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Abstract: Background: Clozapine is a key antipsychotic drug for treatment-resistant schizophrenia
but exhibits highly variable pharmacokinetics and a propensity for serious adverse effects. Currently,
these challenges are addressed using therapeutic drug monitoring (TDM). This study primarily
sought to (i) verify the importance of covariates identified in a prior clozapine population pharma-
cokinetic (popPK) model in the absence of environmental covariates using physiologically based
pharmacokinetic (PBPK) modelling, and then to (ii) evaluate the performance of the popPK model
as an adjunct or alternative to TDM-guided dosing in an active TDM population. Methods: A
popPK model incorporating age, metabolic activity, sex, smoking status and weight was applied to
predict clozapine trough concentrations (Cmin) in a PBPK-simulated population and an active TDM
population comprising 142 patients dosed to steady state at Flinders Medical Centre in Adelaide,
South Australia. Post hoc analyses were performed to deconvolute the impact of physiological and
environmental covariates in the TDM population. Results: Analysis of PBPK simulations confirmed
age, cytochrome P450 1A2 activity, sex and weight as physiological covariates associated with vari-
ability in clozapine Cmin (R2 = 0.7698; p = 0.0002). Prediction of clozapine Cmin using a popPK model
based on these covariates accounted for <5% of inter-individual variability in the TDM population.
Post hoc analyses confirmed that environmental covariates accounted for a greater proportion of the
variability in clozapine Cmin in the TDM population. Conclusions: Variability in clozapine exposure
was primarily driven by environmental covariates in an active TDM population. Pharmacokinetic
modelling can be used as an adjunct to TDM to deconvolute sources of variability in clozapine
exposure.

Keywords: therapeutic drug monitoring; clozapine; pharmacokinetic modelling; inter-individual
variability; dose optimisation; medication adherence

1. Introduction

Clozapine is the most effective antipsychotic medication for reducing both positive
and negative symptoms in individuals with treatment-resistant schizophrenia (TRS) [1,2].
However, a narrow therapeutic index and high prevalence of severe toxicities, such as
agranulocytosis and myocarditis, necessitate frequent intensive monitoring for the duration
of treatment [3]. Despite the superior efficacy of clozapine, the drug is underutilised
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due to concerns regarding potential life-threatening toxicities [4,5]. Delays in clozapine
initiation result in poorer patient outcomes and potentially harmful toxicities associated
with antipsychotic polypharmacy [6].

Therapeutic drug monitoring (TDM) is well established as a robust approach to ac-
count for variability in drug exposure. It is performed by measuring an individual’s plasma
drug concentration to assess whether this is within a recommended therapeutic concentra-
tion range, and this is then typically followed by either a dose increase, which can safely
be made if the individual is below this range and without toxicity, or a dose reduction,
which can confidently be made if the concentration is significantly higher than the recom-
mended range, and toxicities are present [7]. Clozapine is a strong TDM candidate on the
basis of its large (>20 fold) inter-individual variability in observed pharmacokinetics (PK),
narrow therapeutic index, defined target concentration and unpredictable dose-exposure
relationship [7,8]. Indeed, clozapine exposure has routinely been assessed by TDM for
many years [9], and a robust therapeutic concentration range of 350 to 800 ng/mL has been
established [10]. The application of TDM-guided clozapine dosing has been demonstrated
to reduce the incidence of drug related toxicities [11], improve efficacy and reduce the
incidence of relapse [12]. Although clozapine’s primary metabolite, norclozapine, has no
therapeutic activity, measurement of the ratio of clozapine to norclozapine has potential
clinical utility. Specifically, a clozapine to norclozapine ratio < 0.67 can identify patients
with a CYP1A2 rapid metaboliser phenotype, poor adherence in the 24 h prior to assess-
ment, or those who are heavy smokers, while a clozapine to norclozapine ratio > 1.5 can
identify patients with a CYP1A2 poor metaboliser phenotype, inhibitory drug interactions,
chronic poor adherence, or a non-trough TDM sample [13,14]. While generally supportive,
a recent review highlighted limitations to monitoring the clozapine to norclozapine ratio
in isolation [15], and as such the exact role of the ratio in clinical practice remains to be
determined. Specifically, regarding the relationship between adherence and the clozapine
to norclozapine ratio, as norclozapine is formed from clozapine and has a longer half-life,
poor adherence immediately prior to assessment results in a low clozapine concentration
compared to norclozapine and a reduced clozapine to norclozapine ratio. In contrast,
chronic poor adherence results in a relatively low norclozapine concentration in patients
who are adherent immediately prior to assessment, and this results in an elevated clozapine
to norclozapine ratio, as there is insufficient time for norclozapine to return to steady state.

