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Abstract: This research mainly studies the factors influencing the efficiency of energy utilization.
Firstly, by calculating Moran’s I and local indicators of spatial association (LISA) of energy efficiency
of regions in mainland China, we found that energy efficiency shows obvious spatial autocorrelation
and spatial clustering phenomena. Secondly, we established the spatial quantile autoregression
(SQAR) model, in which the energy efficiency is the response variable with seven influence factors.
The seven factors include industrial structure, resource endowment, level of economic development
etc. Based on the provincial panel data (1998–2016) of mainland China (data source: China Statistical
Yearbook, Statistical Yearbook of provinces), the findings indicate that level of economic development
and industrial structure have a significant role in promoting energy efficient. Resource endowment,
government intervention and energy efficiency show a negative correlation. However, the negative
effect of government intervention is weakened with the increase of energy efficiency. Lastly, we
compare the results of SQAR with that of ordinary spatial autoregression (SAR). The empirical
result shows that the SQAR model is superior to SAR model in influencing factors analysis of
energy efficiency.

Keywords: Moran’s I; energy efficiency; spatial quantile autoregression (SQAR); instrumental variable

1. Introduction

With the rapid development of the global economy, energy demand and consumption
are increasing extensively, which has also brought some problems, such as environmental
pollution, global warming, excessive exploitation of resources etc. For sustainable economic
development and social progress, it is very important to improve energy efficiency and
formulate relevant policies. There are some studies focused on how to put the energy
system onto a more sustainable path from a macro perspective. See for example [1–5] and
references therein.

The reasonable calculation method of energy utilization efficiency and quantitative
analysis of influence factors are necessary and important for policymakers. Tobler, an
American geographer in [6] proposed that everything is related to everything else, but
near things are more related to each other, which is also known as Tobler’s First Law of
Geography. The energy efficiency of one region also can be influenced by neighboring
regions. Some studies showed the spatial auto-correlation and clustering phenomenon
of energy efficiency. For example, Shen and Liu [7] used the data envelopment analysis
(DEA) model to measure the energy efficiency values of 30 provinces in China from 1992 to
2007. The result shows that there are obvious spatial aggregation phenomena in provincial
energy efficiency.

Concerning research on influence factors of energy efficiency, there are some literatures,
for example [7–15] etc. Shen and Liu [7] studied influence factors by using SAR and
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threshold regression models. Liu and Mao [10] studied the factors influencing energy
efficiency by using a spatial lagged model (SLM, also called SAR in literature) and spatial
error model (SEM) based on the data of 29 provinces and cities in China from 2000 to
2012. They did not consider the test of homoscedasticity of explanatory variables, which
is required before building SLM and SEM. Makridou et al. (2016) [8] analyzed the energy
efficiency of five energy-intensive industries in 23 European Union countries by using a
two-level cross-classified model. Li and Shi (2014) in [9] proposed an improved super-SBM
(slacks-based measure) model to analyze the energy efficiency of Chinese industrial sectors.
Jiang et el. [12] analyzed energy efficiency of provinces in China by using the ordinary
spatial Dubin error model for panel data. Li and Lin (2018) [13] studied the direct and
indirect effects of different types of technological progress on China’s energy efficiency.

To the best of our knowledge, existing references about influence factors of energy
efficiency used ordinary regression without considering different quantiles. However, the
ordinary regression model characterizes the relationship between the expectation of the
explained variable and explanatory variables, which is not robust to outliers. To this end,
the quantile regression model is a good way to deal with outliers, which can describe more
detail of data. Since Koenker and Bassett [16] proposed the quantile regression method in
1978, the quantile idea has been widely used and developed (see e.g., [17,18]).

The purpose of this work is to analyze the factors influencing the efficiency of energy
utilization based on the spatial quantile autogression model, so as to provide some advice
on how to improve energy efficiency for decision-makers. As far as we know, the SQAR
model has not been employed in existing references related to this topic. Why do we use
quantiles? Quantile regression is robust to outliers. By considering different quantiles,
we can get different coefficients of factors, which can reveal the relationship between
factors and energy efficiency more comprehensively. Based on the work [19], we combine
spatial autoregression with quantiles to study factors influencing the efficiency of energy.
Firstly we analyze the Moran’s I ([20]), local indicators of spatial association (LISA) of
provincial energy efficiencies of China. The data set for empirical analysis comes from
China Statistical Yearbook, Statistical Yearbook of provinces and http://data.stats.gov.cn,
http://www.tjcn.org (1998–2016). The Moran’s I and LISA of energy efficiency show
that energy efficiency possesses obvious spatial autocorrelation and spatial aggregation.
Secondly, thanks to the spatial dependence of energy efficiency, we use the spatial quantile
autoregressive model of panel data to analyze the influence of seven factors on energy
efficiency at different quantile levels. The conclusion shows that the industrial structure,
economic development level and technical level have a positive effect on the provincial
energy efficiency in China. Resource endowment shows a negative correlation to energy
efficiency. According to the empirical analysis based on the real data, the SQAR model
is superior to the ordinary spatial autoregressive model in analyzing influence factors of
energy efficiency.

