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Simple Summary: Multiple myeloma is an uncurable hematological malignancy, although the
prognosis of myeloma patients is getting better using proteasome inhibitors (PIs), immune modula-
tory drugs (IMiDs), monoclonal antibodies (MoAbs), and cytotoxic agents. Drug resistance makes
myeloma difficult to treat and it can be subdivided into two broad categories: de novo and acquired.
De novo drug resistance is associated with the bone marrow microenvironment including bone mar-
row stromal cells, the vascular niche and endosteal niche. Acquired drug resistance is related to clonal
evolution and non-genetic diversity. The initial treatment plays the most important role considering
de novo and acquired drug resistance and should contain PIs, IMIDs, MoAbs, and autologous stem
cell transplantation because these treatments improve the bone marrow microenvironment and might
prevent clonal evolution via sustained deep response including minimal residual disease negativity.

Abstract: Multiple myeloma is an uncurable hematological malignancy because of obtained drug
resistance. Microenvironment and clonal evolution induce myeloma cells to develop de novo and
acquired drug resistance, respectively. Cell adhesion-mediated drug resistance, which is induced
by the interaction between myeloma and bone marrow stromal cells, and soluble factor-mediated
drug resistance, which is induced by cytokines and growth factors, are two types of de novo drug
resistance. The microenvironment, including conditions such as hypoxia, vascular and endosteal
niches, contributes toward de novo drug resistance. Clonal evolution was associated with acquired
drug resistance and classified as branching, linear, and neutral evolutions. The branching evolution is
dependent on the microenvironment and escape of immunological surveillance while the linear and
neutral evolution is independent of the microenvironment and associated with aggressive recurrence
and poor prognosis. Proteasome inhibitors (PIs), immunomodulatory drugs (IMiDs), monoclonal
antibody agents (MoAbs), and autologous stem cell transplantation (ASCT) have improved prog-
nosis of myeloma via improvement of the microenvironment. The initial treatment plays the most
important role considering de novo and acquired drug resistance and should contain PIs, IMIDs,
MoAb and ASCT. This review summarizes the role of anti-myeloma agents for microenvironment
and clonal evolution and treatment strategies to overcome drug resistance.

Keywords: multiple myeloma; drug resistance; bone marrow stromal cell; bone marrow niche;
clonal evolution; proteasome inhibitors; immunomodulatory drugs; anti-CD38 monoclonal antibody;
autologous stem cell transplantation

1. Introduction

Multiple myeloma (MM) is a type of hematological malignancy that is often uncurable
because it comprises a heterogeneous group of plasma cell neoplasms which vary in terms
of their morphology, phenotype, molecular biology, and clinical behavior [1]. Drug resis-
tance is one such clinical behavior that makes MM difficult to treat, and it can be subdivided
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into two broad categories: de novo and acquired. De novo resistance includes environment-
mediated drug resistance, which is categorized as either cell adhesion-mediated drug
resistance (CAM-DR) or soluble factor-mediated drug resistance (SFM-DR). These types of
drug resistance are induced rapidly via the events of a signaling pathway concerning tumor
microenvironments [2–4]. Interactions between myeloma cells and bone marrow stromal
cells (BMSC) or extracellular matrix proteins promote the growth, survival, migration,
and drug resistance of tumor cells. The adhesion of myeloma cells to BMSC induces the
secretion of several cytokines and growth factors, such as interleukin (IL)-6, and insulin-like
growth factor-1 (IGF-1). These cytokines and growth factors are produced and secreted by
myeloma cells in the bone marrow (BM) microenvironment and are regulated by autocrine
and paracrine loops [5]. MM-associated microenvironments are categorized into “vascu-
lar niche” and “endosteal niche” [6]. The vascular niche is constituted via endothelial
activation by mainly vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR)
interaction, and contributes to the migration, proliferation, and survival of MM cells. Hy-
poxia contributes to the development of a vascular niche and the maintenance of stemness
of MM cells. The endosteal niche, which is constituted of mainly osteoclasts and osteoblasts,
contributes to the survival and dormancy of MM cells [7,8].

Acquired drug resistance develops over time as a result of sequential genetic changes
that ultimately culminate in complex therapy-resistant phenotypes [2]. Clonal evolution
is a form of genetic change concerning acquired drug resistance. Clonal evolution is di-
vided into [1] branching clonal evolution, which is dependent on the microenvironment,
and [2] linear and [3] neutral clonal evolution, which are both independent from the mi-
croenvironment [9]. Maintenance of a deep response, such as minimal residual disease
(MRD) negativity, is essential for the prevention of aggressive clonal evolution [10,11].
Non-genetic diversity is considered to be an acquired drug resistance, such as an im-
munologic phenotypic change in the target molecules of monoclonal antibodies agents
(MoABs) [12,13].

