 2.5b  . The following tables present the results of our simulation study by listing the average estimates of 

the shape parameter with their respective Mean Square Errors (MSEs) derived from the considered methods of 

estimation which include the Maximum Likelihood Estimation, SELF, QLF, and PLF with Uniform, Jeffrey and 

gamma priors respectively. The criterion for evaluating the performance of the estimators in this study is the 

Mean Square Error (MSE):  
2

1 ˆ .
n

MSE E   
 

 

Table 1. Average Estimates (Estimates) and Mean Squared Errors (MSEs) of the estimated scale 

parameter ( ̂ ) for 0.8, 0.5, 0.4, 0.9, 1.0a         and 1.0b   under three different 

priors and loss functions with varying sample sizes 

 

n Measures MLE Uniform prior Jeffrey’s prior Gamma prior 

SELF QLF PLF SELF QLF PLF SELF QLF PLF 

23 Estimate 0.7213  0.7527  0.6899  0.7682  0.7213  0.6586  0.7368  0.7292  0.6685  0.7443  

MSE 0.0449 0.0358 0.0560 0.0320 0.0449 0.0691 0.0401 0.0416 0.0641 0.0372 

77 Estimate 0.7077 0.7168 0.6985 0.7214 0.7077 0.6893 0.7122 0.7103 0.6920 0.7148 

MSE 0.0417 0.0384 0.0452 0.0368 0.0417 0.0489 0.0401 0.0407 0.0477 0.0390 

126 Estimate 0.7056 0.7112 0.700 0.7140 0.7056 0.6944 0.7084 0.7073 0.6961 0.7100 

MSE 0.0408 0.0387 0.043 0.0377 0.0408 0.0452 0.0398 0.0402 0.0445 0.0392 

200 Estimate 0.7043 0.7078 0.7007 0.7095 0.7043 0.6972 0.7060 0.7053 0.6983 0.7070 

MSE 0.0404 0.0390 0.0418 0.0384 0.0404 0.0431 0.0397 0.0400 0.0427 0.0393 

 

The results in Table 1 above indicates that the estimators obtained by PLF are better than the ones obtained from 

the other estimators with both Uniform and Jeffrey priors having lower values of MSE even when the sample 

sizes are changed. Therefore one can state that the Bayesian estimation (with PLF for both the Uniform and 

Jeffrey prior) of this parameter is better than Method of Maximum Likelihood estimation (MLE) for the selected 

parameter values despite the variations in the sample sizes. 
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Based on the values in Table 2 which are related to those in Table 1 with the same lower values of MSE for the 

estimators using PLF under all the priors after increasing the value of   from 0.8 to 1.8. This result indicates 

that changing the value of   does not affect the estimate of the scale parameter,  . 

 

Table 2. Average Estimates (Estimates) and Mean Squared Errors (MSEs) of the estimated scale 

parameter ( ̂ ) for 1.8, 0.5, 0.4, 0.9, 1.0a         and 1.0b   under three different priors 

and loss functions with varying sample sizes 

 

n Measures MLE Uniform prior Jeffrey’s prior Gamma prior 

SELF QLF PLF SELF QLF PLF SELF QLF PLF 

23 Estimate 0.7213 0.7527 0.6899 0.7682 0.7213 0.6586 0.7368 0.7292 0.6685 0.7443 

MSE 0.0449 0.0358 0.0560 0.0320 0.0449 0.0691 0.0401 0.0416 0.0641 0.0372 

77 Estimate 0.7077 0.7168 0.6985 0.7214 0.7077 0.6893 0.7122 0.7103 0.6920 0.7148 

MSE 0.0417 0.0384 0.0452 0.0368 0.0417 0.0489 0.0401 0.0407 0.0477 0.0390 

126 Estimate 0.7056 0.7112 0.700 0.7140 0.7056 0.6944 0.7084 0.7073 0.6961 0.7100 

MSE 0.0408 0.0387 0.043 0.0377 0.0408 0.0452 0.0398 0.0402 0.0445 0.0392 

200 Estimate 0.7043 0.7078 0.7007 0.7095 0.7043 0.6972 0.7060 0.7053 0.6983 0.7070 

MSE 0.0404 0.0390 0.0418 0.0384 0.0404 0.0431 0.0397 0.0400 0.0427 0.0393 

 