The rest of the paper is organized as follows: Section 2 is about the methods and
models including the measurement of efficiency of energy utilization, Moran’s I, LISA and
SQAR. In Section 3, we apply the models to the provincial data of China during the years
of 1998–2016 to analyze the efficiency of energy utilization.

2. Methods and Models
2.1. Spatial Auto-Correlation Test Based on Moran’s I Index

In this subsection, we introduce the measurement of energy efficiency, Moran’s I and
LISA which are employed to test the spatial autocorrelation of energy efficiency.

For the measurement of energy efficiency, we use the data envelopment analysis
(DEA) by taking the so-called low-carbon GDP [19] as the output variable. For convenience,
we briefly describe the method of data envelopment analysis here. Assume there are n
regions or called decision making units (DMU) in some references. Each region has m input
variables and k output variables. For a year in the j-th region, xj = (x1j, x2j, · · · , xmj)

′ and
yj = (y1j, · · · , ykj)

′ (j = 1, 2, · · · , n) represent input and output vectors respectively, whose

http://data.stats.gov.cn
http://www.tjcn.org
http://www.tjcn.org
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corresponding weight vectors are denoted by µ = (µ1, · · · , µm)′ and ν = (ν1, · · · , νk)
′

respectively. The CRS-DEA model [21] of the j-th region can be expressed as follows:

max
µ,ν

(ν′yj/µ′xj)

s.t

{
ν′yi/µ′xi ≤ 1, , i = 1, 2, · · · , n,

µ ≥ 0, ν ≥ 0.
(1)

The dual problem of model (1) can be expressed as:

min θj

s.t



n

∑
i=1

xsiλi ≤ θjxsj, s = 1, · · · , m

n

∑
i=1

ysiλi ≥ ysj, s = 1, · · · , k

λi ≥ 0, i = 1, 2, · · · , n,

(2)

where θj (0 < θj ≤ 1) is a scalar, the efficiency value of the j-th region. It embodies the
region’s ability to effectively allocate resources and sustainable development capability. If
θj = 1, it means that the j-th region is located at the production frontier, that is, the j-th
region that obtains the maximum output under certain input is effective. λ is an n× 1
vector of constants. It serves to form a convex combination of observed inputs and outputs.

The global Moran’s I describes the global spatial autocorrelation of all data, which is
defined as follows [20]:

I =
n ∑n

i=1 ∑n
j=1 wij(xi − x̄)(xj − x̄)

∑n
i=1 ∑n

j=1 wij ∑n
j=1(xj − x̄)2

=
∑n

i=1 ∑n
j=1 wij(xi − x̄)(xj − x̄)

S2 ∑n
i=1 ∑n

j=1 wij
, (3)

where S2 = 1
n ∑n

i=1(xi − x̄)2, n the number of areas (spatial units), xi the energy efficiency
value of the i-th region, wij the element of the spatial weight matrix, which represents the
adjacent relationship between the i-th region and the j-th region. It is defined as follows:

wij =

{
1 I f area i is adjacent to area j

0 I f area i is not adjacent to area j.
(4)

The design of the spatial weight matrix in this paper follows the rook adjacency
method. That is, if there is a common boundary between the two regions, they are consid-
ered to be adjacent. Using this method, a spatial weight matrix can be constructed.

The range of Moran’s I is [−1, 1]. A positive Moran’s I means that there is a positive spa-
tial correlation between the economic behaviors of various regions. The negative Moran′s I
indicates that there is a spatial negative correlation between economic behaviors in various
regions. If Moran′s I = 0, there is no spatial correlation, and the economic behavior of each
region is independent of each other. The closer the absolute value of Moran’s I is to 1, the
greater the spatial correlation between regions.

By standardizing statistic Moran’s I, a significance test can be performed. Let

Z(I) =
I − E(I)√
(Var(I))

. (5)
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Under the null hypothesis H0: Moran′s I = 0, that is, the null hypothesis of no spatial
autocorrelation, we have:

E(I) =
−1

n− 1
, (6)

Var(I) =
1

w0(n2 − 1)
(n2w1 −mw2 + 3w3

0)− (E(I))2, (7)

where w0 = ∑n
i=1 ∑n

j=1 wij; w1 = ∑n
i=1 ∑n

j=1(wij + wji)
2; w2 = ∑n

i=1(wi? + w?i)
2; wi? =

∑n
j=1 wij, w?i = ∑n

j=1 wji. When the null hypothesis holds, Z(I) follows a normal distribution.
Global spatial autocorrelation analysis yields only one statistic to summarize the

whole study area. One statistic is not enough to describe the details of individual regions.
One way is to study the local spatial autocorrelation of local regions. The local indicators of
spatial association (LISA) to evaluate the clustering in those individual units by calculating
Local Moran’s I for each spatial unit and evaluating the statistical significance for the
i-th region:

Ii =
∑n

j=1 wij(xj − x̄)(xi − x̄)

S2 .

2.2. Spatial Quantile Autoregressive Model

Based on Su and Yang’s research [22] on the spatial quantile autoregressive model
under cross-section data, we extend it to the panel data case. Combining the spatial autore-
gressive model with quantile regression method, we need to deal with endogenous issues.
We use the instrumental variable method proposed by Chernozhukov and Hansen [23,24]
to solve the variable endogenous problem, and give the process of parameter estimation of
the spatial quantile autoregressive model.

