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ABSTRACT 
 

In the current study a total of 191 maize inbred lines were set up in an augmented randomized 
complete block design to study the genetic variation and interrelationship of different yield 
contributing parameters. Observations were recorded on a total of nine phenological and ear / 
kernel related traits. Significant results for ANOVA indicated presence of substantial variation while 
the first three axes of PCA could explain 75.54% of the variation present. Ear and flowering traits 
were orthogonal to each other and the highest variation in PC1 could be attributed to total grain 
weight. This was also reflected in the Agglomerative Hierarchical Clustering which grouped the 
inbreds into five clusters primarily on the basis of total grain weight which accounted for the highest 
variation between the clusters. Substantial heritability genetic advance as percentage of mean were 
observed for total grain weight indicating that selection for grain weight would be fruitful. 
Association and path coefficient studies after adjustments for multi-collinearity using k constant 
method (0.05) revealed that total grain weight was highly and positively correlated with ear weight, 
number of grain kernel rows and seed index. Therefore, simultaneous selection for these traits 
would be useful. Overall, our studies go on to show presence of sufficient genetic variability in the 
inbreds under study and hybridization between inbred lines grouped in different clusters have a 
high chance of producing heterotic hybrids. 
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1. INTRODUCTION 
 
Successful crop improvement programmes 
depend on effective utilization of genetic diversity 
found in crop plants. Crop diversity in turn is the 
outcome of interventions both by the 
environment and local farmers [1]. Among 
cereals, maize possesses a high degree of 
genetic diversity having undergone extensive 
modification both since domestication and 
following migration to different parts of the world 
[2]. Today, maize is a multipurpose crop with 
cultivation spanning from approximately 50

o
N to 

45
o
S latitudinally and broadly classified as 

temperate, subtropical and tropical germplasm 
[3, 4].  
 
Hybrid maize development first began in the 
early 1900s in the USA with landmark 
contributions from maize breeders who 
successfully explored the concept of inbred-
hybrid development in maize utilizing local 
germplasm. First proposed by Shull [5] while 
discussing the composition of open pollinated 
field maize, this concept focused on inbred 
development following successive rounds of 
selfing. Inbred lines in maize can be derived from 
a multitude of source populations including 
landraces and have been a rich resource for both 
fundamental and applied investigations [6].  
 
A general consequence of inbreeding in maize is 
that it leads to a high degree of uniformity within 
the lines and high variability between the lines 
even for inbreds originating from the same 
parental stock. This variability is the result of 
fixation of allelic combinations at different loci [7]. 
Inbreds are highly influenced by environment and 
identification of stable inbreds is crucial for hybrid 
development programmes. Such programmes 
require that a large number of segregating 
families be critically evaluated in order to identify 
those with greater yield potential. Evaluation on 
the basis of cobs with higher grain weight is 
practical since it ensures availability of seeds at 
later stages of breeding programmes given that 
successive selfings lead to inbreeding 
depression in maize. However, the outcome of 
grain weight could be due to the direct/indirect 
influence of other yield contributing traits. 
Therefore, besides an understanding of the type 
of variation present, knowledge of the 
interrelationship between traits which influence 
the genetic potential of inbreds is also required. 
Use of path analysis first proposed by Wright [8] 

is one such scientific method of analysis which 
allows the elucidation of the direct and indirect 
effects influencing the association shared among 
heritable components [9, 10].  
 

Keeping in mind the necessity to understand 
factors governing variation and heritability, the 
current study was framed to evaluate a set of 
inbreds developed from germplasm local to North 
East India. An attempt to understand the factors 
contributing to variation in the experimental 
material using Analysis of Variance (ANOVA), 
Principal Component Analysis (PCA) and 
heritability was followed by path analysis studies. 
Since the inbreds developed were a collection of 
different parental stock, genetic diversity analysis 
using agglomerative hierarchical clustering 
method was also taken up. 
 

2. MATERIALS AND METHODS 
 

2.1 Plant Material 
 

The current study included a total of 191 maize 
inbred lines. These inbreds had been developed 
following three rounds of sibbing followed by two 
rounds of selfing from a selection of landraces 
local to North Eastern Hill Region of India -an 
important secondary center of maize diversity in 
Asia [11].  
 

2.2 Field Layout 
 
The experiment was laid out in an augmented 
randomized complete block design consisting of 
two blocks (Fig. 1). Three commercial checks 
were repeated thrice at random within each 
block. The inbreds were sown in single rows with 
a row and plant to plant spacing of 60 x 30cm 
and the data on three plants within each row was 
considered for analysis. All the recommended 
intercultural practices were taken up and need 
based application of fertilizers and pesticides 
was done.  
 