Model-informed precision dosing (MIPD) is an approach for optimising drug dos-
ing [16]. Typically based on a population pharmacokinetic (popPK) model, it offers the
potential of improved initial clozapine dose selection and dose optimisation, thereby min-
imising the duration of sub- or supra-therapeutic clozapine concentrations. MIPD has
demonstrated potential applications in multiple therapeutic domains, including oncol-
ogy [17–19]. Variability in clozapine exposure has been associated with differences in the
activity of cytochrome P450 (CYP) 1A2 (the major enzyme responsible for the clearance of
clozapine), age, sex, weight, height, body mass index (BMI), ethnicity, smoking status and
the use of concomitant medication [20,21]. A popPK model built using a multiple linear
regression model that accounted for subject age, sex, metabolic activity and smoking status
defined up to 82% of the inter-individual variability in clozapine trough concentration
(Cmin) in a cohort of 3782 patients [22]. However, this popPK model has not been applied
to support MIPD for clozapine [8]. Instead, initiation with a conservative initial dose and
careful up-titration with rigorous TDM remains the accepted standard (weekly for the first
six months, fortnightly for the next six months and monthly from one year on).

Physiologically based pharmacokinetic (PBPK) modelling and simulation allows for
the simulation of drug pharmacokinetics based on the physiological covariates of a popu-
lation, the physiochemical and in vitro metabolic characteristics of a drug and the dosing
conditions. PBPK modelling is routinely utilised in drug development to support the
transition of a program from pre-clinical to early phase clinical studies. In recent years, the
capacity of PBPK modelling to evaluate physiological covariates associated with variability
in drug exposure has gained attention [17,18,23–25]. Specifically, regarding the dosing of
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anti-psychotic medicines, Polasek et al. (2018) demonstrated that an individual’s steady
state olanzapine concentration could be predicted using a PBPK model that accounted for
covariates that influence olanzapine pharmacokinetics. Thus, PBPK has the potential to be
applied as a MIPD approach in clinical practice.

This study employed three interrelated but distinct platforms that account for pharma-
cokinetic variability (popPK modelling, PBPK modelling and TDM) to deconvolute sources
of variability in clozapine exposure and define an optimal strategy to guide clozapine
dosing. The specific objectives of the study were to (i) verify the importance of dose and
physiological covariates identified in the popPK model reported by Rostami et al. (2004)
in a population free from environmental covariates using PBPK modelling, (ii) define
the relative importance of physiological versus environmental covariates as sources of
inter-individual variability in clozapine exposure, and (iii) define the optimal role of the
popPK model as an adjunct or alternative to TDM-guided dosing in an active clozapine
TDM population.

2. Materials and Methods
2.1. Physiologically Based Modelling and Simulation

PBPK simulations were performed using the Simcyp population-based simulator (ver-
sion 19.1; Certara, Sheffield, UK) [26]. The differential equations used by the simulator de-
scribing enzyme kinetics and the impact of covariates have been described previously [27].

