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Motion of Charged Spinning Particles in a Unified Field
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Using a geometry wider than Riemannian one, the parameterized absolute parallelism (PAP) geometry, we derived a new curve
containing two parameters. In the context of the geometrization philosophy, this new curve can be used as a trajectory of
charged spinning test particle in any unified field theory constructed in the PAP space. We show that imposing certain
conditions on the two parameters, the new curve can be reduced to a geodesic curve giving the motion of a scalar test particle
or/and a modified geodesic giving the motion of neutral spinning test particle in a gravitational field. The new method used for
derivation, the Bazanski method, shows a new feature in the new curve equation. This feature is that the equation contains the
electromagnetic potential term together with the Lorentz term. We show the importance of this feature in physical applications.

1. Introduction

According to the geometrization philosophy, the curve in a
certain geometry represents the equation of motion of a the-
ory which constructed in this geometry. Together with the
field equations of any theory, we need the equation of motion
which characterizes the theory used. In general relativity,
geodesic curve is considered as an equation of motion of a
scalar test particle moving in a gravitational field.

Geodesic equation can be derived using the Lagrangian
(cf. [1]):

L1 =def :gμν _xμ _xν, ð1Þ

where gμν is the metric tensor and _xμð= def : dxμ/dsÞ is the
unit tangent vector to the curve. Euler-Lagrange equation
is given by the following (cf. [2]):

d
ds

∂L1
∂ _xγ

−
∂L1
∂xγ

= 0, ð2Þ

such that s is the scalar parameter varying along the curve.
Using Lagrangian (Equation (1)) and Equation (2), we get

the following:

€xα +
α

μν

( )
_xμ _xν = 0, ð3Þ

where
α

μν

( )
is the coefficient of Levi-Civita linear connec-

tion which is defined as follows:

α

μν

( )
=def : 12g

ασ gμσ,ν + gνσ,μ − gμν,σ

� �
: ð4Þ

Equation (3) is the curve equation of the Riemannian
geometry.

The Lagrangian used for deriving the equation of motion
of a charged particle moving in the presence of electromag-
netic field is defined by the following (cf. [3]):

L2 =def :gμν Vμ + βAμð ÞVν, ð5Þ

where Aμ is a vector field and β is a conversion parameter
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given by the following:

β =def : e
m
, ð6Þ

where e is the electron charge and m is the electron mass.
Using Lagrangian (Equation (5)) and Euler-Lagrange (Equa-
tion (2)), we get the equation of motion of a charged test
particle moving in a combined gravitational and electromag-
netical field (cf. [4]):

dVα

ds
+

α

μν

( )
VμVν = −βFα

:νV
ν, ð7Þ

where Fμν is the curl of the vector Aμ. The term on the right
hand side of Equation (7) is known as a Lorentz force term.

In 1989, Bazanski [5] suggested one Lagrangian to derive
both geodesic and geodesic deviation equations in Riemann-
ian geometry, which is given by the following:

LB =def :gμνV
μ DΨ

ν

Ds
, ð8Þ

where Vμ is the unit vector tangent to the path, Ψν is the
deviation vector, and

DΨν

Ds
=def :Ψν

:;αV
α: ð9Þ

The semicolon operator ð;Þ denotes covariant differenti-
ation using Levi-Civita connection, while the comma ð,Þ
stands for ordinary partial differentiation. According to
Bazanski, variation with respect to deviation vector Ψμ gives
geodesic equation, while variation with respect to the unit
vector Vμ gives geodesic deviation equation.

Riemannian geometry has a unique linear connection,
which is Levi-Civita connection. Wanas et al. [6] have mod-
ified Bazanski approach in a different geometry. This geom-
etry has other linear connections together with the Levi-
Civita connection. They have applied Bazanski Lagrangian
using the four linear connections defined in the absolute
parallelism (AP) geometry. The four connections are Weit-
zenböck connection Γα

μν, dual connection eΓα

μνð= def : Γα
νμÞ,

Γα
ðμνÞð= def : 1/2ðΓα

μν + Γα
νμÞÞ, and Levi-Civita connection.