2.3 Observations Recorded 
 

Observations on days to 50 percent tasseling 
(DT) and days to 50 percent silking (DS) were 
recorded for calculating the anthesis silking 
interval (ASI). Ear related traits -cob length (CL) 
(cm), cob diameter (CD) (cm), ear weight (EW) 
(g), number of kernel rows per cob (NGKR), 100-
seed weight (SI) (g) and grain yield per plant 
(TGW) (g) were recorded for further statistical 
analysis. 
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Fig. 1. Experimental plot layout of 191 inbred lines and three checks studied using an 
augmented block design 

 

2.4 Statistical Analysis 
 
Mean and variance were calculated. The 
analysis of variance (ANOVA), heritability, and 
genetic advance as percentage of mean were 
calculated using “augmentedRCBD.bulk” function 
of ‘augmentedRCBD’ package [12] in R software 
[13]. Principal Component analysis was done 
using XLSTAT software (Version 
2016.02.28451). Agglomerative clustering of 
ward’s method was done by scaling the 
observation variables (mean of zero and 
standard deviation of 1) to avoid any bias. 
Function ‘hclust’ of R software using “clv” 
package [14] of R software was used to calculate 
cluster distances. The Pearson correlation matrix 
was computed using the “corr_coef” function and 
the correlation plot constructed using the 
“corr_plot” function of  ‘metan’ package [15] in R 
software[13]. The correlation matrix generated 
was analysed for multicollinearity following which 
path analysis studies under collinearity (k 
constant method) was taken up using the 
GENES software [16].  
 

3. RESULTS AND DISCUSSION 
 
A study of the mean performance and distribution 
(Fig. 2) revealed that traits total grain weight, ear 
weight and number of grain kernel rows were 

significantly and positively skewed with higher 
number of individuals concentrated around the 
lower values while mean values for days to 
flowering were significantly skewed towards the 
larger values. This is expected since inbreeding 
depression in a highly allogamous species like 
maize is known to reduce the reproductive 
fitness [7, 17, 18] and it would practically take 
more than one generation of open pollination to 
restore these lines to their original levels of 
heterozygosity [7, 19]. Exceptions were observed 
for cob diameter and seed index which despite 
being associated with reproductive fitness, were 
negatively skewed while values for cob length 
appeared to follow a normal distribution.  Highest 
variance was observed for ear and total grain 
weight and seed index - all three being major 
yield contributing traits. The lowest variation was 
detected for number of grain kernel rows. 
ANOVA studies revealed significant variation at 
0.05 significance level of significance for seven 
quantitative traits with flowering days, anthesis 
silking interval, cob length and seed index also 
significant at 0.01 significance level (Table 1). 
Significant F-values implied presence of 
variability between the lines under study. Further 
analysis using PCA revealed that the first three 
axes accounted for 75.54% of the total variation 
in the data. All ear related traits barring cob 
length loaded heavily on PC1. As revealed by 
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squared cosine values of the variables, total 
grain weight accounted for the highest percent 
contribution in this axis. Flowering traits were 
orthogonal to the ear related traits and loaded 
heavily on PC2. The highest loading for cob 
length was observed for PC3 (Table 2).  
 
Agglomerative Hierarchical clustering using 
Ward’s method divided the 191 inbred lines into 
five clusters (Fig. 3).  The largest inter cluster 
distance was recorded for clusters I and III (5.63) 
with these clusters having grouped inbreds with 
highest and lowest respective values for the ear 
related traits. The lowest inter-cluster distance 
was observed between cluster IV and V (3.57) 
(Table 3). The highest contribution to variation in 
PC1 came from individuals grouped in Cluster I 
with most of the lines having recorded ear and 
total grain weight on the higher side. The genetic 
advance calculated as percentage of mean 
ranged from medium in case of cob diameter 
(15%) to high (40-55%) for the remaining ear 
related traits (Fig. 4). A high genetic advance 
implied that selection for these traits would have 

a genetic basis despite being influenced by 
environment. With respect to number of grain 
kernel rows, the variance was highly non-
significant and therefore genetic advance could 
not be calculated for this trait.  
 
Besides knowledge of variation and heritability, 
an understanding of the degree of correlation 
among traits is important for formulating selection 
strategies in crop improvement. The Pearson 
correlation, regarded as the strength of the linear 
association between two traits [20, 21] is one of 
the most commonly used tools for estimating 
such associations [22-24]. Pearson’s correlation 
studies revealed that total grain weight with 
maximum variability in PC1 and a high genetic 
advance was highly and positively correlated with 
cob diameter (0.55), ear weight (0.78), number of 
grain kernel rows (0.63) and seed index (0.74). 
Maize grain yield is the outcome of ear length, 
ear diameter and thousand-kernel weight which 
are known to be significantly correlated              
with each other and influence the final outcome 
[25]. 

