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Abstract: Restrictive regulations concerning the toxicity of certain compounds and the use and
disposal of solvents present in the liquid epoxy protection system have been analyzed in this work to
evaluate powder coatings as an alternative in the protection of aerosol aluminum cans, which are
employed in cosmetics and pharmaceutical product packaging. In this paper, the chemical resistance
of polyester and mixed epoxy-polyester powder coatings is assessed, considering different aggressive
environments employed in healthcare commercial products. The samples’ performances are also
compared with the currently used liquid organic coatings. The pack test has been used to evaluate
the protective system behavior in contact with both the liquid and the gaseous part of the cosmetic
product. However, the visual observation, required by the test, enabled the highlight of only very
evident degradation phenomena. The chemical resistance of the powder coatings has proved to be
appropriate only for less aggressive environment, where the critical compounds are propellants,
propane, butane and isobutane. When exposed to other environments containing alcohol, water and
dimethyl ether, most samples have been susceptible to layer degradation phenomena. Polyester
layers lose their corrosion protection properties. Epoxy systems, instead, result more performant
than polyester resins, but they particularly suffer from the contact with dimethyl ether.

Keywords: powder organic coating; healthcare packaging; coating degradation; electrochemical
impedance spectroscopy

1. Introduction

The aluminum aerosol cans in the cosmetics market are usually coated inside with organic coatings
in order to protect the surface from the contents, and to avoid possible contaminations of their content.
Clearly, healthcare materials contaminated with corrosion products change their aspects and their
properties. This represents a critical aspect, as the aluminum aerosol cans on the market often contain
several types of materials, with different chemical reactivity. It is therefore not easy to protect aluminum
from these materials, especially considering the long storage times of commercial products, before
and during their use by consumers. To avoid possible contaminations, the organic coatings used in
this field must satisfy very restrictive requirements. In fact, these products (hair lacquers, deodorants,
shaving foams) come into contact with delicate body parts (face, skin, hair, lips), and they should
not be contaminated by organic compounds coming from coatings and by corrosion products. In
addition, the product visual appearance is very important. The contamination of products takes place
in various ways. Organic coatings components can be extracted by the contained matter, which would
act, in this case, as a solvent. Coating compounds could interact with the substances present in the
liquid by forming other unwanted compounds. Moreover, the organic layers may delaminate from
the metallic substrate as a consequence of adhesion loss. The last phenomenon is harmful either
because the fragments of detached protective layer can block the dispenser, or because the consumer
may find parts of the organic matter in the product, and the aluminum can surface loses its corrosion
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protection. Coating delamination occurs due to the migration of certain compounds through the coating
to the interface with the substrate and interrupts the bond with the coating. Alcohols, compounds
containing the phenol or hydroxyl group, and generally low molecular weight compounds represent
the substances that can easily spread through the lattice and cause adhesion problems [1]. Another
critical issue that may arise is the absorption by the film of certain product compounds, present in
limited quantities, compromising the final qualities and properties of the product itself. In these
healthcare products, in fact, added compounds are used in small but necessary amounts, such as
phenoxyethanol to prevent loss of fragrance over time, benzoic acid as preservative, limonene and
menthol to give perfume to the product. The organic coating should not be impregnated with them.
However, this is not easy since alcohol and esters are usually easily absorbed by the polymers [2]. These
organic coatings, even if applied inside the aluminum aerosol can, should have also good mechanical
strength and good ductility, because after deposition of protective layering, the aluminum panel is
subjected to a post-bending operation to form the can neck in order to apply the dispenser.