Using each connection, they have got new definitions for
operator D/Ds which appears in the Bazanski Lagrangian
(Equation (8)). Wanas et al. have obtained a new set of three
different path equations. The three different path equations
can be written as follows [6]:

dJμ

ds−
+

μ

αβ

( )
Jα Jβ = 0, ð10Þ

dWμ

ds0
+

μ

αβ

( )
WαWβ = −

1
2Λ

 μ
αβð Þ:W

αWβ, ð11Þ

dVμ

ds+
+

μ

αβ

( )
VαVβ = −Λ μ

αβð Þ:V
αVβ, ð12Þ

where Vμ, Wμ, and Jμ are the unit tangent vectors to the
curves characterized by parameters s+, s0, and s−,
respectively.

If the moving particle has another property, for example,
like spin, then geodesic Equation (3) is not suitable for
describing the motion of such particle. An important prop-
erty of the set of Equations (10), (11), and (12) appears in
its right hand side. This property is the jumping parameter
of the right hand side of the abovementioned equations. This
property motivates Wanas [7] to consider the right hand
side of the above set of equations as representing a geometric
interaction between the quantum spin of the moving particle
and the torsion of the background geometry. For this prop-
erty, Wanas generalized the AP space by constructing a new
version called the parameterized absolute parallelism (PAP).

Parameterized absolute parallelism (PAP) geometry [7]
has a spectrum of spaces. It can be reduced to Riemannian
and absolute parallelism geometries in some special cases.
Applying the modified Bazanski approach in the context of
PAP geometry, Wanas [7] obtained a modified geodesic
equation.

dVμ

ds
+

μ

αβ

( )
VαVβ = −bΛ μ

αβð Þ:V
αVβ: ð13Þ

This equation describes the motion of a spinning particle
moving in a gravitational field. This equation can reduce to
geodesic one in a special case (b = 0).

In the framework of PAP geometry, we are going to
derive the equation of motion of a spinning and charged
particle moving in a combined gravitational and electromag-
netic field (a unified field), using the modified Bazanski
approach.

2. Geometry Used: Parameterized Absolute
Parallelism Geometry

This work is carried out in the context of the “parameterized
absolute parallelism” (PAP) geometry abbreviated as ðM, λ

i
Þ

[7]. M is an n-dimensional differentiable manifold, and λ
i
is

a set of n-independent vector fields. The components of
these vector fields are considered as the building blocks
(BB) (BB are geometric quantities using which we can
construct all objects of the geometry.) of this geometry as
it is considered in the AP geometry. Since the determinant
λð= jλμ

i

jÞ is nonvanishing; i.e., λ ≠ 0, then the covariant

components λμ
i

ðxÞ (We use Greek indices for coordinate

components written in a covariant or contravariant posi-
tions. Latin indices are used to represent vector numbers,
written always in a lower position. Summation convention
is carried out for Greek indices in the usual way, while for
Latin dummy indices the operation is carried out wherever
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the indices appear in the same term.) and contravariant λ
i

μ

components satisfy the following relations:

λ
i

αλ
i
 β = δαβ,

λ
i

αλ
j
 α = δij,

ð14Þ

where δij is the Kronecker delta. We can define, from which,
the following second-order symmetric tensors as follows:

gμν =def : λ
i
 μλi  ν, ð15Þ

gμν =def : λ
i

μλ
i

ν: ð16Þ

Consequently,

gαμgαν = δμν: ð17Þ

The second-order tensor gμν can be used as the metric
tensor to define, as a special case, a Riemannian space in
the context of the PAP geometry.

The PAP linear connection is given by the following [7]:

∇α
:μν =def :

α

μν

( )
+ γ

∗α
:μν, ð18Þ

where γ∗α:μν is a third-order tensor, called the parameterized
contortion, defined by the following:

γ
∗α
:μν =def : bγα:μν = bλ

i

αλ
i
 μ;ν, ð19Þ

such that b is a dimensionless parameter.
An important note is that inserting the parameter b will

not cause any difference to the properties of the AP space,
but will add to them; for example, the Riemannian geometry
is defined in the AP space as an associated space to it, but in
the present case, it is can be considered as a special case. This
will be more clear in the text.