In 1978, Koenker and Bassett [16] proposed the idea of quantile regression and ex-
tended the mean regression model to the quantile one.

Let (Ω,F , P) be a probability space, Y a random variable defined in Ω. For any real
number y, the distribution function of the random variable Y is defined by F(y) = P(Y ≤ y).
For any 0 ≤ τ ≤ 1, Q(τ)(Y) := inf{y : F(y) ≥ τ} is called the τ-th quantile of Y. Q(τ)(Y)
is abbreviated as Q(τ). Q(τ) can be seen as a function of τ, called the quantile function of Y.
Particularly, Q(0.5) is the median of Y.

The multivariate quantile regression model is defined as follows:

Y = Xβ(τ) + U(τ), (8)

where Y = (y1, · · · , yn)′ with dependent components. X = (xij)n×m = (X1, · · · , Xn)′ is
a non-random explanatory matrix, where the transpose ’′‘ follows the transpose rules of
the block matrix. For each i = 1, · · · , n, Xi = (xi1, · · · , xim)

′. β(τ) = (β
(τ)
1 , · · · , β

(τ)
m )′ is the

parameter vector to be estimated. U(τ) = (u(τ)
1 , u(τ)

2 , · · · , u(τ)
n )′ is the error term. Assume

each error component u(τ)
i = yi − X′i β

(τ)
i satisfying the condition

P(u(τ)
i ≤ 0|Xi) = τ, i = 1, 2, · · · , n, (9)

the formulas (9) mean that the conditional τ-quantile of each error term is 0.
In 1973, Cliff and Ord [25] proposed a spatial autoregressive model. For the cross-

sectional data, the spatial autoregressive model is expressed as:

yi = λ
n

∑
j=1

wijyj + X′i β + ui, i = 1, 2, · · · , n, (10)
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where the subscript i is the cross section unit. yi is the explained variable of the i-th
cross section unit, and Xi = (xi1, xi2, · · · , xim)

′ is the explanatory vector. wij is the weight,
reflecting the relation between the i-th region and the j-th region. Denote Y = (y1, · · · , yn)′,
W = (wij)n×n, X = (xij)n×m, β = (β1, · · · , βm)′. U = (u1, · · · , un)′ is the random error
vector of independent and identically distributed with zero mean. The model (10) can be
written in matrix form as follows:

Y = λWY + Xβ + U. (11)

By applying the first-order moment constraint E(ui|Xi) = 0(i = 1, 2, · · · , n) to
Equation (10), then the conditional mean E(yi − λdi|X) = xiβ, where di = ∑n

i=j wijyj.

Similarly, applying quantile constraint P(u(τ)
i ≤ 0|X) = τ to Equation (10), the following

Equation (12) can be obtained:

P(yi − λ(τ)di − X′i β
(τ) ≤ 0|Xi) = τ. (12)

Combining formula in (10) and (12), we have the spatial quantile autoregressive model
for the cross-sectional data as follows:

yi = λ(τ)di + X′i β
(τ) + u(τ)

i

P(yi − λ(τ)di − X′i β
(τ) ≤ 0|Xi) = τ, i = 1, 2, · · · , n. (13)

We extend model (13) to the spatial quantile autoregressive model for panel data:

yit = λ(τ)dit + X′itβ
(τ) + u(τ)

it

P(yit − λ(τ)dit − X′itβ
(τ) ≤ 0|Xit) = τ

i = 1, 2, · · · , n, t = 1, 2, · · · , T(≥ 1), (14)

where Xit is an m-dimensional column vector.
Note: t can also be continuous time. Here we only consider the discrete case. We

assume the time is divided into T periods. For each i and t, (yit, Xit) ∈ R×Rm (R is the
set of all real numbers, Rm is the m-dimensional Euclidean space). dit = ∑n

j=1 wijyjt, λ(τ) is

the coefficient of the spatial lagged factor. β(τ) is an m× 1 vector of regression coefficients,
uit ∈ R is the error term with zero quantile, X′it = (xi1t, xi2t, · · · , ximt).

Endogenous variables are important in economic modeling, which are determined
by their relationship with other variables within the model and show whether a variable
causes a particular effect. The spatial lagged factor dit = ∑n

j=1 wijyjt in the spatial autore-
gressive model can be regarded as an endogenous variable. The spatial econometric model
combined with quantile regression needs to deal with endogenous issues. Otherwise, it
will affect the accuracy of parameter estimation. Therefore, in the next subsection, we
will discuss the instrumental variable method to deal with endogenous problems and
parameter estimation.

2.3. Instrument Variable Method for Endogenous Problem and Parameter Estimation

Instrumental variables are variables that do not belong to the original model and are
related to endogenous variables (Pearl, 2000 [26]). Concerning instrumental variable(IV)
method, we refer to the literatures of Chernozhukov and Hansen [23,24], Matthew and
Carlos (2009) [27].

Let (Zi)T×m = (Zi1, Zi2, · · · , ZiT)
′ be a matrix of instrument variables, where Z′it =

(Zi1t, Zi2t, · · · , Zimt) ∈ Rm. Zit is related to Xit but unrelated to uit and satisfies

P(yit ≤ λ(τ)dit + X′itβ
(τ)|Xit, Zit) = τ, (15)
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Let W̃ = IT ⊗W, where IT is the T × T identity matrix and ‘⊗’ represents the
Kronecker product.