In the cosmetics market, therefore, there is a need for protective layers with special chemical and
corrosion resistance, based on FDA (Food and Drug Administration) regulations (as there are not ad
hoc rules for cosmetics) or the organic coating producer’s specifications. Based on Article 3 of the
Regulation 1935/2004 of the European Parliament, for example, the materials chosen for food packaging,
including protective coatings, must not constitute a danger to the health of the consumer, involve a
change in the composition of the product and a deterioration of their organoleptic characteristics [3].
The organic coatings must also have good ductility and mechanical strength. Considering organic
coatings, chemical resistance and the ductility are properties in contrast to each other. The first requires
a high degree of crosslinking and high density, which leads to a greater chain lock and therefore a
reduction of ductility of the organic layer [4]. A third important and essential feature is the adhesion
properties, which must be very good. In fact, to minimize costs, the containers surface is not pre-treated
before coating deposition. Nowadays cosmetic aluminum packaging market is still dominated by
liquid organic coatings. There are several low-costs resins on the market, without particular adhesion
problems on untreated surfaces. These have sufficient chemical and solvents resistance, can resist to
high curing temperature (above 200 ◦C), and need a short curing time to complete the cross-linking
process. These features reduce the process cost, and keep the productivity high.

Nevertheless, the increasingly restrictive regulations on solvent disposal, as well as the growing
public attention to the environmental issue, prompted companies to look for powder coating products
that could replace the coatings used nowadays [5–8]. Powder coating is a technique with no need of any
solvents or dispersion media. Moreover, this type of coating needs very short process time compared to
conventional coating process [9]. Dry powder coating can be performed using different technological
approaches which include liquid assisted, or thermal adhesion or electrostatic coating [10].

The cosmetics market is wide and there are thousands different commercial products; however,
aluminum aerosol cans are mainly used for hair lacquers, shaving foams, deodorants and environment
perfumes. Although the products are very different from each other, they are made of common compounds
such as propellants (propane, butane, isobutane, etc.), water, and ethyl alcohol. Companies in this market
have divided the products into three aggressive classes depending on the contained compounds:

• Low criticality products, which possess a combination of propane/butane/isopropane, or other
kind of propellant;

• Medium criticality products, containing propylene, including ethyl alcohol, or products containing
ethyl alcohol and dimethyl ether (DME);

• High criticality products, such as high-performance lacquers usually presenting a combination of
water, ethyl alcohol and DME.

The three critical levels described above can be addressed by applying standard organic
liquid paints. Low criticality products can in fact be used by protecting the container with epoxy
coatings, while higher criticality products require the use of PAM (polyamide-imide) based coatings.
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Powder coatings are trying to get inside this market, monopolized until just a few years ago by liquid
organic coatings, achieving good results for the medium-low criticality products, but finding obstacles
for more aggressive substances. The mixed epoxy-polyester powder resin is already on the market,
replacing in some cases the standard liquid epoxy coatings, thus covering the low and mid-low critical
market slice.

The two main aims for the development and study of the powder organic coating systems are:
the improvement of the properties of the available epoxy-polyester resin to cover even more critical
products (medium and high criticality), and the development of a resin for medium-low critical issues,
without the presence of bisphenol A (BPA) which is contained in epoxy resins and suspected of being
dangerous to humans [7,11–17].

In this work, the behavior of two different types of resins for the protection of aluminum aerosol
cans in the healthcare market were considered. Both types of resin were also modified by changing their
formulation, increasing the crosslinking. The resistance properties of these four protection systems
were compared to the behavior of a reference liquid epoxy resin, traditionally used on the market.
These resins have been exposed to four different types of environments, representative of the most
used commercial products, by means of the pack test, which allows to put in contact the inside product
with the coating without loss of volatile components and gas. The samples degradation was evaluated
by measurements of weight and hardness loss and infrared (FTIR) analysis. Finally, the corrosion
protection properties of the coatings have been studied by electrochemical impedance spectroscopy
(EIS) measurements.