The parameterized connection (Equation (18)) has been
proved to be a metric one [7]; i.e., it satisfies metricity con-
dition (We use the double stroke || and (+) sign to character-
ize covariant differentiation using the parameterized
connection (Equation (18)).)

g
++
μνkσ ≡ 0: ð20Þ

Since ∇α
:μν is nonsymmetric, then the parameterized tor-

sion tensor Λ∗α
:μν is defined by the following:

Λ
∗ α

:μν =def :∇α
:μν − ∇α

:νμ = γ
∗α
:μν − γ

∗α
:νμ = bΛα

:μν, ð21Þ

Λα
:μν =def : γα:μν − γα:νμ, ð22Þ

which is the torsion tensor of the AP space. The contraction
of the parameterized torsion (Equation (21)) or contortion is
given by the following:

c
∗
μ =def :Λ

∗ α

:μα = γ
∗α
:μα = bcμ: ð23Þ

Also, due to the nonsymmetry of the parameterized
connection (Equation (18)), there exist two more linear con-
nections: the dual connection defined as follows:

∇~α
:μν =def :∇α

:νμ, ð24Þ

and the symmetric part of ∇α
:μν which is given as follows:

∇α
: μνð Þ =

def : 1
2 ∇α

:μν + ∇α
:νμ

� �
=

α

μν

( )
+ 1
2Δ

∗ α

:μν, ð25Þ

where

Δ
∗ α

:μν =def : γ∗
α

:μν + γ
∗α
:νμ: ð26Þ

The PAP geometry has four linear connections which

are ∇α
:μν, ~∇

α
:μν, ∇

α
:ðμνÞ, and

α

μν

( )
. So, we have four different

curvature tensors, defined by ordinary manner, using the
commutation relation for each one of these connections.

For each connection, we can define the following tensor
derivatives as follows:

K+
α

: βk =def :Kα
,β + Kμ∇α

μβ, ð27Þ

K−
α

: βk =def :Kα
,β + Kμ∇α

βμ, ð28Þ

Kα
: βk =def :Kα

,β + Kμ∇α
μβð Þ, ð29Þ

where Kα is any arbitrary vector field defined in the PAP
space.

The curve equation characterizing PAP geometry is
given by, as mentioned above, the following [7]:

dVμ

dτ
+

μ

αβ

( )
VαVβ = −bΛ αβð Þ

μ
:
VαVβ, ð30Þ

where

Λ αβð Þ
μ
:
=def : 12 Λ αβð Þ

μ
:
+Λ βαð Þ

μ
:

� �
: ð31Þ

The PAP geometry reduces to the Riemannian one if we
take b = 0, while, for b = 1, the PAP geometry reduces to AP
geometry. At any stage of calculations, we can go back to
Riemannian or AP geometries as two special cases. The
dimensionless parameter b is suggested, for physical
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applications, to take the following value [7]:

b =def :N2 αγ, ð32Þ

where N is an integer number that takes the values ðN = 0,
1, 2,⋯Þ, α is the fine structure constant, and γ is a dimen-
sionless parameter to be adjusted with experiments or obser-
vations for every system.

3. Path Equation for Charged and
Spinning Particles

In order to derive a general equation of motion, let us define
the parameterized Lagrangian in the PAP geometry by the
following:

L =def :gμν Uμ + βcμð ÞDψ
ν

Dτ
, ð33Þ

where Uμ is the tangent to a path characterized by the
parameter τ, ψν is the deviation vector, and

Dψν

Dτ
=def :ψν

+: αk Uα, ð34Þ

so, the Lagrangian (Equation (33)) can be written in the
explicit form as follows:

L = gμν Uμ+βcμð ÞUα ψν
:,α + ψε∇ν

:εα

� �
: ð35Þ

Now, it is clear that the Lagrangian (Equation (35)) has
two parameters: one is the dimensionless parameter b men-
tioned above in the parameterized connection ∇ν

:εα and the
other is β.