Finally, four classes of anti-myeloma agents are available—proteasome inhibitors (PIs),
immune modulatory drugs (IMiDs), MoABs, and cytotoxic agents—but MM is an uncur-
able hematological malignancy due to de novo and acquired drug resistance, although the
prognosis of myeloma patients is getting better using these anti-myeloma agents. Overcom-
ing de novo and acquired drug resistance plays an important role in the search for a clinical
cure in myeloma patients. High-dose chemotherapy followed by autologous stem cell
transplantation (ASCT) has been a standard of care for fit, newly diagnosed MM (NDMM)
patients, since it not only relieves hematopoiesis but also affects the microenvironment.
Initial treatment is extremely crucial because the microenvironment is relatively better
and the frequency of clonal evolution is lower in NDMM than relapsed or refractory MM
(RRMM), and should include treatment using multi-class drugs including ASCT for fit
NDMM patients to help overcome de novo drug resistance and prevent acquired drug
resistance. Here, we discuss treatment strategies for MM concerning de novo and acquired
drug resistance. The relationship between MM cells and BMSC, the vascular niche, and en-
dosteal niche and treatment for microenvironment are summarized in Figure 1. Clinical
trials of new agents for target concerning bone marrow microenvironments in MM are
shown in Table 1.
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Figure 1. Therapeutics for bone marrow microenvironment associated with the progression and survival of myeloma cells.
Stromal cells contribute to the proliferation, survival, and resistance against therapeutics in myeloma cells through the acti-
vation of several signaling pathways, cell adhesion-mediated drug resistance (CAM-DR), and soluble factor-mediated drug
resistance (SFM-DR). BOR, DARA, and plerixafor overcome CAM-DR by inhibiting VLA-4, CD38, and CXCR4, respectively.
BOR inhibits CD38-CD31-mediated adhesion of myeloma cells to bone marrow stromal cells (BMSCs) and increases CD38
expression on myeloma cells by decreasing BMSC CD31 expression. Under hypoxic conditions, HIF-1 promotes VEGF tran-
scription, which induces the growth of microvessels and contributes to the proliferation of myeloma cells. IGF-1 contributes
to the growth of microvessels through the activation of HIF-1alpha. Hypoxia is associated with stemness of myeloma
cells. BOR suppresses transcription of HIF-1 alfa and indirectly inhibits myeloma angiogenesis via decreasing levels of
VEGF. THAL inhibits angiogenesis by suppressing transcription of the VEGF gene. Bevacizumab suppresses the interaction
between VEGF and VEGFR. Myeloma cells activate osteoclasts and inhibit osteoblasts, which constitute the endosteal niche.
In addition, several cytokines from osteoclasts contribute to the proliferation of myeloma cells. BOR suppresses osteogenesis
via inhibition of RANKL and DKK-1. DENO and BHQ088 inhibit RANKL and DDK-1, respectively. ASCT contributes to the
improvement of BM environment by supplying mesenchymal cells and remodeling the endosteal niche. Mesenchymal stem
cells, which are provided from autografts, contribute to the remodeling of bone marrow stromal cells and the activation of
osteoblasts. BOR, bortezomib; THAL, thalidomide; IMiDs, immunomodulatory drugs; LEN, lenalidomide; DARA, daratu-
mumab; DENO, denosumab; ASCT, autologous stem cell transplantation; Bmab, bevacizumab; CAM-DR, cell-adhesion
mediated drug resistance; VEGF, vascular endothelial growth factor; IGF-1, insulin-like growth factor-1; HIF-1, hypoxia
inducible factor-1; VLA-4, very late antigen 4; ICAM-1, intercellular adhesion molecule-1; CXCR4, C-X-C chemokine
receptor type 4; SDF-1, stromal cell-derived factor-1; IL, interleukin; APRIL, a proliferation-inducing ligand; BAFF, B cell
activating factor; RANKL, receptor activator of nuclear factor kappa-B ligand; MIP-1alpha, macrophage inflammatory
protein 1alpha; DKK-1, Dickkopf-1.
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Table 1. Clinical trials of new agents for target concerning bone marrow microenvironments in multiple myeloma (MM).
BOR, bortezomib; THAL, thalidomide; DEX, dexamethasone; PCB, placebo; CXCR4, C-X-C chemokine receptor type 4; IL-6,
interleukin-6; IGF-1R, insulin-like growth factor-1 receptor; VEGF, vascular endothelial growth factor; VEGFR, vascular
endothelial growth factor receptor; RANKL, receptor activator of nuclear factor kappa-B ligand; DKK-1, Dickkopf-1; BAFF,
B cell activating factor; NDMM, newly diagnosed multiple myeloma; RRMM, relapsed or refractory multiple myeloma;
ORR, overall response rate; CBR, clinical benefit rate; PFS, progression free survival; EFS, event free survival; mo, months,
NS = not significant.

Target Experimental Arm Control Arm Disease Status Phase Endopoint Outcome References

Stromal cell and adhesion

CXCR4 Plerixafor + BOR – RRMM prior
BOR 2 ORR 45% (CBR = 60.6%) [14]

IL-6 Siltuximab + BOR – RRMM 2 ORR 0% (siltuximab only), 8%
(plus DEX) [15]

IL-6 Siltuximab ±DEX – RRMM 2 PFS 8.0 vs. 7.6 mo (p = 0.345) [16]
IGF-1R Figitumumab ±DEX – RRMM 1 ORR 33% [17]

Vascular niche

VEGF-A Bevacizumab +
THAL – RRMM 2 ORR 33%, EFS = 37−369 days [18]

VEGF-A Bevacizumab + BOR BOR RRMM 2 PFS 6.2 vs. 5.1 mo (p = 0.28) [19]
VEGFR Sorafenib – RRMM 2 ORR 9% (CBR = 18%) [20]
VEGFR Sorafenib – RRMM 2 ORR 0% [21]

VEGFR-2 Vandetanib – RRMM 2 ORR 0% [22]
Endosteal niche

RANKL Denosumab Zoledronic
acid NDMM 3

Time to
skeletal

events, PFS

22.8 vs. 24.0% (p = 0.01,
non-inferior), PFS = 46.1
vs. 35.4 mo (p = 0.036)

[23]

DKK-1 BHQ880 – RRMM 1b ORR 15%, CBR = 23%
(10 mg/kg) [24]

BAFF Tabalumab + BOR
+ DEX BOR + DEX RRMM 2 PFS

6.6 (100 mg) vs. 7.5 (300
mg) vs. 7.6 mo (PCB)

(p = NS)
[25]

2. Interaction with Bone Marrow Stromal Cell
2.1. Cell Adhesion-Mediated Drug Resistance and Soluble Factor-Mediated Drug Resistance

Cell adhesion-mediated drug resistance (CAM-DR) is induced by the adhesion of
tumor cell integrins to stromal fibroblasts or to components of the extracellular matrix,
such as fibronectin, laminin, and collagen [2]. The adhesion molecules, such as very late
angine-4 (VLA-4) plays an important role for CAM-DR [26]. VLA-4 is made of a het-
erodimer of CD49d/CD29 on MM cells. Interaction between VLA-4 and vascular cell
adhesion molecule-1 (VCAM-1) binds between MM cells and BMSC, contributing to the
survival of MM cells via activation of phosphoinositide 3-kinase (PI3K)/(protein kinase B)
AKT pathway and CAM-DR [14]. The epigenetic mechanism is associated with CAM-DR
as well. The phosphorylation-mediated enhancer of zeste homolog 2 (EZH2) inactivation
and subsequent decreases in H3K27me3 levels are related to CAM-DR in MM cells [15].
Thus, EZH2 is a target of treatment for the apoptosis of myeloma cells and release of CAM-
DR [27,28]. Inhibition of EZH is known to inactivate CAM-DR in vitro [27]. CAM-DR is
induced in fibroblasts derived from MM patients, but not in healthy individuals [29,30].
CAM-DR may be strong in minimal residual myeloma cells compared to newly diagnosed
myeloma cells because of the rich presence of adhesion molecules on the minimal residual
myeloma cells [31].