 

 
 

Fig. 2. Mean performance and variance of the nine yield contributing traits studied for the 191 
inbred lines along with checks varieties Vindhya (red), P-3502 (green) and CAL-1817 

(burgundy). The y-axis represents the frequency of the individuals for each of the parameters 
studied 

DT: Days to 50 % tasseling; DS: Days to 50 % silking; ASI: Anthesis Silking Interval; CL: Cob length; CD: Cob 
diameter; EW: Ear weight; NGKR: Number of kernel rows per cob; SI: 100-seed weight; TGW: Total grain weight 
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Table 1. Mean square values for the nine yield contributing traits under study 
 

Source of Variation df DT DS ASI EW CD CL NGKR SI TGW 

Block (ignoring Treatments) 1 316** 293** 0.23** 2663* 0.1465 2.53 9.2 0.42 2467** 
Treatment (eliminating Blocks) 193 19** 21** 0.92** 1201* 0.3353 13.28** 2.145 41** 518* 
Treatment: Check 2 24** 26** 2** 1972* 0.82* 44.47** 6.222 40* 1388* 
Treatment: Test and Test vs. Check 191 19** 21** 0.92** 1193* 0.3302 12.96** 2.102 41** 509.6 
Residuals 14 0 0 0 525.7 0.1657 1.66 2.222 9.77 248.9 
*
 P = ≤ 0.05; 

**
 P = ≤ 0.01; DT: Days to 50 % tasseling; DS: Days to 50 % silking; ASI: Anthesis Silking Interval; CL: Cob length; CD: Cob diameter; EW: Ear weight; NGKR: 

Number of kernel rows per cob; SI: 100-seed weight; TGW: Total grain weight 

 
Table 2. Principal Component Analysis for the nine yield contributing traits under study 

 

Factor loadings: Contribution of the variables (%): Squared cosines of the variables: 

 Traits PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 
DT 0.04 0.94 0.00 0.04 37.55 0.00 0.00 0.88 0.00 
DS 0.02 0.98 0.04 0.01 40.98 0.21 0.00 0.96 0.00 
ASI -0.11 0.65 0.24 0.36 18.29 6.70 0.01 0.43 0.06 
EW 0.88 -0.03 0.09 22.25 0.04 0.94 0.78 0.00 0.01 
CD 0.71 0.15 -0.03 14.42 1.02 0.10 0.51 0.02 0.00 
CL 0.47 -0.21 0.82 6.40 1.90 78.94 0.23 0.04 0.67 
NGKR 0.71 0.05 -0.25 14.38 0.13 7.55 0.51 0.00 0.06 
SI 0.82 -0.04 -0.07 19.10 0.05 0.52 0.67 0.00 0.00 
TGW 0.90 0.03 -0.21 23.03 0.04 5.05 0.81 0.00 0.04 
DT: Days to 50 % tasseling; DS: Days to 50 % silking; ASI: Anthesis Silking Interval; CL: Cob length; CD: Cob diameter; EW: Ear weight; NGKR: Number of kernel rows per 

cob; SI: 100-seed weight; TGW: Total grain weight 
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Fig. 3. Clusters based on Agglomerative Hierarchical Clustering with Euclidean Distances 
using Ward’s method. A total of five cluster were generated 

 
Table 3. Inter and intra cluster distances of the five clusters generated based on the nine 

quantitative yield traits studied 
 

  No. of inbreds Cluster-1 Cluster-2 Cluster-3 Cluster-4 Cluster-5 

Cluster-1 46 3.11 4.07 5.63 4.56 3.79 
Cluster-2 52 4.07 3.23 4.18 4.25 4.30 
Cluster-3 23 5.63 4.18 2.61 3.83 4.78 
Cluster-4 51 4.56 4.25 3.83 3.06 3.57 
Cluster-5 19 3.79 4.30 4.78 3.57 2.58 

 

 
Fig. 4 Broad sense heritability (hBS) and genetic advance as percentage of mean (GAM) and 

for each of the nine parameters studied 
ASI: Anthesis Silking Interval; CD: Cob diameter; CL: Cob length; DS: Days to 50 % silking; DT: Days to 50 % 
tasseling; EW: Ear weight; NGKR: Number of grain kernel rows; SI: 100-seed weight; TGW: Total grain weight 