PBPK simulations used the in-built clozapine compound file (Sim-Clozapine) [26].
Clozapine area under the plasma concentration time-curve (AUC) and Cmin were simulated
using a ‘minimal PBPK model’ comprising a liver compartment and a merged compart-
ment representing all other organs [28–30]. PBPK simulations undertaken to evaluate the
importance of physiological covariates reported in the popPK model were performed daily
at doses between 200 and 600 mg. As there is no specific input field for smoking status as
a covariate in Simcyp, simulations assessed CYP1A2 abundance as a combined metric to
account for basal metabolic activity (clozapine to norclozapine ratio) and smoking status.

The importance of dose as a covariate influencing clozapine exposure was evaluated
in PBPK simulations (free from environmental covariates) and in the observed clinical data
from the TDM population. In order to directly compare the importance of dose between the
PBPK simulations and TDM population subjects, PBPK simulations were matched to the
TDM population for age, gender, and clozapine dose as follows: cohort 1 (n = 9; 31–63 years,
44% female, 200 mg), cohort 2 (n = 26; 21–59 years, 27% female, 300 mg), cohort 3 (n = 20,
27–60 years, 10% female, 400 mg), cohort 4 (n = 16, 28–63 years, 56% female, 500 mg) and
cohort 5 (n = 7, 28–63 years, 0% female, 600 mg). Simulations were performed with oral
dosing daily at 9:00 am for 7 days, with ten virtual trials performed in each cohort. The full
study workflow is described in Figure 1.

2.2. Observed Clinical Data

The performance of the popPK model was assessed in an active clozapine TDM pop-
ulation comprising 142 subjects (27% female) dosed to steady state (>7 days) at Flinders
Medical Centre, Adelaide, South Australia (Table 1). Data were collected for patients treated
with clozapine during a 12-month period from November 2019 to October 2020. Patient
demographics (sex, age, weight, height, BMI and smoking status) and covariates describing
steady state clozapine exposure (dose, clozapine Cmin and norclozapine Cmin) were ob-
tained through electronic health records. Clozapine to norclozapine ratio was calculated as
clozapine Cmin divided by norclozapine Cmin. Patients had an average of 15 (range 6 to 39)
clozapine TDM results during the analysis period; to avoid bias within the dataset, only
the most recent TDM result for each patient, obtained following ≥7 days stable dosing,
was included in the analysis. Blood (K2EDTA) samples for analysis of clozapine trough
concentration were collected 20 to 24 h following the most recent clozapine dose. Clozapine
and norclozapine concentrations were quantified using a validated liquid chromatography–
mass spectrometry assay approved for clinical TDM testing and reported by the South
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Australian state services for routine diagnostic and clinical pathology testing (SA Pathology
Special Chemistry Directorate), which is accredited by the National Association of Testing
Authorities (NATA) of Australia. Access to participant health records was approved by the
Southern Adelaide Clinical Human Research Ethics Committee (SACHREC; approval id
200.17, approved October 2017).
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Figure 1. Study design and workflow for simulated and TDM populations.

Table 1. Demographic parameters describing the full TDM population and dose level cohorts. Data
presented as mean (range).

Full 200 mg 300 mg 400 mg 500 mg 600 mg Sig.

Subjects (n) 142 9 26 20 16 7
Dose (mg) 366 (100–800) 200 300 400 500 600

Sex (%
female) 27 44 27 10 56 0

Age (years) 42 (21–69) (46(21–63) 38 (21–59) 41 (27–60) 38 (28–63) 40 (28–63) 0.29
Weight (kg) 95 (37–176) 94 (65–109) 88 (59–162) 99 (60–146) 91 (68–120) 102 (82–119) 0.46

BMI (kg/m2) 31(18–48) 32 (23–37) 29 (18–48) 30 (18–42) 31 (19–45) 32 (25–37) 0.65
Smoker (%) 65 44 62 90 75 86



Pharmaceutics 2022, 14, 47 5 of 14

2.3. Population Pharmacokinetic Model

This study employed a published clozapine popPK model that was built by Ros-
tami et al. (2004) by stepwise backward multiple regression analysis. Verification data
associated with this model are included in the original publication. The equation underpin-
ning this popPK model is:

Log10 (C) = 0.811 log10 (dose) + 0.332 (MR) + 0.06941 (sex) + 0.002263 (age)

+ 0.001976 (weight) − 0.171 (smoking) − 3.180

where dose is mg/day; sex is male = 0, female = 1; smoking is non-smoker = 0, smoker = 1;
weight is kg; MR is plasma clozapine to norclozapine ratio.