Soluble factor-mediated drug resistance (SFM-DR) is induced by cytokines, chemokines
and growth factors secreted by fibroblast-like tumor stromal cells [2]. BMSC-derived solu-
ble factors, such as IL-6, IGF-1, and stromal cell-derived factor-1 (SDF-1), induce the devel-
opment, proliferation, and survival of MM cells via the adhesion of the microenvironment
by signal transduction such as nuclear factor-kappa B (NK-kB), Janus kinase (JAK)/signal
transduces and activator of transcription 3 (STAT3), RAS/RAF, and PI3K/AKT path-
way [2,32]. IL-6 and IGF-1 cooperate to enhance growth of MM cells [33]. IL-6 can trigger
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the binding of the membrane IL-6 receptor (IL-6R) to the IGF-1 receptor (IGF-1R) and can
induce IGF-1R phosphorylation independently of the addition of IGF-1 [33].

IL-6 is an inflammatory cytokine with the ability to induce tumor growth, metastasis,
and resistance to chemotherapy in a variety of tumor cells [34]. IL-6 acts as an antiapoptotic
mediator in myeloma cells, whereas in normal cells, its functions seem to mainly involve
cell differentiation and development [35]. The level of serum IL-6 is significantly higher
in NDMM patients than RRMM [36]. A high expression of IL-6 receptors can indicate
a shorter survival time in the NDMM patients treated with the Total Therapy 2 protocol [37].
The ratio of IL-6 present was higher in the patients with high-risk cytogenetic abnormality
(HRCA), such as t(4;14), del13q, and 1q21 gain, than those without HRCA. In contrast,
the expression of IL-6 receptors was lower in the patients with t(11;14) than those without
t(11;14) [38].

IGF-I is single chain polypeptide made of 70 amino acids that functions as the primary
ligand for IGF-IR [39]. IGF-1, which are secreted from BMSC and autocrined by MM cells,
binds with IGF-1R, contributing to the proliferation of myeloma cells and CAM-DR [27,40].
IGF-1 promotes growth and proliferation of myeloma cells via activation of the IGF-1
receptor in addition to IL-6 [41,42]. However, the serum IGF-1 levels were similar in
NDMM patients and healthy donors despite high serum IGF-1 levels being associated
with shorter overall survival (OS) before proteasome inhibitors (PIs), immune modulatory
drugs (IMiDs) were available [43]. IGF-1 induces protein synthesis, enhances endoplasmic
reticulum (ER) stress in myeloma cells, and enhances the activity of proteasome inhibitors
(PIs) [44]. The presence of IGF-1 receptors has predicted short survival times in the NDMM
patients treated with the Total Therapy 2 protocol [37]. The ratio of IGF-1R present was
higher in the patients with HRCA, such as t(4;14), del13q, del17p, and 1q21 gain, than those
without HRCA. The ratio of IGF-1R present was similar between the patients with and
without t(11;14) [36]. IGF-1 increases the expression of hypoxia-inducible factor-1 (HIF-1)
via the activation of the AKT and mitogen-activated protein kinase (MAPK) pathways [45],
and results in the secretion of VEGF [34]. IGF-1 regulates anti-apoptotic protein B cell
lymphoma 2 (BCL2) in myeloma [38]. Thus, interaction between IGF-1 and IGF-1R is
associated with angiogenesis and survival of myeloma cells, and IGF-1R is considered
a therapeutic target.

2.2. Treatment for Interaction with CAM-DR and SFM-DR

CAM-DR and SFM-DR are therapeutic targets to overcome drug resistance and to
suppress the proliferation and survival of MM cells via the inhibition of signaling pathways.

Bortezomib (BOR) overcomes CAM-DR by inhibiting VLA-4 [26], and shows a syner-
gistic effect with various drugs in co-culturing human myeloma cell lines with BMSC [46].
Proteasome inhibition suppresses cytokine-mediated survival and proliferation advantages
by inhibiting the NF-kB pathway in BMSCs [47]. Interactions between MM cells and BMSCs
induce resistance for immunomodulatory drugs (IMiDs) by decreasing the expression of
IKAROS family zinc finger 1 (IKZF1), which is a biomarker for sensitivity to IMiDs [48,49].
BOR enhances the activity of IMiDs by releasing CAM-DR and elevating IKZF1 expression.

Cluster of differentiation (CD)38 expression on the surface of myeloma cells is down-
regulated when co-cultured with BMSCs due to the CD38 on myeloma cells binding to
CD31 on BMSCs [50]. BOR inhibits CD38-CD31-mediated adhesion of myeloma cells to
BMSCs and increases CD38 expression on myeloma cells by decreasing CD31 expression
on BMSC [51]. Thus, BOR might enhance the anti-myeloma effect of anti-CD38 MoAb
such as daratumumab (DARA) via the inhibition of adhesion between myeloma cells and
BMSCs. DARA releases CAM-DR by inhibiting adhesion to BMSCs by internalizing CD38
in myeloma cells [52].
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3. Myeloma Cells in Hypoxia and Vascular Niche
3.1. Vascular Niche in Myeloma

MM-associated niches are categorized into the “vascular niche” and “endosteal niche”,
which are associated with the vasculature and osteopoiesis, respectively [53]. The en-
dothelium plays an important role in formation of the vascular niche and maintenance
of hematopoiesis [54,55]. The vascular niche enhances the metastatic outgrowth not only
by delivery of oxygen, nutrients, and several growth factors but also via interaction with
tumor cells [54]. In the early stages of bone metastasis, the vascular microenvironment
could fail in the homing and colonization of circulating myeloma cells in the BM. In the
later stage, the vasculature reduces metastatic growth, but does not induce the disappear-
ance of BM metastases. BM blood has a lower oxygen partial pressure than venous blood,
and the vascular niche may even have a much lower oxygen content [56,57]. Hypoxia plays
an important role in myeloma pathogenesis [58].

The interaction between VEGFs, which is composed of six members, and VEGFRs pro-
motes endothelium regeneration [59]. In MM, interaction VEGF-A/VEGFR-2 induces mi-
gration, proliferation, and survival of MM cells via autocrine and paracrine of VEGF [60–63].
VEGF promotes micro-angiogenesis of BM via activation of PI3K/AKT pathway, and is
associated with poor prognosis in myeloma [64]. VEGF is mainly regulated by HIF, which is
transcriptional factor activating in hypoxia [65–67].