 
Use of path coefficients- a form of standardized 
partial regression analysis can further 
supplement the information gained from 
correlation studies by splitting correlation values 
into direct and indirect effects. Conventional path 

analysis for the present study however indicated 
presence of multicollinearity in the estimation of 
path coefficients. The direct effects of days to 
tasseling (-0.30) and that to silking (0.35) were 
high in magnitude but opposite in direction. Multi- 
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Table 4. Estimates of direct effects on total grain weight and measures of multicollinearity diagnosis 
 

Trait Conventional path analysis Path analysis under collinearity (K=0.05) 

Direct effects VIF Direct effects VIF 

DT -0.30 2483264605.5 0.013 10.38 
DS 0.35 2933107990.6 0.008 12.02 
ASI -0.08 93472538.4 -0.023 1.64 
EW 0.44 2.5 0.408 2.35 
CD 0.07 1.6 0.084 1.58 
CL -0.12 1.3 -0.097 1.31 
NGKR 0.25 1.4 0.248 1.46 
SI 0.33 1.9 0.327 1.88 
DT: Days to 50 % tasseling; DS: Days to 50 % silking; ASI: Anthesis Silking Interval; CL: Cob length; CD: Cob diameter; EW: Ear weight; NGKR: Number of kernel rows per 

cob; SI: 100-seed weight; TGW: Total grain weight 

 
Table 5. Estimates of Pearson’s correlation coefficients and of the direct and indirect path coefficients of the respective traits on total grain weight 

after adjustments for multicollinearity 
 

  Correlation (r) 
coefficients with TGW 

Direct effect  Indirect effect via 

    DT DS ASI EW CD CL NGKR SI 

DT 0.05 0.015 0 0.005 -0.008 0.008 0.011 0.012 0.016 -0.008 
DS 0.03 0.005 0.015 0 -0.011 -0.001 0.010 0.013 0.012 -0.010 
ASI  -0.08 -0.022 0.006 0.003 0 -0.047 0.002 0.010 -0.016 -0.018 
EW 0.77** 0.407 0 0 0.003 0 0.046 -0.044 0.128 0.218 
CD  0.55** 0.084 0.002 0.001 0 0.223 0 -0.023 0.101 0.161 
CL  0.25** -0.098 -0.002 -0.001 0.002 0.181 0.020 0 0.054 0.098 
NGKR  0.63** 0.248 0.001 0 0.001 0.209 0.034 -0.021 0 0.146 
SI  0.73** 0.328 0 0 0.001 0.270 0.041 -0.029 0.110 0 
DT: Days to 50 % tasseling; DS: Days to 50 % silking; ASI: Anthesis Silking Interval; CL: Cob length; CD: Cob diameter; EW: Ear weight; NGKR: Number of kernel rows per 

cob; SI: 100-seed weight; TGW: Total grain weight 
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collinearity generates bias in the estimation of 
path coefficients, especially in traits with large 
VIF (Variance Inflation Factors) (Table 4). Very 
high variance inflation factors (VIF) were 
observed for traits DT, DS, and the ASI, 
respectively and therefore collinearity studies 
using the k constant approach (k = 0.05) was 
taken up.  Path coefficients after multicollinearity 
adjustments revealed that traits ear weight 
(0.40), seed index (0.32) and number of grain 
kernel rows (0.24) in that order exhibited the 
largest direct and positive effect on total grain 
weight. With respect to ear weight, besides a 
high direct effect, indirect effect via seed index 
and cob diameter was also observed to influence 
the outcome of total grain weight                      
(Table 5). 

 
Figures in bold indicate the high direct effects by 
the respective explanatory variables on the 
dependent variable 

 
Insights into the interrelationships between major 
yield parameters and their associated 
independent variables is necessary for effective 
selection especially in traits with low to medium 
heritability [26]. Path analysis under 
multicollinearity has been successfully used to 
understand associations between yield 
contributing traits after adjustments to address 
the negative impact of multicollinearity [27-30]. 
For the present study, ear weight, number of 
grain kernel rows and seed index appear to have 
a high direct effect on total grain yield. Therefore, 
simultaneous selection of these traits when 
selecting for higher grain weight would prove 
useful.  

 
4. CONCLUSION 
 
Based on studies on variance components, and 
genetic parameters the present study revealed 
presence of substantial variability in the inbreds 
especially for ear related traits. Accordingly, 
cluster analysis grouped the inbreds with 
contrasting ear and total grain weight into the 
most distant clusters. Hybridization between 
these contrasting lines from different clusters 
may be expected to yield heterosis and also 
produce transgressive segregation during 
population development. Path analysis after 
adjustments for multicollinearity revealed that 
simultaneous selection for ear weight, grain 
kernel rows and seed index need to be 
considered to enhance the heritability of total 
grain weight.  
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