2. Materials and Methods

2.1. Materials

In this work, two types of powder organic coatings are considered. The first is an epoxy-organic
coating (labelled as E sample), already commercially used for medium-low critical products, and
the second one is a polyester coating that is not on the market yet. Along with the standard epoxy
coating, another organic coating with the same type of resin has been developed using a modified
hardener with higher functionality in order to increase the crosslinking of the organic coatings,
and therefore, in theory, a higher density and chemical resistance. The hardener, in fact, leads to
an increase of the coating Tg value, as a consequence of a stronger crosslinking level. This coating
is labelled as E-Mod. Standard polyester coating (P sample), which falls into the class of organic
coatings not containing BPA, is not yet commercially available and is still at the preliminary stage
of the production tests. Additionally, in this case the standard polyester coating has been modified
with higher functionality in order to increase the crosslinking density (sample P-Mod). To have a
comparison with the most commonly used liquid organic coating, the standard epoxy (Ref sample) has
been also considered in pack test. Table 1 summarizes the different studied organic coatings samples
with their characteristics and labels. The five types of coatings were supplied by Akzo Nobel Powder
Coatings S.p.A. (Como—Italy).

Table 1. Sample labels with respective characteristics.

Coating Coating Sample Labels Characteristics

Epoxy-polyester E standard epoxy-polyester coating
E-Mod modified epoxy-polyester coating

Polyester P standard polyester coating
P-Mod modified standard polyester coating

Epoxy (liquid) Ref standard epoxy coating

Typical aluminum alloy AA1050 (99.50% Al) aerosol cans obtained from a rolled coil, were used
as substrate. Before deposition of a protective layer, the surface aluminum panel was degreased in
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acetone subjecting it to a 10 min ultrasound stirring step. The powder coating was applied with a
spray gun followed by 20 min at 190 ◦C as curing process. The reference liquid organic layer was
realized by spray deposition followed by a curing process at 230 ◦C for 7 min. The thickness of the
obtained coatings was equal to 15–25 µm. Figure 1 shows the coating of sample E, taken as a reference,
as it is representative of the different coatings under examination. In fact, all the samples possess a
compact layer, homogeneous in thickness and without microscopic defects such as bubbles or porosity.

Figure 1. Coating appearance.

Considering the bending necessity of the coated aluminum on the top for the construction of the
complete aerosol can, as the first indication, the aluminum panel was bent using a cylindrical mandrel
with a 3 mm bar following ISO 1519, without the presence of visible cracks or layer delamination.
Finally, the samples (175 × 25 mm and 0.5 mm of thickness) for the different tests were obtained by
mechanical cutting from the coated aerosol cans.

In addition, the deformation suitableness is connected with the hardness of the materials.
Considering this aspect, the hardness of the coatings, before and after degradation tests, was collected
as indicated in Section 2.2.

The most critical point in testing these coatings is to find an environment for the simulation of
the service life of the protective layers in contact with the cosmetic products. Due to the complex
products and the presence of volatile component, it is not possible to easily reproduce in laboratory the
aggressive environments with the contemporaneous presence of liquid and gas phases with different
chemical compounds. Industry companies recognize the pack test as a reliable procedure for the
characterization of the coating resistance in operating environments, in case of protective layers used
for aerosol cans under pressure. For the pack test conduction, in order to have different aggressive
environments with specific chemical compositions, three of the most common hair lacquers and one
spray deodorant present in the cosmetics market were chosen. In this way it was possible to cover
all the representative critical classes and the various combinations of critical compounds for coatings.
The used products are mentioned, but the quantities of the individual components are not specified.
The chosen products are taken as a reference, as each manufacturer slightly changes the chemical
concentrations, so it is impossible to find a product whose composition is perfectly equal to that of
another product. The four environments, however, meet the requirements of the study presented in this
work, as they are representative of the different levels of aggressiveness present in commercial products.

• Environment 1: Presence of DME and alcohol (L’OREAL Viola Iper Forte)
• Environment 2: Presence of water, alcohol, isobutene, propane and butane (Nivea Strong).
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• Environment 3: Simultaneous presence of DME, water and ethanol (Taft Classic). This combination
should be the most aggressive.

• Environment 4 (obtained from deodorant): Presence of a mixture of propane-isopropane-butane,
with low aggressiveness, and it also has three phases unlike other products, a solid, a liquid and a
gaseous one (Nivea Invisible Black and White).