W̃nT×nT = IT ⊗W =


1

1
. . .

1


T×T

⊗


w11 w12 · · · w1n
w21 w22 · · · w2n

...
...

. . .
...

wn1 wn2 · · · wnn



=


1×W

1×W
. . .

1×W



=


W

W
. . .

W



(16)

Take Zit = ∑n
j=1 w̃ijtXjt, where X′jt = (Xj1t, Xj2t, · · · , Xjmt), w̃ijt = wij for t = 1, · · · , T,

which implies the spatial weights are invariable in different periods. Then Zit is strictly ex-
ogenous and related to endogenous variables. The IV method will be simpler if yit, dit, Xi, Zi
are independently and identically distributed. Then (15) is equivalent to find (λ(τ), β(τ))
such that zero is a solution to the ordinary quantile regression:

0 ∈ argmin
g∈G

E[ρτ(yit − λ(τ)dit − X′itβ
(τ) − g(Xit, Zit))], (17)

where ρτ(φ) = [τ − χ(φ ≤ 0)]φ. χ(·) is the indicator function. G is a class of measurable
functions of (Xit, Zit). Let D = IT ⊗ (In − λ(τ)W), there is G = (IT ⊗W)D−1. Here we
assume G is defined as follows:

G = {g(Xit, Zit) = γ′Zit, γ ∈ Γ}, (18)

where γ is a column vector and Γ ⊂ Rm. In order to solve the problem (17), we construct
the weighted quantile regressive objective function as follows:

Qτ(λ, β, γ) =
1

nT

n

∑
i=1

T

∑
t=1

ρτ(yit − λdit − X′itβ− γ′Zit). (19)

By the results in [23], the principle to solve problem (17) is to find λ̂, β̂ such that the
instrument variable coefficient γ̂ is driven as close to zero as possible. Here we use the
two-stage least squares on the objective function (18).

Assumptions:

(1) P(uit ≤ 0) = τ, ∀i = 1, 2, · · · , n, t = 1, 2, · · · , T.
(2) For any t, sup

n≥1
max

1≤i≤n
E|uit| ≤ ū ≤ ∞.

(3) Given a value of uit, the conditional distribution function F(·|ūit) has a bounded con-
tinuous conditional probability density function f (·|ūit). Where ūit = ∑n

k 6=i ∑T
t=1 giktukt,

gikt is the element of G.
(4) X is non-random. Its absolute value is uniformly bounded and contains the intercept

term.
(5) The instrument variable Z is non-random with full column rank.

Let ξit = (Xit, Zit)
′. The algorithm of solving parameter estimation of the SQAR

model are summarized as follows:
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Step 1: for a given τ, to perform a ordinary quantile regression on yit − λdit based on
ξit as follows:

(β̂(τ)(λ), γ̂(τ)(λ)) = argmin
(β,γ)

Qτ(λ, β, γ). (20)

Step 2: minimize the value of γ̂(τ)(λ), and then get the estimator of λ(τ):

λ̂(τ) = argmin
λ

γ̂(τ)(λ)Â(γ̂(τ)(λ))′, (21)

where Â = A + op(1), op(1) = sup
λ

|
√

nS(τ)(λ)|, S(τ)(λ) = In − λ(τ)W, A is a symmetric

positive definite matrix. In fact, in order to find the estimator of λ(τ), the coefficient γ̂(τ)(λ)
of the instrument variable should be driven as close to zero as possible. For simplicity,
referring to the study of Chernozhukov and Hansen [23,24], here we take Â to be an
identity matrix.

Step 3: performing weighted quantile regression on yit − λ̂(τ)dit based on ξit we can
get an estimator of β(τ):

β̂(τ) = β̂(τ)(λ̂(τ)). (22)

3. Empirical Analysis and Results

In this section, we apply the above models to analyze the spatial autocorrelation and
influence factors of energy efficiency of China during the years 1998–2016. Here we only
consider 30 provinces and cities of China (Tibet, Hongkong, Macao and Taiwan were not
studied in this paper since the incomplete data). All data come from China statistical
Yearbook and local statistical Yearbooks (http://www.tjcn.org, http://data.stats.gov.cn).
In the web page http://data.stats.gov.cn, one can find the navigation links to the annual
reports of provinces. We downloaded and checked the data carefully. We assure the
accuracy of input data in our models.

3.1. Spatial Autocorrelation Test Based on Global and Local Moran’s I

In [19], Lu and Zhang calculated energy efficiency according to (2) based on the low-
carbon GDP output, where n = 30, m = 3 and k = 1. Based on the results in [19], here we
obtain yearly Moran’s I and LISA during the study period 1998–2016. The spatial weight
matrix is designed following the rook adjacency rule. Hainan province’s geographical
location in China is special, an island across the sea from the mainland. There will be
no neighbors under the rook adjacency method. However, since the reform and opening
up, Hainan province has become increasingly close to the outside world. So we consider
Hainan province to be adjacent to Guangdong province.