By varying the Lagrangian (Equation (33)) with respect
the deviation vector ψγ, we have the following:

∂L
∂ψγ

= gμν Uμ + βcμð ÞUα∇ν
:γα, ð36Þ

∂L
∂ _ψγ = gμγ Uμ + βcμð Þ, ð37Þ

d
dτ

∂L
∂ _ψγ = gμγ

dUμ

dτ
+ gμγ,σU

μUσ + β
dcγ
dτ

: ð38Þ

Substituting from Equations (36) and (38) into the
Euler-Lagrange equation

d
dτ

∂L
∂ _ψγ −

∂L
∂ψγ

= 0, ð39Þ

we get the following:

gμγ
dUμ

dτ
+ gμγ,σU

μUσ + β
dcγ
dτ

− gμν Uμ + βcμð ÞUα∇ν
:γα = 0,

ð40Þ

from metricity (Equation (20)), and we obtain the following:

_U
μ + ∇μ

:γαU
αUγ = −βgμν _cν + βcν∇

ν
:γαU

αgγμ: ð41Þ

Using Equations (18) and (27), Equation (41) can be
written, explicitly, in the following form:

dUμ

dτ
+

μ

αβ

( )
UαUβ = −bγμ: αβð ÞU

αUβ − βgvμcv αk
+

Uα:

ð42Þ

It is obvious that if b = 0 and β = 0, the modified Equa-
tion (42) reduces to the geodesic Equation (3). Also, if b =
0, this equation tends to Equation (7) if we use the conven-
tional method. When the electromagnetic sector is switched
off (i.e., β = 0), the parameterized path (Equation (42))
reduces to Equation (30). We can take the parameter β = e/
m, where e is the electron charge and m is the electron mass.
This is done for dimensional consideration of the Lagrang-
ian (Equation (33)). Note that cμ is considered as a geomet-
ric representation of the electromagnetic potential.

We can rewrite Equation (42) as follows:

dUμ

dτ
+

μ

αβ

( )
UαUβ = −bγμ: αβð ÞU

αUβ − βgvμUαFvα − βgvμUαcα vk
−

,

ð43Þ

where

Fνα =def : cν,α − cα,ν: ð44Þ

Important note: It is to be considered that Equation (44)
is a field equation to be solved and a definition after the solu-
tion. This point will be more discussed in Section 5.

4. Linearization of the New Path Equation

In the context of geometrization philosophy, the BB of the
geometry are considered as the field variables of the theory.
So, in order to gain more physical meaning from the two-
parameter geometric Equation (43), we are going first to lin-
earize it. We consider a weak and a static unified field
together with a slowly moving particle in this field; i.e., we
assume the following:

(1) The BB (λ
i
 μ) of the PAP geometry in the following

form:

λ
i
 μ = δiμ + ϵh

i
 μ, ð45Þ

where h
i
 μ represents a set of functions of the coordi-

nates causing deviation from Euclidean geometry.
We expand all geometric quantities needed to the
first order in ϵ and neglecting higher orders.
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(2) A static unified field, which means that

∂λ
i
 μ

∂x0
= 0: ð46Þ

(3) A slowly moving particle, i.e., U0 ≃ 1,U1 ~U2 ~U3

~ ε. Also, Oðε2Þ and OðεϵÞ and higher order can be
neglected

As a consequence of Equation (45), we get the following :

λ
i

μ = δiμ − ϵh
i

μ: ð47Þ

Substituting from Equations (45) and (47) into Equa-
tions (15) and (16), we obtain the following:

gμν = δμν + ϵyμν,

gμν = δμν − ϵyμν,

yμv =
def :

h
μ
 ν + h

ν
 μ

� �
:

ð48Þ

The linearized symmetric part of the contortion tensor
γ
μ
:αβ will be in the following form:

γ
μ
: αβð Þ =

ϵ

2 yαβ,μ − h
α
 μ,β − h

β
 μ,α

� �
, ð49Þ

and also, the first order of the contracted torsion or contor-
tion becomes the following:

cμ = ϵ h
α
 μ,α − h

α
 α,μ

� �
: ð50Þ

Recalling Equations (28) and (44), Equation (43)
becomes the following:

dUμ

dτ
+

μ

αβ

( )
UαUβ = −bγμ: αβð ÞU

αUβ − βgνμ cν,α − cσ
σ

αν

( )
− bcσγ

σ
να

 !
Uα:

ð51Þ

Applying the assumptions 1, 2, and 3 to the equation of
motion (Equation (51)), we get the following:

dUμ

dt
= −

μ

00

( )
− bγμ:00

= ϵ

2 y00,μ − b
ϵ

2 y00,μ,
ð52Þ

which can be written in terms of Newtonian potential as fol-
lows:

d2xa

dt2
= 1 − bð ÞΦ,a, a = 1, 2, 3, ð53Þ

where

Φ =def : ϵ2 y00, ð54Þ

is the Newtonian gravitational potential.