The hair lacquers (environments 1, 2 and 3) are mainly composed of three components: filmogenes,
vinyl synthetic resins (such as vinyl acetate, vinyl-pyrrolidone or acrylates) that create a resistant
film; solvents, which keep in solution the film-forming compounds and allow the spraying process;
and propellants, for the product dispensing. There is also a portion of additives (preservatives,
fragrances, surfactants, etc.), and for some products even a percentage of water, which is preferable to
keep low, because it is desirable to dry the product once stored on the hair as quickly as possible [18–20].
Alcohols, predominantly ethanol and isopropanol, are the mainly used solvents, while dimethyl ether
(DME), propane, butane and isobutene are widely exploited as propellants. DME is a water-soluble
ether, easy to liquefy even at low pressures (such as in the aerosol can) and is also an excellent solvent
as well as a propellant [20]. The various samples have been labeled with a letter, indicating the type
of resin used in the coating, followed by a number, indicating the environment to which they are
subjected, as shown in Table 2. For example, sample P_2 is made of a standard polyester resin that has
been subjected to the test environment number 2.

Table 2. Sample labels.

Coating Type Environment Sample Label

E

1 E_1
2 E_2
3 E_3
4 E_4

E-Mod

1 E-Mod_1
2 E-Mod_2
3 E-Mod_3
4 E-Mod_4

P

1 P_1
2 P_2
3 P_3
4 P_4

P-Mod

1 P-Mod_1
2 P-Mod_2
3 P-Mod_3
4 P-Mod_4

Ref

1 Ref_1
2 Ref_2
3 Ref_3
4 Ref_4

2.2. Characterization

The pack test consists of an 85 mL cylindrical waterproof container (200 mm height × 40 mm
diameter), shown in Figure 2, which allows the cosmetic products (in this case hair lacquers) to be
injected inside. Here the coated samples are located and subsequently submitted to the substances they
will find in use. A part of the sample is immersed in the liquid and the other part is in contact with a
gas phase, as in commercially available cans. The liquid fraction inside the container is equal to 50% of
the entire volume, as in many commercial products. This aspect is very important, as the two phases
(liquid and gaseous), present in these products, interact differently with the sample. The peculiarity of
the pack test is that it allows the contents of the aerosol can to be emptied in the test environment,
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keeping the pressure constant and avoiding the loss of gas and volatile substances. The vessel has been
therefore placed in an oven at 55 ◦C for 8 days, to speed up the processes. Thus, the “aged” samples
have been subjected to several characterization tests (hardness, adhesion, adsorption, electrochemical
test) to evaluate the integrity of the coating and its environmental resistance. In contrast to behavior
during service life, the samples that were coated and tested with the pack test present edges (the
samples consist of coated aluminum strips cut from the can), and they are not as continuous as the
material inside the typical industrial aerosol can. This fact must therefore be taken into account in
the coating resistance evaluation, as the samples possess weak spots at the edges, where defects
and delamination can occur. However, this test is accepted and widely used by the organic coating
producers and cosmetic companies. The samples were characterized before and after the pack test
to compare the behavior of different kinds of coatings as well as to evaluate any leakage of property
produced by the exposure to various environments. Therefore, the property loss was evaluated
following the pack test by measuring any weight differences, as well as hardness tests. The hardness
property of the coatings was measured with the Buchholz indentation test following the EN ISO NF
2815-2003 standard, both in the part of the sample immersed in the liquid and in the part in contact
with the gases, in order to assess which part of the product (gaseous or liquid) has a greater interaction
with the coating.

Figure 2. Pack test apparatus.

Different characterization tests were carried out, such as FTIR analysis using a Varian Excalibur
4100 instrument at 4000—400 cm−1, and differential scanning calorimetry (DSC) analyses, performed
by using a Mettler DSC30 calorimeter. The hardness measurements were carried out by means of an
ARW Misure indenter, following the UNI-EN-ISO 2815 standard. Finally, the coating defectiveness
were analyzed by optical stereomicroscope (Nikon SMZ25) observation. Considering the protection
properties of the coatings, EIS measurements were carried out at 15 mV (peak-to peak) and 105–10−2 Hz
with the potentiostat Parstat 2273 and software PowerSuit ZSimpWin. The cell setup was composed of
a platinum counter electrode, and an Ag/AgCl reference electrode (+207 mV versus SHE) immersed in
a 0.1M sodium sulphate solution.