2.4. Statistical Analysis

Data from PBPK-simulated and observed TDM populations are presented as the geo-
metric mean and 95% confidence interval (CI). As it was not possible to assume equivalent
standard deviations (SD) between cohorts, Brown–Forsythe ANOVAs were performed to
assess the statistical significance of the impact of dose on clozapine exposure, with Dun-
nett’s T3 multiple comparison testing performed to assess differences in exposure between
individual dose levels. One-way ANOVA with Dunnett’s T3 multiple comparison testing
was similarly used to evaluate differences in the physiological factors reported to influence
clozapine exposure in the full TDM population and each of the associated dose cohorts.

Analyses were performed to quantify the performance of the popPK model with
respect to predicting the log transformed clozapine Cmin for individual subjects in PBPK
simulations and a TDM population. The popPK model incorporated clozapine dose, age,
sex, weight, CYP1A2 function (as CYP1A2 abundance in PBPK simulations and smoking
status combine with clozapine to norclozapine ratio in the TDM population). Probability (P)
values lower than 0.05 were considered statistically significant. PopPK model performance
was defined based on the coefficient of determination (r2) and significance (P).

3. Results
3.1. TDM Population Demographics

Demographic data relevant to clozapine exposure are reported in Table 1 for the full
TDM population (n = 142) and each of the individual dose cohorts. There were no significant
differences in covariates across the dose cohorts (ANOVA p ≥ 0.29) or between the full
cohort and any individual dose cohort (Dunnett’s multiple comparison test p ≥ 0.36). One
hundred and thirty-nine patients (97.8%) had a clozapine concentration within the accepted
target concentration range (350 to 800 ng/mL). Compared to the population investigated
by Rostami et al. 2004, the current TDM population was older: 42 (21 to 69) years versus
36 (24 to 50) years, and heavier: 95 (37 to 176) kg versus 80 (60 to 102) kg. The mean (range)
clozapine dose of 366 (100 to 800) mg/day and Cmin 468 (192 to 950) ng/mL in the current
study were consistent with the prior study: 460 (250 to 700) mg/day, and 430 (110 to 860)
ng/mL, respectively. The clozapine to norclozapine metabolic ratio in the current study,
2.22 (0.84 to 4.38), was significantly higher compared to the prior study’s ratio of 1.32 (0.69
to 2.07).

3.2. Investigation of Dose as a Determinant of Clozapine Exposure

The relationship between clozapine dose and clozapine Cmin was evaluated in the
TDM and PBPK-simulated populations. The relationship between clozapine dose and the
clozapine to norclozapine ratio was also evaluated in the TDM population. Mean (±95% CI)
data describing clozapine Cmin and the clozapine to norclozapine ratio in the TDM popu-
lation are presented in Table 2. A mean increase in clozapine Cmin of 52.5 ± 16.9 ng/mL
per 100 mg dose increment was observed in the PBPK-simulated population, which is
consistent with the reported dose proportional pharmacokinetics of clozapine [31]. No
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trend in clozapine Cmin across dose increments was observed in the TDM population
(Table 2).

Table 2. Parameters describing clozapine exposure in each dose level cohort from the TDM population.