Hypoxia in Myeloma

Hypoxic stress is considered to give stem cell-like properties to cancer cells [68].
Mean oxygen saturation in bone marrow is 87.5% ± 1.1% when that in peripheral blood is
99% in healthy volunteers [69]. A specific marker for cancer stem cells is still unclear, but it
may be present in the CD138-negative fraction in myeloma cells. Hypoxic stress increases
stem cell markers, such as octamer-binding transcription factor 4 (Oct-4), NANOG and (sex
determining region Y (SRY)-box 2) SOX2, in CD138-negative myeloma cells [68]. Myeloma
stem cells are considered to be present in hypoxic BM, and to have drug resistance [70].

Hypoxia prevents myeloma cells from maturing and might reduce the expression
of signaling lymphocytic activation molecule family member 7 (SLAMF7) and CD38,
which are the target of elotuzumab (ELO) and DARA or isatuximab (ISA), depending
on non-genetic diversity, which is described in detail in Section 5.6, “Nongenetic clonal
diversity” [71–73]. Myeloma cells without CD138 expression show resistance to BOR [70].
These changes in myeloma cells that prevent maturation might be induced by the suppres-
sion of interferon regulatory factor 4 (IRF4) by hypoxic stress [68,74].

Hypoxia decreases E-cadherin expression, making MM cells move from adhesion of
BMSC into peripheral blood (PB) [75]. In addition, hypoxia increases C-X-C chemokine
receptor type 4 (CXCR4) expression on MM cell and decreases SDF-1 from stromal cells,
inducing MM cells to migrate to new BM niches [75–77]. Finally, MM cells lose the
dependence on the microenvironment, engraft extramedullary, and form extramedullary
disease (EMD) [78,79].

HIF-1alfa is the master regulator of oxygen homeostasis [46,59,67,70,80]. The HIF-1alfa
protein is degraded by the ubiquitin-proteasome pathway under hypoxic condition [65].
HIF-1a is downstream of the PI3K/AKT/mammalian target of rapamycin (mTOR) pathway
and is associated with the progression of myeloma cells through the transcription of several
important genes concerning myeloma pathogenesis, such as VEGF and IGF-1 [81]. HIF-
1alfa is known to have formed positive feedback with MYC [82] and elevated expression
of IRF4 [83]. A high level of HIF-1alfa derived from endothelial cells is a poor prognostic
factor in MM [84]. HIF-1alfa increases suppressive TIL (tumor infiltrating lymphocytes)
such as Treg [85]. Thus, HIF-1alfa is a target molecule for myeloma treatment.

3.2. Treatment for Vascular Niche and Hypoxia

Treatment for hypoxia and vascular niche plays an important role in preventing the
occurrence of EMD and maintaining the immature MM cells.
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BOR suppresses transcription of HIF-1alfa [86] and indirectly inhibits MM angio-
genesis by decreasing the level of VEGF [87]. IMiDs, especially thalidomide (THAL),
inhibit angiogenesis by suppressing transcription of the VEGF gene [88–90]. Lenalidomide
(LEN) inhibits VEGF-induced PI3K/Akt pathway signaling and HIF-1alfa expression on
endothelial cells [91].

Hypoxia plays an important role in EMD formation [75] and is shown as an uptake
using positron emission tomography-computed tomography (PET-CT) [92]. THAL plus
dexamethasone (DEX) has not been proven effective for EMD in RRMM [93]. VTD (BOR
+ THAL + DEX) and VRd (BOR + LEN + DEX) followed by ASCT were evaluated in the
CASIOPEIA and IFM2009 trials, although there has not yet been a clinical trial that has
made a direct comparison between VTD and VRd [94,95]. Complete remission (CR) ratio of
VTD was lower than those of VRd (38.5% vs. 59%), while the imaging CR ratio of VTD was
similar to that of VRd using PET-CT (63.9% vs. 62%) [96,97]. Thus, VTD is considered to be
effective for myeloma in hypoxia due to the release of EMD by THAL although hypoxia
induces resistance for BOR [98].

Finally, VDT-PACE (BOR, THAL, DEX, cisplatin, doxorubicin, cyclophosphamide,
plus etoposide) might be effective for patients with HRCA and extramedullary plasma-
cytoma retrospectively [99]. In this regimen, THAL enhances the sensitivity of BOR and
cytotoxic agents by improving hypoxia, and BOR, in turn, increases the sensitivity of
doxorubicin and etoposide, whose activities are dependent on the cell cycle, through the
release of CAM-DR.

4. Endosteal Niche Contributes Survival of Myeloma Cells
4.1. Endosteal Niche is Constituted by Osteoclasts and Osteoblasts

The endosteal niche is constituted by osteoclasts and osteoblasts, and is a reason-
able environment to enable the survival of myeloma cells [100]. Osteoclasts contribute
to the survival and proliferation of myeloma cells by releasing the receptor activator of
nuclear factor kappa-B ligand (RANKL), which is secreted by myeloma cells [101], os-
teoclasts [102], and BMSCs [103], and the abnormality of RANKL-osteoprotegerin (OPG)
pathway [104–106]. An elevated level of RANKL is associated with increasing bone lytic
lesions and short survival of myeloma patients [107]. Osteoclasts suppress the immune
effect of cytotoxic T cells (CTL) [108]. The acidic condition induced by osteoclasts activate
the PI3K/AKT pathway in MM cells [109].

Mature osteoblasts suppress the survival and proliferation of MM cells. Soluble in-
hibitors of the canonical Wnt pathway such as Dickkopf-1 (DKK-1) produced by MM cells
suppress the differentiation of osteoblasts [110]. DKK-1 regulates osteoclastgenesis [111]
and osteoblastgenesis directly [112]. The serum level of DKK-1 is high in MM patients
with bone lytic lesions, and decreased when treatment including ASCT and PIs was effec-
tive [113–115]. Finally, osteoblasts contribute to maintaining the dormancy of MM cells,
inducing resistance to melphalan and BOR [7,116].

The endosteal niche parallels the vascular niche in regulating hematopoiesis and
tumor survival or dormancy during the metastatic cascade [7,8,116]. Residual MM cells,
after ASCT, escape from the vascular niche in order to protect themselves from high
concentrations of melphalan [117]. Thus, the endosteal niche is one of important therapeutic
targets to eradicate MM cells.

4.2. Treatment for Endosteal Niche

Bone remodeling by treatment for the endosteal niche is essential for MM cells. BOR en-
hances osteogenesis via the inhibition of several factors concerning osteolytic disease,
such as RANKL and DKK-1 and activation of osteoblasts by stabilizing β-catenin, which is
essential for the differentiation of osteoblasts [115]. DARA suppresses osteolysis by osteo-
clasts [118]. ASCT contributes to bone remodeling as well [119].