Each type of coating was studied by subjecting three samples of the same type to each of the four
Pack Test environments. Consequently, all subsequent characterization analyses were reproduced on
three coatings per sample (see Table 2—Sample label column).
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3. Results and Discussion

3.1. Pack Test

Table 3 shows the behavior of the samples subjected to pack test in the different test environments,
observed by optical microscope analysis.

Table 3. Pack test results.

Environment
Epoxy Coating Epoxy-Polyester Coating Liquid Epoxy

Coating

Coating E Coating
E-Mod Coating P Coating

P-Mod Coating Ref

1 delamination in gas complete
delamination OK bubbles OK

2 bubbles on the edges OK bubbles OK OK

3 bubbles on the edges complete
delamination

bubbles on
the edges

complete
delamination OK

4 OK OK OK OK OK

As for the epoxy coating samples, environments 1 and 3 are very harmful, leading to the complete
delamination of the coatings. Environment 2 appears instead to be less aggressive, especially for
sample E-Mod, which is free of defects.

Polyester coatings, instead, seem to better behave if exposed in environment 1, especially in the
case of sample P, which however shows high defectiveness in environment 2.

Finally, for all 4 series of samples, environment 4 is harmless, as it does not cause defects in
protective layers. The Ref sample, on the other hand, does not show macroscopic defects, even after
exposure in aggressive environments.

As described by Table 3, it seems that epoxy coatings are less resistant than the polyester based
ones. However, the latter degradation level (though not completely delaminated) is very high (loss of
hardness, solid residue inside the lattice, loss of corrosion barrier properties, etc.), and most of these
coatings are unprotected.

The changes made to improve coating E (epoxy-based) have deteriorated its chemical resistance;
in fact, this sample presents delamination in most environments.

As already explained, the pack test shows some critical issues. The edges in the test samples
represent weak points that are not present in the final packaging application. Delamination may be
due in some cases to the presence of edges and defects caused by sample cutting, and may therefore
start more easily from these areas. For example, in samples E, shown in Figure 3, the bubbles are
formed mainly near the edges, confirming the previous hypothesis. One of these bubbles is visible on
the right of the figure: it has very high dimensions, with the diameter that exceeds 1000 µm in length.

By analyzing the pack test’s results, it is possible to identify the most responsible compounds for
the loss of coating properties. Epoxy resins fail for environments 1 and 3, which contain DME. In fact,
in addition to being a propellant, DME is a good solvent, and it will be found both in the liquid phase
and in the gaseous one. Epoxy resins in particular suffer from contact with DME, because it is a similar
compound presenting an epoxy ring. These considerations are not valid for the Ref sample, which is
also epoxy based, as it has different cross-linking times and a more compact structure. In addition,
it contains bisphenol-A (BPA), which the healthcare packaging industry would like to eliminate from
their products.
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Figure 3. Samples E, where the red arrows indicate the presence of bubbles. On the right,
the magnification of one of these bubbles is shown.

Polyester based resins undergo an accentuated degradation, which sometimes does not lead to
delamination, for environments 2 and 3. There are the presence at the same time of both water and
alcohol, a particularly critical blend for polyester resins. The weight variations of the samples were
collected before and after the Pack Test, and checked again 30 days after the degradation test to study a
possible evaporation of uptake compounds in organic coatings. During this period, the samples were
stored at ambient temperature and atmosphere. Table 4 shows the results of the weight difference
measurements carried out on samples immediately after the pack test, and then after 30 days.

Table 4. Weight change measurements of the selected samples at the end of the pack test and after
30 days.