Population 200 mg 300 mg 400 mg 500 mg 600 mg

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

Clozapine tough
concentration

(ng/mL)
413 355–471 504 470–537 449 418–481 443 392–494 479 401–557

Clozapine to
norclozapine ratio 2.34 1.90–2.79 2.08 1.83–2.33 2.12 1.77–2.46 2.22 1.77–2.67 2.34 1.89–2.79

% Therapeutic 89 100 100 94 100

Analysis of PBPK simulations performed at daily clozapine doses ranging from
200 to 600 mg demonstrated a significant difference in clozapine concentration across these
doses (p < 0.001). Multiple comparison testing demonstrated that clozapine exposure
differed significantly between doses of 200 mg and 500 to 600 mg (p <0.001) and between
doses of 300 mg and 500 to 600 mg (p < 0.001). Differences in clozapine concentration
between the 200 and 300 mg dose, the 500 and 600 mg dose, and the 400 mg dose with
any other dose were insignificant (p > 0.25). In contrast to the dose-related changes in
clozapine concentration observed between the PBPK-simulated cohorts, analysis of the
TDM population demonstrated that while a statistically significant difference in exposure
(ANOVA p = 0.03) was observed across the 200 to 600 mg dose range (Figure 2), differences
between individual dose levels were non-significant (p > 0.16). There was no association
between clozapine dose and the clozapine to norclozapine ratio in the TDM population
(p = 0.095; R2 = 0.020) (Figure 3). Similarly, no difference (p = 0.54) in the clozapine to
norclozapine ratio was observed between the dose cohorts within the TDM population.
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3.3. Investigation of Physiological Covariates Influencing Clozapine Exposure

Consistent with the reported associations of age, metabolic activity, sex and weight
with clozapine exposure, in the PBPK-simulated population, multiple linear regression
modelling demonstrated that sex, age, weight and CYP1A2 abundance predicted the log
transformed clozapine Cmin with an R2 of 0.7698. These data support the physiological
basis of the popPK model proposed by Rostami et al. 2004, and indicate that under optimal
conditions, and by accounting for these covariates, it should be possible to account for
approximately 77% of inter-individual variability in clozapine exposure (Figure 4). Notably,
univariable analyses in the PBPK-simulated population demonstrated that sex (p = 0.0002)
and CYP1A2 abundance (p < 0.001; Figure 5A), but not age or weight (p ≥ 0.168) were
independently significantly associated with clozapine Cmin.
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3.4. Application of the popPK Model to a TDM Population

In contrast to the strong correlation observed in the PBPK-simulated population, in
the TDM population, the predicted clozapine Cmin based on the popPK model did not
correlate with the observed Cmin. The correlation between popPK-predicted and observed
Cmin was equivalently poor across the full (n = 142; R2 = 0.049) and stratified dose (n = 78;
R2 = 0.042) populations. The popPK-model-predicted clozapine Cmin was >1.5-fold higher
than the observed Cmin in 69% of patients (Figure 6) and exceeded the 800 ng/mL upper
threshold of the target concentration range in 52% of patients. As shown in Figure 7, in
the TDM population, the difference between popPK-predicted and observed clozapine
Cmin was strongly correlated (p < 0.0001, R2 = 0.597) with the clozapine to norclozapine
ratio, which may be a marker of poor adherence or inhibitory drug interaction. Given
the high proportion of patients with a clozapine to norclozapine ratio > 1.5 (93%), it is
unlikely that this is reflective of basal CYP1A2 poor metaboliser status. The difference
in popPK-predicted versus observed clozapine Cmin was not associated with any of the
other physiological covariates included in the popPK model. R2 values for the association
of other physiological covariates with the difference in predicted and observed clozapine
Cmin were 0.089, 0.0008, 0.0032, 0.0123 and 0.0025 for dose, sex, age, weight and smoking
status, respectively.
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Consistent with the lack of correlation between the observed Cmin and the popPK-
predicted Cmin, each of the individual covariates included in the popPK model (sex, age,
weight, clozapine to norclozapine ratio and dose) similarly demonstrated a lack of as-
sociation with the observed clozapine Cmin (p > 0.2). Of particular interest, the R2 for
the clozapine to norclozapine ratio (a phenotype trait for CYP1A2) was 0.008 (Figure 5B);
this is in contrast to the strong performance of CYP1A2 abundance (R2 = 0.7698) in the
PBPK-simulated population.