RANKL and DKK-1 are therapeutic targets. Denosumab, which is an anti-RANKL
MoAb, prevents skeletal-related events and prolongs PFS in the MM patients with bone
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lytic lesion compared with zoledronic acid [23]. BHQ880, which is an anti-DKK-1 MoAb,
suppresses the progression of myeloma cells in vitro and in vivo [120].

5. Clonal Evolution
5.1. Two Types of Driver Mutation

Myeloma stem cells are considered to be generated due to the acquisition of 14q
chromosomal translocation or hyperdiploidy when class switch and somatic mutation
occur in post-germinal center cells. The 14q chromosomal translocations are commonly
associated with aberrant gene expression of the cyclin D family, which confers a growth
advantage to dormant plasma cells or post germinal center (post-GC) B-lymphocytes.
Approximately 10% of cases overlap 14q translocation and hyperdiploidy [121].

Multiple ancestor clones are first produced from myeloma stem cells by the ‘big bang’,
which means tumors grow accompanied by not only the main clone but also by numerous
subclones without stringent clonal selection [122]. In each clone, genetic abnormalities
are added to the reservoir myeloma clones by selective pressures by treatment, causing
branching clonal evolution [123]. The type of driver mutation affects the clonal evolution
in MM. MM cells carrying HRCA, such as t(4;14), acquire more copy number abnormalities
than those with standard-risk abnormalities, such as t(11;14), during the course of disease
progression [124,125].

5.2. Three Types of Clonal Evolution

Clonal evolution is a process of clonal expansion and clonal selection through genetic
change within the adaptive condition. Clonal evolution can be divided into branching,
linear, and neutral clonal evolutions [9].

Branching clonal evolution is defined as different clones having no superiority or
inferiority, as one clone does not destroy the other clone, and each clone progresses indepen-
dently when abnormalities of driver genes occur in different clones at the same time. In the
branching evolution, driver genes associated with tumor development show heterogeneity
in the local site of myeloma. The incidence of branching clonal evolution is associated
with the fitness of different clones to BM microenvironments including immune systems
and treatment pressure [123]. For example, clones undergo enhancement of IL-6 receptor
and programmed death 1-ligand 1 (PD-L1) genes, resulting in growth and proliferation of
myeloma cells and escape from immune surveyance [123].

The linear clonal evolution is defined as clones with established mutations growing
and coexisting without any apparent selective pressure. The linear clonal evolution is
called the “big bang model” clonal evolution, and related to genomic instability [122,123].
In RRMM, especially plasma cell leukemia (PCL), with linear clonal evolution, genes af-
fecting tumor phenotypes such as cell adhesion or tumor suppressor genes is pointed
out [126–129].

Neutral evolution is a kind of clonal evolution as stated above. The majority of muta-
tions are not beneficial but are evolutionarily neutral, and do not contribute to variation at
the molecular level due to their rapid elimination by natural selection. Therefore, mutant
alleles can be accidentally modified as a result of “survival of the luckiest” rather than
by a selective advantage [123,130]. The frequency of neutral evolution was higher in the
patients with IgH translocation than those with hyperdiploidy [131].

5.3. Genetic Change during Treatment in PCL and EMD

The terminal stage of myeloma is independent from BMSC, which results in the
formation of extramedullary lesions and leukemic change. EMD including PCL is a less
frequent manifestation of myeloma, which is defined as the infiltration organ or circulation
of PB independent from BMSC [78]. EMD is more frequent in patients with RRMM than
those with NDMM [78], and is considered to be more frequent in the terminal stage of
myeloma and due to genetic changes [79]. The frequency of IgH loci translocations is similar
between the patient with NDMM and EMD, while additional cytogenetic abnormalities,
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such as del17p and 1q21 gain, and gene mutation, such as TP53 and RAS, increased in
the patients with EMD compared with those with NDMM [79]. The incidence of EMD
as a recurrence was higher in the patients with HRCA than those without HRCA [132].
There was no consensus regarding the association between the incidence of EMD and the
selection of initial treatment [79].

In the terminal stage of myeloma, homozygous deletion of the genes associated with
inhibition for the NF-kB pathways is detected (10–15% in total), including baculoviral IAP
repeat containing protein 2/3 (BIRC2/3) on chromosome 11 (~7%), TNF receptor-associated
factor 3 (TRAF3) on chromosome 14 (~3%) and cylindromatosis (CYLD) on chromosome
16 (~3%) [133].

The loss of 17p is observed in approximately 10% of patients with NDMM and
increases in frequency along with disease progression in the 50–70% of MM cases with
EMD and PCL. TP53, a tumor suppressor gene, is located at 17p13 and is monoallelic in the
majority of MM patients. p53 haploinsufficiency induces failure of DNA repair, which is
related to acquired point mutations in the other allele of TP53 during disease progression.
TP53 mutations generally is observed in patients with del17p in MM [134]. TP53 mutations
are detected in around 33% of patients with del17p in NDMM, and about 50% of patients
with del17p in RRMM, respectively [135,136]. Finally, the frequency of TP53 mutations
is 5–8% in NDMM [136,137] and up to 25% in PCL [132,138]. In addition, mutant p53
usually has oncogenic functions, such as the upregulation of c-Myc and genes encoding
proteasome subunits [139], which can induce anti-cancer drug resistance [140–142]. As far
has reports go, there has been no incidence of a treatment that could truly overcome the
poor prognosis of del17p, although several new anti-myeloma agents improved the clinical
outcome in the patients with del17p compared with old agents, and it remains an unmet
need for the treatment of myeloma [143].

5.4. HRCA is Associated with Clonal Evolution

HRCA was identified from different BM sites at the same time in 25% of patients
diagnosed with non HRCA [144]. High uptake using fluorodeoxyglucose (FDG)-PET/CT
was associated with HRCA [145]. Genomic instability is associated with increasing driver
mutations, loss of heterozygosity (LOH), and APOBEC signatures and predicts poor
prognosis [144,146,147]. In particular, t(14;16) and t(14;20) is associated with the APOBEC
signature. LOH is associated with the APOBEC signature and P53 deletion [146,148].