Sample Weight Increase after the Pack Test (%) Weight Change after 30 Days (%)

E_2 4.1800 0.5639
E_4 0.1625 0.1073

E-Mod_2 0.8525 0.3545
E-Mod_4 0.1350 0.0898

P_1 0.5425 0.1194
P_4 0.7725 0.1488

P-Mod_2 0.8075 −0.2108
P-Mod_4 0.6025 0.2236

Ref_1 0.1600 −0.0099
Ref_2 0.0375 −0.0075
Ref_3 0.0550 −0.0050
Ref_4 0.0300 −0.0050

The selected samples did not show delamination or bubbles formation during the pack test.
All organic coatings absorb a certain amount of product they come into contact with. Resins that
do not undergo significant degradation have a modest weight increase, while delaminate resins
absorb high amounts of solvents (and other compounds), about 10 times more than the other coatings.
Therefore, there is a correspondence between absorption and failure of lattice. The weight variation
measurements, made 30 days after the end of the pack test, show the tendency of mixed epoxy-polyester
resins to have a weight gain while polyester resins show a weight loss. In both cases, the most degraded
coatings have more weight variations. The weight loss of polyester samples is due to the fact that
some parts of the protection layer are brought to solution, a symptom of a lattice coherence loss and a
diffuse degradation of the protection layer. The increase of weight is instead due to the solid residue
of the products used in the pack test; the various compounds penetrate and then remain within the
coating lattice (for example the filmogenic part of the hair lacquers). In both cases, because these
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phenomena occur, the coating lattice loses consistency and lets other compounds enter into it, with
consequent coating degradation. The Ref coating, on the other hand, shows no significant weight
variations, with minimal contamination of the lacquer residues.

3.2. Hardness Measurements

The hardness property of the samples was evaluated using the Buchholz indentation technique,
expressing the hardness value as 100/L, where L represents the average measured length of the grooves
made during the measurement. The hardness of the coatings before the degradation tests is too high to
be accurately measured with this technique, higher than 130–140 degrees Buchholz hardness. At the
same time, the hardness test could not be performed on completely delaminated samples.

Table 5 shows the results of the samples hardness tests, performed for those samples which got in
contact with both gaseous and liquid environments.

Table 5. Buchholz hardness measurements related to the samples that do not shows coatings
delamination or blister.

Sample Hardness in Liquid (100/L) Hardness in Gas (100/L)

E_1 125 total delamination
E_2 73 93
E_4 132 121

E-Mod_2 93 111
E-Mod_4 117 102

P_1 93 119
P_2 46 47
P_3 48 75
P_4 106 93

P-Mod_1 bubbles presence 105
P-Mod_2 58 100
P-Mod_4 143 118

Some of the obtained results are outside the validity range of the standard, since the measured
groove is too long in relation to the thickness of the coating. Therefore, some particularly low hardness
values are not acceptable from the regulatory point of view, but are in any case reported and treated as
reliable data, as they give an indication of the condition of the protective layer. It seems that the coatings
suffer the most when immersed in the liquid of the environments 1 and 3, while in environment 2 there
is a loss of hardness in both parts of the sample. On the contrary, the samples that have been subjected
to environment 4 exhibit less hardness in the part in contact with the gases. This result is in line with
expectations, in fact the solvents contained in the hair lacquers, which are the major responsible for the
degradation of the resins, are in the liquid phase; ethyl alcohol, water and even a part of the DME
present in the liquid phase can be found in environments 1, 2 and 3. The 4th environment does not have
any particular solvents, but in the gas phase there are propellants (propane, butane and isobutane) that
interact with the part of the sample in contact with them. Environment 2 also contains the propellants
that are present in gas phase. In fact, there is a loss of hardness in particular in the sample part in
contact with the gas. The various tests and coatings can be compared. Environment 2 reduces hardness
in comparison with environment 1; environment 3 does not show enough undamaged coatings to
be able to make concrete considerations; while environment 4 has little effect on coatings hardness
change. Considering the type of resin, epoxy coatings maintain greater hardness than polyester: even
for samples with delaminated zones or with bubbles, epoxy coatings still retain good hardness and
have no weight leakage. Although the polyester-based samples withstand better in environments 2
and 3, as shown in Table 3, these coatings suffer instead from high weight variation (Table 4) and loss
of hardness (Table 5), both symptomatic phenomena of a high degradation of the resin. These tests
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show that the various substances that come in contact with the coatings lead to a loss of coherence of
the polymeric lattice and hence to a decrease in properties.