Table 3. Average Estimates (Estimates) and Mean Squared Errors (MSEs) of the estimated scale 

parameter ( ̂ ) for 0.8, 1.5, 0.4, 0.9, 1.0a         and 1.0b   under three different priors 

and loss functions with varying sample sizes 

 

n Measures MLE Uniform prior Jeffrey’s prior Gamma prior 

SELF QLF PLF SELF QLF PLF SELF QLF PLF 

23 Estimate 0.7213 0.7527 0.6899 0.7682 0.7213 0.6586 0.7368 0.7292 0.6685 0.7443 

MSE 0.0449 0.0358 0.0560 0.0320 0.0449 0.0691 0.0401 0.0416 0.0641 0.0372 

77 Estimate 0.7077 0.7168 0.6985 0.7214 0.7077 0.6893 0.7122 0.7103 0.6920 0.7148 

MSE 0.0417 0.0384 0.0452 0.0368 0.0417 0.0489 0.0401 0.0407 0.0477 0.0390 

126 Estimate 0.7056 0.7112 0.700 0.7140 0.7056 0.6944 0.7084 0.7073 0.6961 0.7100 

MSE 0.0408 0.0387 0.043 0.0377 0.0408 0.0452 0.0398 0.0402 0.0445 0.0392 

200 Estimate 0.7043 0.7078 0.7007 0.7095 0.7043 0.6972 0.7060 0.7053 0.6983 0.7070 

MSE 0.0404 0.0390 0.0418 0.0384 0.0404 0.0431 0.0397 0.0400 0.0427 0.0393 
 

 
 

Fig. 1. A graph of MSE versus the estimators from Tables 1, 2 and 3 

 

From Table 3, we have the same pattern of the result found in Tables 1 and 2 with the same lower values of 

MSE for the estimators using PLF under all the priors after increasing the value of   from 0.5 to 1.5. This again 
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indicates that changing the value of   does not affect the estimates of the scale parameter,   as shown in         

Fig. 1. 

 

Table 4. Average Estimates (Estimates) and Mean Squared Errors (MSEs) of the estimated scale 

parameter ( ̂ ) for 0.8, 0.5, 1.4, 0.9, 1.0a         and 1.0b   under three different priors 

and loss functions with varying sample sizes 

 

n Measures MLE Uniform prior Jeffrey’s prior Gamma prior 

SELF QLF PLF SELF QLF PLF SELF QLF PLF 

23 Estimate 0.1287 0.1343 0.1231 0.1371 0.1287 0.1175 0.1315 0.1329 0.1218 0.1357 

MSE 0.6096 0.6023 0.6170 0.5988 0.6096 0.6246 0.6060 0.6039 0.6185 0.6003 

77 Estimate 0.0668 0.0677 0.0660 0.0681 0.0668 0.0651 0.0673 0.0676 0.0659 0.0680 

MSE 0.6975 0.6962 0.6989 0.6955 0.6975 0.7003 0.6969 0.6963 0.6991 0.6957 

126 Estimate 0.0522 0.0526 0.0517 0.0528 0.0522 0.0513 0.0524 0.0525 0.0517 0.0527 

MSE 0.7207 0.7200 0.7214 0.7197 0.7207 0.7221 0.7204 0.7201 0.7214 0.7198 

200 Estimate 0.0419 0.0422 0.0417 0.0423 0.0419 0.0415 0.0420 0.0421 0.0417 0.0422 

MSE 0.7374 0.7371 0.7378 0.7369 0.7374 0.7381 0.7372 0.7371 0.7378 0.7369 

 

It can be seen from the table above that the PLF gives us the most efficient estimators for the scale parameter, 

and looking at all the results presented in the tables above, we can conclude that Bayes estimators using 

precautionary loss function (PLF) under uniform, Jeffrey and gamma priors are associated with minimum MSE 

when compared to those obtained using MLE, SELF and QLF under Jeffrey prior, gamma prior and Uniform 

prior irrespective of the parametric values as well as the allocated sample sizes of n=23, 77, 126 and 200.  

 

Table 5. Average Estimates (Estimates) and Mean Squared Errors (MSEs) of the estimated scale 

parameter ( ̂ ) for 0.8, 0.5, 0.4, 0.9, 2.5a         and 1.0b   under three different 

priors and loss functions with varying sample sizes 

 

n Measures MLE Uniform prior Jeffrey’s prior Gamma prior 

SELF QLF PLF SELF QLF PLF SELF QLF PLF 

23 Estimate 0.7213 0.7527 0.6899 0.7682 0.7213 0.6586 0.7368 0.6968 0.6387 0.7111 

MSE 0.0449 0.0358 0.0560 0.0320 0.0449 0.0691 0.0401 0.0518 0.0771 0.0466 

77 Estimate 0.7077 0.7168 0.6985 0.7214 0.7077 0.6893 0.7122 0.7006 0.6826 0.7051 

MSE 0.0417 0.0384 0.0452 0.0368 0.0417 0.0489 0.0401 0.0442 0.0515 0.0425 

126 Estimate 0.7056 0.7112 0.700 0.7140 0.7056 0.6944 0.7084 0.7014 0.6903 0.7041 

MSE 0.0408 0.0387 0.043 0.0377 0.0408 0.0452 0.0398 0.0424 0.0468 0.0413 

200 Estimate 0.7043 0.7078 0.7007 0.7095 0.7043 0.6972 0.7060 0.7016 0.6946 0.7033 

MSE 0.0404 0.0390 0.0418 0.0384 0.0404 0.0431 0.0397 0.0414 0.0442 0.0407 

 