3.5. Post Hoc Analyses

Post-hoc subgroup analyses in non-obese (n = 64; R2 = 0.097) and age < 50 years
(n = 108; R2 = 0.075) individuals demonstrated modest independent improvements in the
predictive performance of the popPK model, with the strongest correlation observed in
non-obese individuals aged < 50 years (R2 = 0.172). In contrast, post-hoc subgroup analysis
of individuals with a clozapine to norclozapine ratio < 1.5 (n = 19) demonstrated a marked
improvement in the performance of the popPK model. In this subgroup, the performance
of the popPK model with respect to predicting clozapine Cmin (R2 = 0.489, p = 0.0009) was
comparable to the previously reported performance for this model (Figure 8).

Pharmaceutics 2021, 13, x FOR PEER REVIEW 10 of 14 
 

 

of the popPK model with respect to predicting clozapine Cmin (R2 = 0.489, p = 0.0009) was 
comparable to the previously reported performance for this model (Figure 8). 

 
Figure 8. Post hoc analysis correlating popPK-predicted with observed clozapine Cmin in the sub-
group of the TDM population with a clozapine to norclozapine ratio < 1.5 (n = 19). Red dash line 
indicates line of identity. 

4. Discussion 
This study demonstrates that in an active TDM population, physiological differences 

account for a small portion of observed variability in clozapine exposure, and the primary 
function of TDM is to account for environmental covariates. Specifically, by applying the 
popPK model of Rostami et al. (2004) to the output of PBPK simulations, it was confirmed 
that, in the absence of environmental covariates, accounting for physiological covariates 
defined >75% of inter-individual variability in clozapine exposure. This PBPK simulation 
analysis defined the optimal possible performance of the popPK model with respect to 
describing inter-individual variability in clozapine exposure. The impact of environmen-
tal covariates was then assessed by comparing the predicted clozapine exposure based on 
the popPK model to the observed exposure in an active TDM population.  

Understanding the contribution of physiological versus environmental covariates as 
drivers of variability in clozapine PK defines the capacity of precision dosing and the op-
timal approach to employ to guide dosing. Specifically, when variability is predominantly 
driven by physiological covariates (such as age, sex and weight), an individual’s exposure 
is predictable based on a model that accounts for these covariates, and is likely to remain 
more stable over time. In this setting, prospective dose selection using MIPD with spo-
radic on treatment TDM is the optimal approach for precision dosing, as it will minimise 
the initial time taken to achieve optimal exposure and minimise the ongoing logistical 
burden associated with monitoring. In contrast, when variability is predominantly driven 
by environmental covariates (such as adherence, diet, and complex drug interactions), an 
individual’s exposure is less predictable, and is likely to fluctuate more over time. In this 
setting, prospective dose selection is unlikely to provide meaningful benefit, and intensive 
on treatment TDM supplemented with MIPD to deconvolute the source of variability is 
the optimal approach. Data presented in  Figures 4–6 support the reported impact of co-
variates, including age, sex, weight, smoking status and CYP1A2 activity, on clozapine 
exposure, but demonstrate that in an active TDM population, environmental factors such 
as adherence or inhibitory drug interactions play a significant role in determining clozap-
ine exposure.  

When clozapine dose and physiological covariates affecting clozapine exposure were 
accounted for, the popPK model predicted that the clozapine Cmin was >1.5-fold higher 

Figure 8. Post hoc analysis correlating popPK-predicted with observed clozapine Cmin in the
subgroup of the TDM population with a clozapine to norclozapine ratio < 1.5 (n = 19). Red dash line
indicates line of identity.