DIS3 mutations are associated with t(4;14), and a large number of DIS3 mutations
in minor clones can predict a poor prognosis [135]. It is considered that this is because
the clone with the DIS3 gene mutation was selected by the clone tide, and the growth
advantage was obtained [148]. The incidence of neutral evolution in the MM cases with
14q translocations, especially t(4;14) and t(4;16), was significantly higher than that of MM
cases driven by hyperdiploidy as well [131] because t(4;14) and t(14;16) accelerate clonal
heterogeneity and lead to a clonal dominance of selected clones [124,149,150]. Neutral
evolution was associated with TP53 gene mutation and 1q21 gain, and predicts poor
prognosis in patients treated with IMiDs [123,131]. THAL induced clone selection more
frequently than BOR [150]. ASCT might overcome the negative impact of neutral clonal
evolution [131]. Thus, PIs-containing chemotherapy and ASCT might be essential for
patients with HRCA considering the incidence of neutral clonal evolution.

5.5. Relation between Deep Response and Clonal Evolution

In MRC Myeloma XI, the incidence of gene mutation in the patients with PR was signif-
icantly higher than those with very good partial response (VGPR) and CR. The incidences
of linear evolution and branching evolution were almost similar, regardless of the thera-
peutic effect. OS after recurrence was not associated with the type of clonal evolution [151].
According to analysis of clone selection using fluorescence in situ hybridization (FISH)
from China, the recurrences accompanied with clonal evolution are observed frequently in
HRCA (especially del17p, 1q21gain) [150]. Clone selection was pointed out infrequently in
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the patients with relapsed myeloma from MRD-negativity and CR. These results may be
opposite to those of MRC Myeloma XI concerning the relation between the incidence of
clonal evolution and the depth of response.

These two reports mention that the incidence of clonal evolution depends on a deep
response, while there is no evidence about association between clonal evolution and the
period during MRD negativity. MRD-negativity was identified as a surrogate marker for
PFS prolongation [10,11]. Several reports showed that a long interval of MRD-negativity
predicted long PFS, while aggressive relapse, such as the presence of EMD, might occur
after MRD-negativity to clonal evolution [152]. Considering the incidence of developing
clonal evolution, we believe that it is necessary to continue treatment to prevent recurrence
even after achieving MRD-negativity especially in the patients with HRCA.

5.6. Nongenetic Clonal Diversity

Clonal evolution induces clonal diversity and is a cause of acquired drug resistance,
while conversion of phenotype is a cause of drug resistance such as nongenetic clonal
change in myeloma. Chaidos et al. demonstrated that the ratios of CD19−CD138− pre-PC
(plasma cell) myeloma cell, CD19−CD138low myeloma cell, and CD19-CD138high myeloma
cell were changed via therapeutic selection and pre-PC myeloma showed drug resis-
tance [153]. Paiva et al. demonstrated that CD19−CD81+ myeloma cell differentiated
into CD19−CD81− mature myeloma cell in 5% of patients, while CD19−CD81− mature
myeloma cell changed into CD19−CD81+ myeloma cell in 20% of patients via therapeutic
selection in the myeloma patients treated with bortezomib, melphalan, and prednisone
(VMP) [12]. The CD38 expression, which was associated with a clinical response of DARA,
was down after the start of DARA, and elevated 6 months after the conclusion of DARA [13].
Thus, the phenotype should be analyzed before a change in chemotherapy, because the
nongenetic clonal change often occurs.

IMiDs might be effective dormant myeloma cells under the BM niche because dormant
MM cells, which adhere to the BM niche, highly express IKZF1 [154]. LEN is active for
immature myeloma cells and side population [155–157]. In contrast, PIs are effective mature
myeloma cells which have ER stress [68,71]. Thus, IMiDs and PIs work for myeloma cells
in different differentiation stages.

CD38 and CD319, which is identified with SLAMF-7, are expressed independently of
maturation of myeloma cells [153]. Thus, anti CD38 and SLAMF-7 MoAbs can be active for
myeloma cells in various differentiation stages.

6. Overall Treatment Strategy Considering Microenvironment and Clonal Evolution
6.1. Concept of Treatment Concerning Microenvironment and Clonal Evolution

MM is considered to be uncurable because MM cells are protected by the BM mi-
croenvironment, including CAM-DR, SFM-DR, vascular and endosteal niches, and clonal
evolution leads to refractoriness for chemotherapy.

Initial treatment should be given the most importance in treatments approaching
de novo and acquired drug resistance. First, the majority of molecules concerning SFM-
DR increase, dependent on disease progression from MGUS, NDMM, and RRMM to
EMM. For example, IL-6 increases in RRMM, and suppresses CD38 expression on MM
cells, inducing resistance to DARA. Second, the maintenance of a deep response should
be essential to prevent clonal evolution. Several clinical trials have demonstrated that
a short interval of MRD-negativity is not adequate for long survival [10,11]. Meanwhile,
how long an interval of MRD-negativity is enough to achieve a clinical cure has been open
to discussion until now. In addition, the incidence of EMD was higher in the patients with
RRMM than NDMM after MRD-negativity was failed [152]. Third, immune reconstitution
can predict a good prognosis in the patients with MM independently from MRD and
HRCA [157–164]. Finally, the microenvironment, such as CAM-DR, hypoxia, and the
endosteal niche, contributes to the survival of MRD and MM stem cells. Treatment of the
microenvironment is necessary to kill all myeloma cells. Associations between the activity
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of treatments, including PIs, IMiDs, anti CD38 MoAb, and ASCT, cytogenetic risk and
maturation of MM cells are summarized in Figure 2 [123,165,166]. Treatment strategies for
fit and unfit patients with NDMM, and RRMM, terminal phase MM are shown in Figure 3.

Figure 2. Activity of PIs, IMiDs, CD38 MoAB, and ASCT in terms of the differentiation of MM cells and cytogenetic risk.
PIs contribute to anti-myeloma activity in more mature MM cells relatively independent from cytogenetic risk. IMiDs attack
immature MM cells, but this is not enough to treat high-risk cytogenetic abnormality. CD38 MoAb can be used for CD38-
positive MM cells excluding post GC cells and improves clinical outcome in the patients with HRCA through long-interval
administration. A high dose of melphalan followed by ASCT kills MM cells independent of the differentiation of MM cells
and cytogenetic risk. PIs, proteasome inhibitors; IMiDs, immunomodulatory drugs; MoAbs, monoclonal antibody agents;
HD-MEL + ASCT, high dose melphalan followed by autologous stem cell transplantation; postGC, post germinal center;
PB, plasmablast; PC, plasma cell.