Table 6. Average Estimates (Estimates) and Mean Squared Errors (MSEs) of the estimated scale 

parameter ( ̂ ) for 0.8, 0.5, 0.4, 0.9, 1.0a         and 2.5b   under three different 

priors and loss functions with varying sample sizes 

 

n Measures MLE Uniform prior Jeffrey’s prior Gamma prior 

SELF QLF PLF SELF QLF PLF SELF QLF PLF 

23 Estimate 0.7213 0.7527 0.6899 0.7682 0.7213 0.6586 0.7368 0.7748 0.7140 0.7899 

MSE 0.0449 0.0358 0.0560 0.0320 0.0449 0.0691 0.0401 0.0298 0.0465 0.0268 

77 Estimate 0.7077 0.7168 0.6985 0.7214 0.7077 0.6893 0.7122 0.7239 0.7057 0.7285 

MSE 0.0417 0.0384 0.0452 0.0368 0.0417 0.0489 0.0401 0.0359 0.0424 0.0344 

126 Estimate 0.7056 0.7112 0.700 0.7140 0.7056 0.6944 0.7084 0.7156 0.7045 0.7184 

MSE 0.0408 0.0387 0.043 0.0377 0.0408 0.0452 0.0398 0.0371 0.0412 0.0361 

200 Estimate 0.7043 0.7078 0.7007 0.7095 0.7043 0.6972 0.7060 0.7106 0.7035 0.7123 

MSE 0.0404 0.0390 0.0418 0.0384 0.0404 0.0431 0.0397 0.0380 0.0407 0.0373 
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From Tables 4 and 5 where a and b are increased respectively, it was discovered that uniform prior with PLF 

gives the most efficient estimators for the scale parameter, and looking at all the results presented in the tables 

above, we can conclude that Bayes estimators using PLF under uniform prior are more better than estimators 

using MLE, SELF and QLF under Jeffrey prior, uniform prior and gamma priors irrespective of the parametric 

values as well as the allocated sample sizes of n=23, 77, 126 and 200.  

 

 
 

Fig. 2. A graph of MSE versus the estimators from Table 4 
 

 
 

Fig. 3. A graph of MSE versus the estimators from Tables 4, 5 

 

5 Conclusion  

 
This study is aimed at estimating a scale parameter of the GuLD using the Bayesian method of estimation and 

evaluating the estimator with the assumption of two non-informative priors and one informative prior 

distributions namely; Uniform, Jeffrey and gamma prior distributions. These estimators were obtained under the 

SELF, QLF and PLF. The posterior distributions associated with the scale parameter of the GuLD were derived 
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and also the Estimators were also obtained using the above mentioned priors and loss functions. Furthermore, 

we carried out Monte-Carlo simulation using a package in R software to assess the performance of the proposed 

estimators by making use of the associated MSEs of the Estimators under the Bayesian approach and the 

Maximum likelihood method. 

 

The performance of these estimators is assessed on the basis of their mean square errors. Monte Carlo 

Simulations are used to compare the performance of the estimators. It is discovered that using the PLF (under 

uniform prior) produces the least measures of MSE, followed by the PLF (under Jeffrey’s prior and gamma 

prior) then the SELF,MLE  and lastly the QLF under both Uniform, Jeffrey and gamma priors irrespective of the 

parameter values and different in sample sizes. Most importantly, we found that Bayesian Method using PLF 

under all the priors produces the best estimators of the scale parameter compared to estimators using Maximum 

Likelihood method, SELF and QLF under both Uniform and Jeffrey priors irrespective of the values of the 

parameters and the different sample sizes. It is also discovered that the values of the other parameters have no 

effect on the estimators of the scale parameter. It is also discovered that the values of the other parameters have 

no effects on the estimators of the scale parameter because changing the values of the other parameters alone 

does not change the direction of the result or the MSEs. 

 

Based on our findings from the results of this study, we recommend that; 

 

Bayesian method using Precautionary Loss Function should be used under uniform prior for the estimation of 

the scale parameter of the GuLD irrespective of the parametric values or the sample size. When estimating the 

scale parameter in question, the researcher should also consider Precautionary Loss Function under Jeffrey’s 

prior and gamma priors.  
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