In statistics, there are p-value and Z-value or Z-score. The p-value is the probability
that you have falsely rejected the null hypothesis. The Z-value is the measure of standard
deviation. Very high or a very low (negative) Z-value, associated with very small p-values,
are found in the tails of the normal distribution. It can be seen from Table 1 and Figure 1
that values of Moran’s I of China’s provincial energy efficiency are positive. All Moran’s I
are statistically significant at the given significance level 1%. Therefore, it rejects the null
hypothesis that there is no spatial autocorrelation in China’s provincial energy efficiency.

http://www.tjcn.org
http://data.stats.gov.cn
http://data.stats.gov.cn
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Table 1. Moran’s I value of China of provincial energy efficiency.

Years Moran’s I p-Value Z-Value

1998 0.319683 0.00568 2.8493
1999 0.310756 0.00611 2.7602
2000 0.291909 0.00847 2.6051
2001 0.304283 0.00680 2.7217
2002 0.329098 0.00405 2.9311
2003 0.391338 0.00086 3.8959
2004 0.387940 0.00099 3.8566
2005 0.370580 0.00133 3.6974
2006 0.377401 0.00116 3.7608
2007 0.370754 0.00132 3.7029
2008 0.382570 0.00107 3.8162
2009 0.346709 0.00219 3.4881
2010 0.366366 0.00152 3.6782
2011 0.400883 0.00072 4.0090
2012 0.394139 0.00088 3.9527
2013 0.370947 0.00142 3.7354
2014 0.369800 0.00136 3.7229
2015 0.356868 0.00162 3.5980
2016 0.349247 0.00186 3.5197

1 
 

 

figure 1 

 
figure 6 

 
figure 7 
 

Figure 1. Trend of Moran’s I.

For each year, we obtained the scatter plots and clustering graphs of LISA. Here we
only list the yearly results of 2008 and 2016 for limitation of pages.

It can be seen from Table 1 and Figure 1, the values of Moran’s I are positive and
fluctuate around 0.366 from 1998 to 2016, with little change year-on-year, which implies
a positive correlation. On the whole, the energy efficiency Moran′s I has a slight upward
trend, and the spatial autocorrelation of energy efficiency is gradually increasing although
the future trend is unclear.

The scatter plots of Moran’s I (Figures 2 and 3) and clustering graphs (Figures 4 and 5)
of LISA indicate that the spatial agglomeration of energy efficiency in China’s provinces
tends to be stable. We can see that the energy efficiency of Chinese provinces is not
randomly distributed. The energy efficiencies of regions with similar properties tend to
gather together (High value of energy efficiency is adjacent to the high value of energy
efficiency, low value of energy efficiency is adjacent to a low value of energy efficiency).
The map is divided into four quadrants: The first quadrant (High-High) represents a space
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unit with a high energy efficiency value. Its neighboring provinces and cities are also
high-efficiency units; The second quadrant (Low–High) represents the region with a low
energy efficiency value. The energy efficiency values of its neighboring regions are at high
level; the third quadrant (Low–Low) represents a low-energy efficiency space unit, and
its neighboring provinces and cities are also low-efficiency units; The fourth quadrant
(High–Low) represents a region with high energy efficiency value, but its neighboring
region efficiency value is low.

Figure 2. Scatter plot of Moran’s I of provincial energy efficiency, 2008.

Figure 3. Scatter plot of Moran′s I of provincial energy efficiency, 2016.
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Figure 4. Local indicators of spatial association (LISA) of provincial energy efficiency, 2008.

Figure 5. LISA of provincial energy efficiency, 2016.

Figures 1–5 show that regions located in the first quadrant (High-High) are mainly
the provinces and cities with higher economic development in the eastern coastal areas,
such as Guangdong, Fujian, Zhejiang and Shanghai etc. The economic development
of these provinces and cities is rapid. They have a positive influence on each other’s
development. Provinces and cities in the third quadrant (Low–Low) are mainly distributed
in northwest China such as Qinghai, Ningxia, Xinjiang, Gansu etc., where economic
development is relatively backward with lower energy efficiency. The energy efficiency
value of surrounding provinces and cities is also relatively low. Most provinces and cities
in central China are located in the second quadrant (Low–High). In the fourth quadrant
(High–Low) the energy efficiency values of various provinces and cities are interleaved,
with little dependence on each other. Briefly, China’s provincial energy efficiency has
obvious spatial autocorrelation. The energy efficiency value of a province is largely affected
by the energy efficiency values of its neighboring provinces.

3.2. Influence Factors of Energy Efficiency

Base on results above, there are obvious spatial autocorrelation and spatial clustering
phenomena in China’s provincial energy efficiency. The energy efficiency value of each
province and city is affected by the neighboring regions’, which makes it reasonable to
describe the data by a spatial autoregressive model. We take resource endowment (End),
level of economic development (Eco), degree of government intervention (Gov), industrial
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structure (Ind), degree of opening to the outside world (Open), technical level (Tech) and
energy prices (Price) as the main factors that affect energy efficiency. We use the spatial
quantile autoregressive model (14) to analyze the influence of seven factors on energy
efficiency values at the quantiles of τ = 0.1, 0.25, 0.5, 0.75, 0.9. Before build models, at first
we preprocess the data set. For linear regression analysis, hypothesis testing on the data is
necessary. Here we need to consider the multicollinearity of all explanatory variables. We
also consider the heteroscedasticity of data. From Figure 6, we found that all explanatory
variables have no multicollinaerity. The hypothesis test result in Figure 7 shows that the
data are of heteroscedasticity, which implies that ordinary linear regression is invalid while
quantile regression is a better tool to deal with the data with heteroscedasticity.
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figure 7 
 

Figure 6. Multicollinearity test.
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 Figure 7. Heteroscedasticity test.