PIs release CAM-DR via the inhibition of VLA-4, induce ER stress for M protein
rich mature myeloma cells, improve hypoxic condition, and promote bone remodeling as
above [68]. High expression of XBP1, which is associated with the differentiation of plasma
cells and independent from cytogenetic risk in MM, predicted good clinical outcome in
MM patients treated with BOR via ER stress [167–169]. Thus, PIs might be active for
MM independently from cytogenetic risk. In addition, PIs enhance ADCC activity by
suppression of HLA class 1 expression on MM cells [170].

IMiDs enhance both adaptive and innate immune system via co-stimulation of T
cells and enhancement of NK and NKT cells in vitro [171]. IMiDs suppress Treg function
by suppression of Foxp3 gene expression in Treg [172]. Finally, IMiDs suppress PD-1
expression on T and NK cells [173], and LEN suppresses PD-L1 expression in MM cells [174].
Thus, LEN and pomalidomide (POM) are good partners of some MoAbs because they
enhance antibody-dependent cellular cytotoxicity (ADCC). IMiDs contributes to immune
reconstitution compared with PIs [164]. High IKZF1 expression, which was higher in
non-HRCA than HRCA, predicted a good treatment response of IMiDs [175]. In addition,
IMiDs tended to be active for immature MM cells from the results of genetic analyses and
clinical trials compared with PIs [68].
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Figure 3. Treatment strategies for fit and unfit patients with NDMM, and RRMM, terminal phase MM. Multi-drug treatment
including PIs, IMiDs, CD38 MoAb, and ASCT is essential for fit patients with NDMM. For unfit patients, who are eligible
for intensive treatment including ASCT, CD38 MoAb plus PIs or IMiDs should be selected according to the differentiation
of MM cells, cytogenetic risk and comorbidities. Maintenance or continuous therapy using two or three class agents
until PD might be essential for patients with HRCA. Maintenance or continuous therapy using one class agents for fixed
duration might be possible for patients with SRCA if MRD-negativity was achieved. For frail patients, doublet regimes
might be selected considering general condition, comorbidity, and social background rather than cytogenetic risk. If frailty
improved via the efficacy of chemotherapy, anti-CD38 MoAb can be added. Initial treatment should be continued until
PD or unacceptable adverse events. When the disease is relapsed or refractory, cytogenetics and phenotype should be
analyzed again. Anti-CD38 MoAbs should be used as second line of therapy if anti-CD38 MoAbs has not been administered
yet. A high dose of carfilzomib or pomalidomide containing therapy might be active for patients with refractoriness for
PIs and IMiDs. PIs containing therapy are selected as a second line of therapy if PIs have not been administered as initial
therapy yet. IMiDs containing therapy are selected as a second line of therapy if IMiDs have not been administered as initial
therapy yet. Salvage ASCT is considered when the time to progression from up-front ASCT is 3 years or more. Allogeneic
transplantation is considered for very fit patients who achieved a good response using salvage chemotherapy. Cytotoxic
agents-containing therapy, such as VTD-PACE, might be active for aggressive relapse, such as extramedullary disease and
plasma cell leukemia. Agents with a new mode of action, BCMA-targeting therapy, XPO-1 inhibitors, and clinical trials are
considered when they are available. NDMM, newly diagnose multiple myeloma; RRMM relapse or refractory multiple
myeloma, HRCA, high risk cytogenetic abnormality; SRCA, standard risk cytogenetic abnormality; PD, progressive disease;
PIs, proteasome inhibitors; IMiDs, immunomodulatory drugs; MoAbs, monoclonal antibody agents; ASCT, autologous
stem cell transplantation; CFZ, carfilzomib; POM, pomalidomide; EMD, extramedullary disease; PCL, plasma cell leukemia;
TTNT, time to progression; XPO-1, exportin-1; BCMA, B cell mature antigen, CAR-T, chimeric antigen receptor-T cell;
ADC, antibody-drug conjugate; bispecific T-cell engager; Tx, treatment.
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Anti CD38 MoAbs have several anti-myeloma and microenvironment activities,
such as complement-dependent cytotoxicity (CDC), ADCC, direct myeloma killing, en-
hancement of the immune system, inhibition of CAM-DR, and enhancement of bone
remodeling as above. CD38 expression is independent of the maturation of MM cells’
cytogenetic abnormality [153,176], but is dependent on serum IL-6 level, which increases in
disease progression [177]. Anti-CD38 MoAbs contribute to the enhancement of the immune
system [178]. The activity of anti CD38 MoAbs in NDMM should be higher than RRMM
because the immune system in NDMM is better than those in RRMM [179]. The efficacy
of DARA for HRCA is still controversial. DRd (DARA + LEN + DEX) contributed to the
longer progression-free survival (PFS) compared with Rd in a POLLUX trial, which is
a phase 3 trial about DRd versus Rd for RRMM; the hazard ratio for PFS of DRd compared
with Rd decreased as the follow-up interval increased [180–182]. DRd can be active for
HRCA, excluding the patients at ultra-high risk, whose diseases progress in the early stages
after DRd started. It was suggested that DRd continuous treatment might be effective
for HRCA patients. Thus, anti-CD38 MoAbs contribute to anti-myeloma activity in early
phase MM cells.

6.2. Autologous Stem Cell Transplantation for Microenvironment and Clonal Evolution

High-dose melphalan followed by ASCT is still a standard of care. High dose mel-
phalan kills MM cells nonspecifically via deoxyribonucleic acid (DNA) damage and may
attack the subclonal structure, potentially reducing the impact of a neutral or non-neutral
evolutional tumor history [123,131]. In addition, the autograft plays an important role for
the therapeutic effect on not only the recovery of myelosuppression but also the improve-
ment of microenvironment in the patients received ASCT. Mesenchymal stem cells (MSC),
which are non-hematopoietic undifferentiated cells, are able to differentiate into not only
components of BMSC such as hematopoietic tissues, but also various mesodermal-type
tissues such as osteoblasts, chondrocytes, and myocytes [183]. BMSC are a major compo-
nent of the hematopoietic microenvironment, and contribute to maintaining long-term
hematopoietic maintenance. In addition, osteoblasts work as the actual state of endosteal
niches. Thus, MSC play an important role as one of the major members responsible for the
hematopoietic mechanism. MSC are difficult to collect from the PB of healthy individuals,
while they are also mobilized in PB when mobilized with granulocyte colony stimulating
factor (G-CSF) [9].