3.3. DSC Measurements

The differential scanning calorimetry (DSC) analysis were performed to measure the Tg of the
various used organic coatings, showed in Table 6.

Table 6. Tg values of the 4 samples series.

Sample Tg (◦C)

Coating E 130
Coating E-Mod 173

Coating P 104
Coating P-Mod 109

The measured Tg values show that for epoxy-polyester mixed resins there is a substantial increase
in crosslinking with the hardener change (sample E-Mod), while for polyester resins there is only a
few degrees’ increase. Tg of about 170 ◦C represents a high value for epoxy-polyester coatings, which
therefore exhibit a high degree of brittleness. This is a typical value for a coating, which needs to
present at the same time a good chemical resistance and a sufficient ductility for the aluminum coated
foils bending without crack nucleation.

To highlight the influence of the aggressive environment on the polymeric matter, FTIR analysis
are carried out on the samples after the contact with an environment possessing an intermediate
aggressiveness such as environment 2. Environment 3, in fact, results too much aggressive, leading to
the total degradation of the polymer, while in environment 1 the interactions result very light, with
minimal change in polymeric structures. Figure 4 shows the FTIR spectra of sample E-Mod_2 (a),
sample E-Mod_2 in contact with the liquid phase during the Pack Test (b) and sample E-Mod_2 in gas
(c). The measurements (b) and (c) were carried out 30 days after the end of the Pack Test. The image
shows the spectra of only sample E-Mod, as they are the least performing. All the powder coatings,
after exposure to the liquid environment of the Pack Test, show the loss of the anhydrides (1785 cm−1),
which are part of the hardening agent. The anhydrides in contact with ethyl alcohol or water should in
fact open and react by forming an ester group and a carboxylic acid; the greater intensity of the peak of
these functional groups is also explained (2800–2600 cm−1 range) [21]. In the sample in contact with
the liquid (b), a decrease in intensity of the peaks at 1500 and 1250 cm−1 is observed, associated to the
C-O bonds, due to an interaction between polymer and alcohol and isobutene present in the liquid
part of the environment 2 [22,23].

Figure 4. FTIR spectra of sample E-Mod_2 (a), sample E-Mod_2 in liquid (b) and sample E-Mod_2 in
gas (c).
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Following the pack test, all the samples present peaks associated with the solid residues of the
used products (environments 1, 2 and 3). In particular, the compounds, present in these environments,
absorb in the spectrum region between 1800 cm−1 and 1000 cm−1, and it is precisely in these areas that
the part of the sample in contact with the liquid phase presents the greatest modifications (Figure 4).
The Ref sample shows minimal contamination and modification of the FTIR spectrum, confirming the
lower tendency to deterioration in contact with this type of products, as already observed in Table 4,
with non-significant weight variations.

3.4. Electrochemical Impedance Spectroscopy

Impedance tests were performed in a 0.1 M sodium sulphate solution; all the results shown below
were collected after a day of immersion. The chosen test solution is not very aggressive, as this type of
analysis was carried out to simply point out the coating’s damage, without influence on the degradation
process. It was not possible to carry out these tests for all samples after the Pack Test, because it would
not make sense to perform this type of analysis on delaminated or seriously compromised coatings.
For example, Figure 5 shows the Bode impedance modulus spectra of sample E, before the pack test
and after a 24 h of exposure in the different test environments.

Figure 5. Bode impedance modulus of sample E series before the pack test and after 24 h of exposure
in the different test environments.