As a comparison, we also give the estimators based on ordinary spatial autoregression (10).
The values of total-factor energy efficiency(TFEE) for application analysis come from the
study of Lu and Zhang [19]. The variable description and data processing methods are
given in Table 2:

We establish the SQAR model as follows (23):

TFEEit = λ(τ)dit + β
(τ)
0 + β

(τ)
1 Endit + β

(τ)
2 Ecoit + β

(τ)
3 Govit

+ β
(τ)
4 Indit + β

(τ)
5 Openit + β

(τ)
6 Techit + β

(τ)
7 Priceit + u(τ)

it ,
(23)

where the subscripts i(= 1, · · · , 30) and t(= 1, · · · , 19) denote regions and years respec-
tively. β

(τ)
l (l = 1, 2, · · · , 7) are the parameters to be estimated. uit is the random error term.

λ(τ) is a coefficient of the spatial lagged factor dit = ∑n
j=1 wijyjt. We treat dit = ∑n

j=1 wijyjt
as an endogenous variable and select Zit that is defined in Section 2.3 as an instrumental
variable. The parameters are estimated by using SQAR model at the following quantiles:
τ = 0.1, 0.25, 0.5, 0.75, 0.9.

We use the software of Stata 12.0 to estimate parameters of the model SQAR based
on the instrumental variables method given in Section 2.3. The formulas (20)–(22) are the
algorithm about the parameter estimation of the model (23). For the sake of convenience to
repeat the solving process based on our data, we give the operation process as follows:

1. Computing the spatial effect WY, where W is the spatial weight matrix. The spatial
weight matrix is designed following the rook adjacency rule. Y is the response
variable (TFEE).
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2. Computing the instrumental variable WX, where W is the same weight matrix as the
above and X is the matrix of explanatory variables.

3. Open Stata version 12.0 and input: ivqreg EE eco gov ind tech end price(WY=WX),q(τ)
For a given quantile τ, we then can get the result of SQAR at the quantile.

In this work, we consider quantile τ = 0.1, 0.25, 0.5, 0.75, 0.9. The results are shown in
Tables 3–7.

Table 2. Variable description of the spatial quantile autoregression (SQAR) model.

Variable Type Variable Data Processing Method

Explained Variable TFEE Calculated by DEA Model

Explanatory variables

End Energy production/Energy consumption
Eco Tertiary industry output/GDP ×100%
Gov Fiscal expenditure/GDP ×100%
Ind Industrial output/GDP ×100%

Open Export trade volume/GDP ×100%
Tech Foreign direct investment/GDP
Price Price index of raw material, fuel and power(Base period is 1980)

Table 3. Estimation results of the SQAR model, τ = 0.1.

Parameter Estimate p-Value Z-Value Standard Error 95% Confidence Interval

λ −0.0792 0.000 −55.57 0.0014 [−0.0820,−0.0764]
β0 0.2263 0.006 2.72 0.0831 [0.0634,0.3892]
β1 −0.0323 0.000 −7.02 0.0046 [−0.0413,−0.0233]
β2 0.9629 0.000 6.63 0.1452 [0.6783,1,2474]
β3 −1.6151 0.000 −10.56 0.1529 [−1.9148,−1.3154]
β4 1.1177 0.000 7.67 0.1457 [0.8322,1.4032]
β5 0.1515 0.185 1.33 0.1142 [−0.0724,0.3754]
β6 −0.0097 0.792 −0.26 0.0367 [−0.0816,0.0622]
β7 −0.0788 0.016 −2.42 0.0326 [−0.1427,−0.0149]

Table 4. Estimation results of the SQAR model, τ = 0.25.

Parameter Estimate p-Value Z-Value Standard Error 95% Confidence Interval

λ −0.0784 0.000 −82.99 0.0009 [−0.0729,−0.0695]
β0 0.4881 0.000 8.87 0.0550 [0.3803,0.5959]
β1 −0.0109 0.000 −3.59 0.0030 [−0.0169,−0.0050]
β2 0.6947 0.000 7.23 0.0960 [0.5065,0.8830]
β3 −1.2024 0.000 −11.89 0.1012 [−1.4006,−1.0041]
β4 1.0161 0.000 10.54 0.0964 [0.8272,1.2049]
β5 0.1075 0.155 1.42 0.0756 [−0.0406,0.2556]
β6 −0.0349 0.150 −1.44 0.0243 [−0.0825,0.0126]
β7 −0.0722 0.001 −3.35 0.0216 [−0.1145,−0.0300]
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Table 5. Estimation results of the SQAR model, τ = 0.5.