In FORTE trial, PFS in the patients treated with four cycles of KRd (carfilzomib (CFZ)
+ LEN + DEX) followed by ASCT followed by four cycles of KRd (KRd-ASCT group) was
significantly longer than those with 12 cycles KRd (KRd12), although the MRD negativity
ratio was similar using multicolor flow cytometry (cut-off = 10−5) [184,185]. In addition,
in a long follow-up, the MRD ratios were similar between the KRd12 and KCd (CFZ +
cyclophosphamide + DEX)-ASCT groups. The reason why KRd12 was inferior compared
with KRd-ASCT and similar with KCd-ASCT is a deeper response (MRD negativity rate
using next generation sequencing, 23% vs. 34%; cut-off = 10−6) and immune reconstitution
in the patients that received ASCT. Thus, up-front ASCT is a standard of care from the
point of view concerning the results of clinical trials but also the improvement of the
microenvironment.

6.3. Clinical Significance of Immune Reconstitution

Immune reconstitution is important for the patients with HRCA instead of MRD
status. Continuous IMiD treatments induce immune reconstitution, and play an important
role for the treatment for myeloma patients with HRCA. However, survival time in the
HRCA patients treated with IMiDs was short in the majority of clinical trials. Continuous
therapy with IMiDs combined with PIs or monoclonal antibodies might be essential for
myeloma patients with HRCA. In addition, ASCT contributes to a deeper response and the
improvement of the microenvironment instead of neutral evolution and HRCA [131]. In the
patients that received ASCT, normal plasma cells increase in patients with MRD-negativity
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compared with those with MRD-positivity, leading to immune reconstitution [105]. Because
the benign BM niche provides support to the survival of normal plasma cells, regulates the
number of normal plasma cells [186], and promotes immune reconstitution, it is suggested
that the benign BM niche might increase via the eradication of MM cells in niche by
intensive chemotherapy, increasing the niche available for normal plasma cells [117,187].
Therefore, multi-drugs approaches, PIs, IMiDs, DARA, and ASCT, might be essential for fit
NDMM patients from the point of view of the microenvironment. In fact, DARA + VRd
followed by ASCT was tolerable and effective for NDMM in GRIFFIN trial [188].

6.4. Treatment for Unfit and Frail NDMM, RRMM, and EMDs

In the case of unfit or frail NDMM patients who are ineligible for intensive treatment
including ASCT, DARA-based treatment is a good option because CD38 expresses on
MM cells independently from cytogenetics [189], and a relatively better immune system
contributes the activity of anti-CD38 MoAbs [190–193]. Partners of DARA, such as PIs and
IMiDs, are selected considering cytogenetic abnormality, clinical symptom, and comor-
bidity. Differentiation of MM cells and the cancer panel should contribute to classifying
which MM cells are suitable for treatment with PIs or IMiDs [68,194,195]. For frail pa-
tients, doublet regimens, such as VD (BOR + DEX) and Rd might be selected considering
the general condition, comorbidity, and social background rather than cytogenetic risk.
There is no evidence of the efficacy and tolerability of anti-CD38 MoAbs plus PIs or IMiDs
as initial chemotherapy for frail patients up to now, although PFS in the patients treated
with DARA + VMP and DARA + Rd were significantly longer than those in those treated
with VMP and Rd among the elderly patients according to ALCYONE and MAIA trials,
respectively [196]. If frailty improved via the efficacy of chemotherapy, anti-CD38 MoAb
can be added. Initial treatment should be continued until PD or unacceptable adverse
events, because the possibility of receiving the next chemotherapy is low [197].

In the RRMM patients after the multi-drug approach, the reason why treatment
failed should be evaluated. Fluorescence in situ hybridization (FISH) for del17p, 1q21
gain, and MYC containing a cytogenetic abnormality should be repeated for each relapse
because these cytogenetic abnormalities can be added. The phenotype of MM cells using
flow cytometry should be repeated to analyze non-genetic changes to MM cells. Thereafter,
the suitable treatment for cytogenetic abnormality and phenotype should be selected.

In the terminal phase of MM, EMD is often detected. The treatment for EMD is
challenging. Cytotoxic agents containing chemotherapy including ASCT might be effective
for EMD [79,198,199]. VTD-PACE is a good option for EMD considering CAM-DR and
hypoxia, but might be intolerable for the majority of patients with a terminal phase of
MM [200].

6.5. Future Direction

Several new drugs are developed to overcome de novo drug resistance, such as pro-
teasome inhibitors and EZH2 inhibitors to overcome CAM-DR, and anti-IL-6 monoclonal
antibodies and IGF-1R inhibitors to overcome SFM-DR, in a preclinical study, although
several of those have not shown efficacy in clinical trials and thus are not available in
clinical practice. In addition, treatments to prevent and overcome acquired drug resistance
are already one of unmet medical needs as well. In future, treatment strategies to prevent
clonal evolution and overcome acquired drug resistance including the terminal phase
of myeloma will be necessary. Treatment with new modes of action, such as chimeric
antigen receptor-T cell therapy (CAR-T) [201], antibody-drug conjugate (ADC) [202], bis-
pecific T-cell engager (BiTE) for B cell mature antigen (BCMA) [203], exportin-1 (XPO-1)
inhibitor [204] and melflufen [205], may be active for patients with a terminal phase of MM.

7. Conclusions

This review summarizes myeloma pathogenesis and drug resistance from the perspec-
tives of the adhesion of BMSCs, hypoxia, and vascular and endosteal niches, and describes
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treatment strategies for each microenvironment in myeloma. The research and develop-
ment of specific inhibitors for the BM microenvironment are progressing, while the majority
of these drugs have been evaluated in preclinical studies and are not available in clinical
practice. Currently available anti-myeloma agents, such as PIs, IMiDs, and anti-CD38
MoAb, work for the BM microenvironment and show an antimyeloma effect. ASCT is
expected to not only have an antitumor effect through high-dose chemotherapy, but also
help in the improvement of the BM microenvironment including immune reconstitution.
There is no specific treatment for the inhibition of clonal evolution that shows acquired
treatment resistance as yet, although treatment strategy, guided by the myeloma phenotype
using flowcytometry, can be selected. In addition, maintenance of a deep response should
be essential in preventing clonal evolution. The initial treatment strategies containing PIs,
IMiDs, MoAbs, and ASCT should be necessary to overcome de novo drug resistance and
prevent acquired drug resistance. It may be possible to select personalized treatment strate-
gies through the analysis of clonal variation in each case using next generation sequencing.
In the future, it is important not only to treat the myeloma cells themselves but also to
develop a treatment strategy that considers the microenvironment and clonal evolution.
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