Pharmaceutics 2022, 14, 47 10 of 14

4. Discussion

This study demonstrates that in an active TDM population, physiological differences
account for a small portion of observed variability in clozapine exposure, and the primary
function of TDM is to account for environmental covariates. Specifically, by applying the
popPK model of Rostami et al. (2004) to the output of PBPK simulations, it was confirmed
that, in the absence of environmental covariates, accounting for physiological covariates
defined >75% of inter-individual variability in clozapine exposure. This PBPK simulation
analysis defined the optimal possible performance of the popPK model with respect to
describing inter-individual variability in clozapine exposure. The impact of environmental
covariates was then assessed by comparing the predicted clozapine exposure based on the
popPK model to the observed exposure in an active TDM population.

Understanding the contribution of physiological versus environmental covariates
as drivers of variability in clozapine PK defines the capacity of precision dosing and the
optimal approach to employ to guide dosing. Specifically, when variability is predominantly
driven by physiological covariates (such as age, sex and weight), an individual’s exposure
is predictable based on a model that accounts for these covariates, and is likely to remain
more stable over time. In this setting, prospective dose selection using MIPD with sporadic
on treatment TDM is the optimal approach for precision dosing, as it will minimise the
initial time taken to achieve optimal exposure and minimise the ongoing logistical burden
associated with monitoring. In contrast, when variability is predominantly driven by
environmental covariates (such as adherence, diet, and complex drug interactions), an
individual’s exposure is less predictable, and is likely to fluctuate more over time. In this
setting, prospective dose selection is unlikely to provide meaningful benefit, and intensive
on treatment TDM supplemented with MIPD to deconvolute the source of variability is the
optimal approach. Data presented in Figures 4–6 support the reported impact of covariates,
including age, sex, weight, smoking status and CYP1A2 activity, on clozapine exposure, but
demonstrate that in an active TDM population, environmental factors such as adherence or
inhibitory drug interactions play a significant role in determining clozapine exposure.

When clozapine dose and physiological covariates affecting clozapine exposure were
accounted for, the popPK model predicted that the clozapine Cmin was >1.5-fold higher
than the observed Cmin in 69% of patients (Figure 6). The overprediction of clozapine
Cmin by the popPK model indicates that in this TDM population, either a high proportion
of patients cleared clozapine at an increased rate, were poorly adherent or experienced
inhibitory drug interactions. Post hoc analysis combining the popPK-model-predicted
exposure with interpretation of the clozapine to norclozapine ratio deconvoluted these
two possibilities. Increased clozapine clearance are associated with a low clozapine to
norclozapine ratio (<0.67), an association which should be more pronounced at higher
clozapine doses, while poor adherence or inhibitory drug interactions were associated
with a high clozapine to norclozapine ratio (>1.5), with this association being independent
of dose. The mean (range) clozapine to norclozapine ratio in the current study of 2.22
(0.84 to 4.38) was significantly higher than the threshold indicating poor medication adher-
ence (>1.5), and was not associated with dose requirement (R2 = 0.0198; Figure 3a. Notably,
in the TDM population, the difference between the popPK-model-predicted and observed
clozapine Cmin was strongly positively correlated (p < 0.0001, R2 = 0.597) with the clozapine
to norclozapine ratio but no other physiological covariate included in the popPK model
(Figure 7). A post hoc subgroup analysis in individuals with a clozapine to norclozapine
ratio < 1.5 further demonstrated a marked improvement in performance for the popPK
model (R2 = 0.489; Figure 8), comparable to the reported performance for this model. These
data represent the strongest possible evidence of widespread poor medication adherence
within this clozapine TDM population, despite the apparent robust proportion of patients
with a clozapine Cmin within the target therapeutic range.