Parameter Estimate p-Value Z-Value Standard Error 95% Confidence Interval

λ −0.0712 0.000 −55.57 0.0014 [−0.0820,−0.0764]
β0 0.7620 0.000 15.21 0.0501 [0.6639,0.8602]
β1 −0.0024 0.393 −0.85 0.0028 [−0.0078,0.0031]
β2 0.3992 0.000 4.56 0.0875 [0.2278,0.5707]
β3 −1.0103 0.000 v10.97 0.0921 [−1.1908,−0.8297]
β4 0.6282 0.000 7.16 0.0878 [0.4563,0.8002]
β5 0.1272 0.064 1.85 0.0688 [−0.0077,0.2621]
β6 −0.0611 0.006 −2.76 0.0211 [−0.1044,−0.0178]
β7 0.0032 0.869 0.17 0.0186 [−0.0352,0.0417]

Table 6. Estimation results of the SQAR model, τ = 0.75.

Parameter Estimate p-Value Z-Value Standard Error 95% Confidence Interval

λ −0.0444 0.000 −50.34 0.0009 [−0.0462,−0.0427]
β0 0.8337 0.000 16.19 0.0515 [0.7327,0.9346]
β1 −0.0053 0.064 −1.86 0.0028 [−0.0109,0.0003]
β2 0.3642 0.000 4.05 0.0899 [0.1879,0.5404]
β3 −0.8454 0.000 −8.92 0.0947 [−1.0310,−0.6597]
β4 0.3964 0.000 4.39 0.0902 [0.2196,0.5733]
β5 0.0488 0.490 0.69 0.0708 [−0.0899,0.1875]
β6 −0.0253 0.266 −1.11 0.0227 [−0.0698,0.0193]
β7 0.0068 0.738 0.33 0.0202 [−0.0328,0.0463]

Table 7. Estimation results of the SQAR model, τ = 0.9.

Parameter Estimate p-Value Z-Value Standard Error 95% Confidence Interval

λ 0.0033 0.002 3.08 0.0011 [0.0012,0.0055]
β0 0.8455 0.000 13.39 0.0632 [0.7217,0.9693]
β1 −0.0096 0.006 −2.74 0.0035 [−0.0164,−0.0027]
β2 0.2315 0.036 2.10 0.1103 [0.0153,0.4477]
β3 −0.6357 0.000 −5.47 0.1162 [−0.8634,−0.4080]
β4 0.2361 0.033 2.13 0.1107 [0.0192,0.4530]
β5 −0.6421 0.459 −0.74 0.0868 [−0.2343,0.1059]
β6 0.0334 0.068 1.83 0.0279 [−0.0212,0.0880]
β7 0.0089 0.720 0.36 0.0248 [−0.0396,0.0574]

From Tables 3–7, it can be seen that the spatial autoregressive coefficient λ is signifi-
cantly negative at τ ≤ 0.75 and significantly positive for τ = 0.9 with the significant level
1%. This shows that at lower value of energy efficiency, the neighboring provinces and
cities of a region have a negative influence on it, resulting in a low-low clustering case.
Regions with higher energy efficiency tend to have a positive influence on the surrounding
provinces and cities, which contributes to a high-high clustering distribution pattern. At
the same time, this is also consistent with the conclusion of Moran′s I > 0. While in the
SAR model (Table 8), the spatial effect coefficient λ = 0.3262 is significantly positive, and
much bigger than that at quantile 0.9 of SQAR model. Obviously, the estimate of spatial
effect in SAR is rougher and somewhat unreasonable. The heteroscedasticity of data may
explain why this happens.

Considering the influence factors, we obtain the following results:

• The coefficient of variable End is negative at all quantiles. Except for at the quantile
0.5, the coefficient of variable End is statistically significant at other quantiles. It shows
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that there is a negative correlation between the level of resource endowment and
energy efficiency, that is, the situation of energy utilization efficiency in regions with
more sufficient resource reserves is worse. The same result also can be obtained in
the spatial autoregressive (SAR) model (See Table 8) but the p-value is 0.426, which
means the negative influence of resource endowment level on energy efficiency is
not statistically significant according to the result of SAR model. This shows that the
regression results of the SAR model are not ideal.

• The estimates of the parameter of the variable Eco are positive for all quantiles and
the estimate is smaller at the upper quantile. This indicates that the level of economic
development obviously promotes the improvement of energy efficiency, and with the
increase of energy efficiency, the positive role of promotion is steadily weakening.

• The estimates (β̂3) of the parameter of variable Gov are significantly negative in SQAR
model at all quantiles and in SAR model. The absolute values of estimates are smaller
at the upper quantile. For example: τ = 0.1, β̂3 = −1.6151; τ = 0.25, β̂3 = −1.2024;
τ = 0.5, β̂3 = −1.0103. This shows that the degree of government intervention has a
negative correlation with energy efficiency. However, this negative influence gradually
weakens as energy efficiency increases.

• The influence of industrial structure on energy efficiency is quite similar to the influ-
ence of economic development level on energy efficiency. The influence of industrial
structure on energy efficiency is greater.

• When τ ≤ 0.75, the degree of opening to the outside world has a positive effect
on energy efficiency. while τ = 0.9, the degree of opening to the outside has a
negative effect on energy efficiency. The results of the SAR model show that there is a
positive correlation between the degree of opening to the outside world and energy
efficiency. Compared with the SQAR model, the conclusion shown by the SAR model
is somewhat limited. It can not describe the full information. This also exposes the
disadvantages of ordinary mean regression.