Before the pack test, the coating is practically free from defects, presenting very high protection
properties, with a 1011 Ohm cm2 order of magnitude of impedance modules, typical of protective
powder coatings. Instead, after the pack test, a decrease in the value of the impedance module measured
at low frequencies (10−2 Hz) is observed. For sample E, and in general for mixed epoxy-polyester
(E-Mod) samples, the exposure in environments 1-2-3 produces a decrease of two to three orders of
magnitude, due to the presence of alcohol and water. The exposure in environment 4 leads to a less
severe degradation of the coating with a limited decrease of impedance modulus. However, in all
cases, the impedance modulus at low frequencies remains higher than 106 Ohm cm2, indicating the
permanence of protection properties [24–26]. The polyester resin (sample P) instead, and in general
all the polyester-based samples, undergoes a degradation consistent with environments 1, 2 and 3,
as shown in Figure 6.

The impedance decrease results are very high, lower than the protection threshold. Polyester coatings
in fact particularly suffer from the contact with alcohol. For environment 4, which presents only propellant,
the impedance module remains unchanged and very high, symptom of the low aggressiveness of this
environment, as previously confirmed by Tables 3 and 4.
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Figure 6. Bode impedance modulus of sample P series before the pack test and after 24 h of exposure
in the different test environments.

Figure 7 reported the EIS Bode modulus spectra comparing the behavior of the four types of
samples after being exposed in environment 2: it shows that polyester samples (P and P-Mod) have an
extremely low value of |Z|, while E (epoxy-based) maintains a just acceptable behavior. Despite this, the
modification of the epoxy resin leads to a decrease in corrosion resistance properties. Sample E-Mod,
in fact, degrades and shows a very similar impedance module to that of the polyester resins. In the
electrochemical impedance measurements, the test in environment 2 has proved to be critical for
sample E-Mod, as seen in Figure 7, but this result was not found in other tests. The E-Mod_2 sample
appeared to be intact and without visible defects after the pack test. However, it must be considered
that the EIS measurements are more sensitive to the presence of defects in the organic layers, and
therefore they are more representative of the true state of degradation of the coating. For example,
at high frequencies there is the time constant relative to the organic coating. The difference in modulus
observed is relative to the fact that, except for E_2, the coatings show low protection and therefore a
very low coating resistance.

Figure 7. Bode impedance modulus of samples related to environment 2.
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4. Conclusions

In this paper, the powder coatings were studied as alternative to solvent tradition organic coatings
in the cosmetic matter packaging. The pack test allowed us to expose the different types of coatings in
real environments, representative of the life in use of the products, both in the gaseous and liquid phase.

The coatings seem to suffer the most from the contact with the liquid phase of the test environment.
A visual observation allows to highlight only very evident degradation phenomena, with delamination
and blisters. To get an idea of the real drop in protection, it is necessary to use EIS measures that
show also the formation of microscopic defects that drastically reduce the protective properties under
the minimum required threshold. The chemical resistance of the powder coatings has proved to be
appropriate only for the less aggressive environment, where the critical compounds are only propellants,
propane, butane and isobutane. Following exposure to other environments, where alcohol, water and
DME are present, most samples have been susceptible to layer delamination, blisters formation and
degradation of protection properties.

Considering epoxy coatings, the collected data showed that these layers particularly suffer from
the contact with dimethyl ether, which is a good solvent for this resin, since it is a compound similar to
polyether, which form the epoxy resin lattice chains. Compared to epoxy coatings, polyester coatings
showed that, when exposed in environments with different critical levels (1, 2 and 3), they lose their
corrosion protection properties. This happens even to those coatings that, following the pack test, have
no particular visible defects and seem more intact than the respective epoxy samples. The polyester
coatings also suffer from a greater loss of hardness, a higher solvent absorption and weight variations,
which are symptom of degradation and loss of coherence in the lattice, more pronounced than the
epoxy ones. On the other hand, the reference liquid coating Ref does not undergo any appreciable
degradation or interactions with the various compounds it comes into contact with. To conclude,
this study on powder coatings for application in the field of cosmetics shows that there is still a great
deal of distance between powder and liquid coatings. The nature of the resins that can be used with
powder technology is still too limiting for now, and being able to create homogeneous, thick and
defect-free coatings is not enough to overcome the problem of chemical affinity with the compounds
these coatings come in contact with.
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