While clozapine and norclozapine concentrations were routinely quantified and re-
ported by the hospital TDM service, medication adherence was clinically assessed primarily
on the basis of clozapine Cmin. Indeed, it is possible that for many patients, poor medi-
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cation adherence in a setting of a clinician targeting a clozapine Cmin within the range of
350 to 800 ng/mL results in a higher than necessary clozapine dose, with the significance
of this being that if the patient is placed in a setting where the poor medication adherence
(or other environmental factor reducing clozapine exposure) is resolved, the patient will
be placed at greater risk of clozapine toxicity. Indeed, the popPK model demonstrated
that in the absence of environmental covariates, the predicted clozapine Cmin based on
the patient’s current dose would exceed the 800 ng/mL upper threshold of the target
concentration range in 52% of patients.

It is important to acknowledge that while the TDM population studied here (Table 1)
was comparable to the population used to develop the original clozapine popPK model [22]
in many aspects, patients were, on average, 15 kg heavier and 6 years older. Indeed, 84% of
the current TDM population were overweight (BMI > 25 kg/m2), while 54% were obese
(BMI > 30 kg/m2). It has recently been demonstrated that all aspects of clozapine pharma-
cokinetics (absorption, distribution, metabolism and excretion) are perturbed in overweight
and obese individuals [32], a phenomenon that is observed for many drugs [33,34]. Given
the high propensity for clozapine to induce metabolic disturbances that result in profound
weight gain [35,36], consideration of the potential impact of on-treatment weight gain on
long term clozapine exposure warrants consideration. Similarly, clozapine pharmacoki-
netics are known to be altered with increasing age [37,38]. While it is conceivable that the
greater prevalence of obese and older patients in the current TDM population contributed
to the lack of correlation between predicted and observed clozapine Cmin in the full pop-
ulation, sensitivity analyses demonstrated only modest improvements in correlation in
the sub-group (n = 58) of non-obese individuals < 50 years (R2 0.049 to 0.172). In this
sub-group, the popPK model still only accounted for 17% of the variability in clozapine
Cmin, which remained considerably lower than the optimally achievable 77% of variability
in the PBPK simulation population, the 49% of variability accounted for in the sub-group
of individuals with a clozapine to norclozapine ratio < 1.5 in the current population, and
the 48% of variability accounted for in the previously studied population.

Although TDM can detect treatment failure and arising toxicity at an early and po-
tentially preventative stage by accounting for physiological and pharmacological factors,
this study highlights that the benefit of TDM extends beyond this. TDM has the ability to
identify valuable information regarding harmful drug–drug interactions and treatment ad-
herence, which can trigger clinician and patient education, respectively, leading to the safer
and more effective use of drugs. Additionally, unintentional or intentional environmental
or lifestyle factors such as diet/food intake or uncontrolled supplement/herbal product
intake can also be detected. It is worth noting that substance abuse is frequently reported in
this patient population [39]. Notably, these factors can be readily detected using alternate
TDM platforms/assays. In recent years, biomarker and predictive modelling strategies
have been presented as an attractive alternative to TDM-guided dosing [18,23,24,40,41],
with the pretence underpinning these approaches being that by prospectively accounting
for physiological covariates associated with variability in exposure, it may be possible to
predict an individual’s dose requirement. This study demonstrates the potential limitations
of such approaches if environmental covariates such as poor medication adherence play a
significant role in determining drug exposure and if these are therefore not considered. In
this setting, MIPD may still play a role as an adjunct to TDM-guided dosing by assisting in
deconvoluting the sources of variability in exposure and guiding appropriate interventions
such as clinician and patient education. This finding has potentially significant implications
for the application of MIPD in other settings such as oncology, where medication adherence
may be low due to medication-related toxicities, and emphasises the importance of TDM
as a strategy to monitor exposure in these settings [7,42].

5. Conclusions

In conclusion, data presented here demonstrate the continued importance of TDM
for clozapine as the gold standard for individualising and monitoring clozapine dosing.
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MIPD may serve as a useful adjunct to TDM in patients who do not respond as expected
to a given clozapine dose, specifically to assist in deconvoluting the primary driver of
sub-optimal exposure.
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