• At lower quantile of energy efficiency (τ ≤ 0.5), there is a negative correlation
between the level of technological development and energy efficiency, and the negative
correlation at quantile 0.5 is most significant. At a higher quantile of energy efficiency,
the effect of the technical level is positive and statistically significant at the 10% level.
However, the SAR model shows that the technical level has a negative influence on
energy efficiency. Obviously, the SAR model hides the tail information of the data. So
the result of the SAR model can not fully describe the true distribution of data.

• When τ ≤ 0.25, the estimates of the parameter of Price are significantly negative,
indicating that at a lower level of energy efficiency, the higher the energy price the
lower the energy efficiency value. When τ ≥ 0.5, energy prices have a positive effect
on energy efficiency.

Table 8. Estimation results of the ordinary spatial autoregression (SAR) model.

Parameter Estimate p-Value Z-Value Standard Error 95% Confidence Interval

λ 0.3262 0.000 3.54 0.0921 [0.1457,0.5067]
β0 0.3627 0.000 3.83 0.0946 [0.1773,0.5481]
β1 −0.0013 0.426 −0.80 0.0016 [−0.0044,0.0018]
β2 0.1423 0.089 1.70 0.0836 [−0.0216,0.3061]
β3 −0.2722 0.014 −2.46 0.1105 [−0.4888,−0.0556]
β4 0.2542 0.060 1.88 0.1353 [−0.0111,0.5194]
β5 0.1210 0.250 1.15 0.1051 [−0.0850,0.3271]
β6 −0.0081 0.500 −0.67 0.0121 [−0.0317,0.0155]
β7 −0.0025 0.877 −0.14 0.0177 [−0.0371,0.0321]
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3.3. Conclusions

Through the empirical analysis to the energy efficiency of Chinese 30 provinces and
cities at different quantiles, we draw conclusion as follows.

The level of economic development and industrial structure have a significant role in
promoting energy efficiency. There is a negative correlation between resource endowment
and energy efficiency. The degree of opening to the outside world has no significant
influence on energy efficiency. Only at a high level of energy efficiency can the technical
level play a certain role in promoting. At a lower energy efficiency level, energy price has a
significant negative influence on energy efficiency. By comparing with an ordinary spatial
autoregressive model, this paper shows the advantages of spatial quantile autoregressive
modes in the analysis process. SQAR model is more resistant to outliers and can describe
the statistical distribution of variables in more detail.

Based on the above analysis, We offer a few suggestions that will help to promote
energy efficiency.

• Improve the economic level of each province and optimize the industrial structure. The
government at all levels should take measures to allocate resources reasonably. China’s
resources are concentrated in the central and western regions. These regions have
unique resource conditions but the economic level is generally low. The government’s
fiscal expenditure cannot play an active role. Therefore, the government needs to
properly adjust the intensity of government intervention and allocate resources to
promote the improvement of energy efficiency.

• Provinces and cities with lower energy efficiency should put economic development
and optimization of industrial structure in the first place. Regions with higher energy
efficiency may continue to accelerate technological development. Under the lower
efficiency level, both the technical level and the energy price have a negative influence
on energy efficiency. At this time, rushing to raise the technical level and lowering
the energy price may not help. So only by solving the most basic problem—economic
development—can the development of other aspects be driven. For provinces and
cities with higher energy efficiency, they have strong economic strength and a reason-
able industrial structure. So it is better to develop and innovate science and technology
constantly, making science and technology a powerful driving force for improving
energy efficiency.

4. Discussion

The practical world is complex. In order to model the real world by using quantitative
methods such as statistics tools, we have to make some assumptions in advance. For
example, for ordinary linear regression, normal distribution and homoscedasticity are
required. While, if the data does not follow a normal distribution and has heteroscedasticity,
quantile regression is a good option. Compared with the existing references related to the
analysis of factors influencing energy efficiency, the novelty of our model (23) is that it
considers not only the spatial correlation of energy efficiency but also the heteroscedasticity
of explanatory variables. Given a quantile τ and the input data of explanatory variables
X in model (23), the output is the conditional quantile of efficiency under given X. It can
characterize the distribution of energy efficiency. However, for ordinary regression, the
output is the mean of energy efficiency, which is a rougher estimate. For example, given
τ = 0.25, input the data of Hubei province in 2016, we get the output 0.683 of model (23).
That means when the values of explanatory variables change, the quantile at 0.25 of energy
efficiency of Hubei is 0.683. Considering the energy of efficiency in the period of 1998–2016
of Hubei province, we get the 0.25 quantile is 0.687. The fitting effect is not bad from
this single case. However, it does not mean our model is complete. The result of our
model can not perfectly explain the practical world since it is based on some assumptions,
although it is expected helpful to improve the energy efficiency for decision-makers for
maintaining the sustainability of social development. It still needs to be improved. Here
we only considered the spatial lagged effect and ignored the time-lagged effect. In our
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future work, based on the quantile method, we will consider both spatial lagged effect and
time-lagged effect, i.e., consider the dynamic panel data.
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