5. Discussion and Concluding Remarks

In the framework of unified field theories, we expect to pro-
duce gravity from electromagnetism and vice versa. The first
production is well known since Einstein-Maxwell theory [1].
Nature provides us with some evidences for producing elec-
tromagnetism from gravity, since most (if not all) celestial
objects have magnetic fields of different orders while they
are all electrically neutral. Some authors [8] have found a
theoretical relation between the magnetic field and some
gravitational properties. Other authors [9] have used this
relation to interpret the huge magnetic field producing
gamma ray bursts.

Now, in the present work, we are dealing with a pure
geometric theory unifying gravity and electromagnetism
[10]. So, we expect both types (as will appear in this discus-
sion, two types of electromagnetism appear in the Universe.)
of electromagnetism to be present in the theory that this will
be clear in applications. In what follows, we call the first type
as a cosmic electromagnetic field and the second type as a
conventional electromagnetic field. Both will affect the
motion of particles moving in the unified field. As a usual
procedure, we solve the field equations before solving the
equations of motion as usually done in GR. In the present
work, the field equations [10] are in general sixteen in num-
ber while the equations of motion (Equation (43)) are four.
After solving the field equation, sixteen field variables
become known functions of the coordinate. Afterwards, we
solve the equations of motion (Equation (43)) to get the
components of the acceleration (or velocity) of the moving
particles.

In the context of the geometrization philosophy, any
field theory contains two types of equations. The first type
controls the behaviour of the field (field equations) origi-
nated from the differential identities of the geometry used.
The second type governs the motion of a particle in the field
mentioned above (equations of motion). For example, in
general relativity, the field equations emerged from Bianchi
differential identity of Riemannian geometry, while the
equations of motion are the general curves of the same
geometry (geodesic).

In the present work, we use another theory [10] written
in the PAP geometry [7]. Here, we derive the equation of
the general curve in the PAP geometry (Equation (43))
which is used as an equation of motion of the theory. The
field theory completed here has curvature and anticurvature.
It has been shown that curvature gives rise to gravity and
anticurvature gives rise to antigravity [11]. These theoretical
predictions of Equation (30), in its linearized form, have
been supported by interpreting the discrepancy of the
COW experiment [12–14], which is verified in 2000.
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Equation (43) is the general equation of motion for an
electrically charged and spinning test particle moving in a
general field unifying gravity and electromagnetism [10].
This equation contains two parameters b and β. The first
parameter is related to the quantum spin of the moving par-
ticle and the second is related to the electric charge of the
moving particle. Equation (43) has the following properties.

(1) If the two parameters b (Equation (32)) and β
(Equation (6)) simultaneously vanish identically;
i.e., the moving particle is a scalar (electrically neu-
tral and has zero quantum spin). In this case, Equa-
tion (43) reduces to an ordinary geodesic (Equation
(3)) of Riemannian geometry

(2) If the parameter β (or e) vanishes alone, in this case,
Equation (43) reduces to Equation (30) for a spin-
ning particle

(3) If the parameter b = 0, then Equation (43) will
reduce to the following:

dUμ

dτ
+

μ

αβ

( )
UαUβ = −βgνμUαFνα − βgνμUαcα;ν,

ð55Þ

which is the equation of motion for a charged particle
derived using the Bazanski scheme

In the present work, we applied general scheme called
linearization of a nonlinear field theory. This scheme is
applied after generalization to get the forces affecting the
motion of an electrically charged and spinning test particle
in a field unifying gravity and electromagnetism.

The conventional electromagnetic field can be presented
together with a cosmic electromagnetic field in the context of
some terrestrial experiments. This result gives the geometric
interpretation of the Aharonov-Bohm effect. To get same
result from the present work, more efforts are needed.
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