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In this paper, we propose a supervised deep learning neural network (D-CNN) approach to predict CO, adsorption form the
textural and compositional features of biomass porous carbon waste and adsorption features. Both the textural and
compositional features of biomass porous carbon waste are utilized as inputs for the D-CNN architecture. A deep learning
neural network (D-CNN) is proposed to predict the adsorption rate of CO, on zeolites. The adsorbed amount will be classified
and predicted by the D-CNN. Three tree machine learning models, namely, gradient decision model (GDM), scalable boosting
tree model (SBT), and gradient variant decision tree model (GVD), were fused. A feature importance metric was proposed
using feature permutation, and the effect of each feature on the target output variable was investigated. The important
extracted features from the three employed model were fused and used as the fusion feature set in our proposed model: fusion
matrix deep learning model (FMDL). A dataset of 1400 data items, on adsorbent type and various adsorption pressure, is used
as inputs for the D-CNN model. Comparison of the proposed model is done against the three tree models, which utilizes a
single training layer. The error measure of the D-CNN and the tree model architectures utilize the mean square error
confirming the efficiency of 0.00003 for our model, 0.00062 for the SBT, 0.00091 for the GDM, and 0.00098 for the GVD, after
150 epochs. The produced weight matrix was able to predict the CO, adsorption under diverse process settings with high
accuracy of 96.4%.

1. Introduction

The introduction of machine and deep learning models
started in 1980s [1-5], and machine learning models have
been at the front position for intelligent computer models
for prediction and classification. Deep learning is a type
of machine learning with more depth for feature extraction.
Deep learning, with its dependence on feature extraction
instead of clear training to achieve optimal solutions, accom-
plishes high performance in stochastic settings [6] and is thus
associated in a way to simulate the inference thinking found
in human brains, using supervised learning process [7].
Many scientists have studied machine learning and their
mathematical and stochastic nature for numerous applica-

tions. This paper utilizes the mathematical nature of machine
learning model in an organic application of CO, adsorption
prediction. It first studies existing models of deep learning
in such discipline.

As an advance of machine learning models, deep learning
is distinguished from machine learning because it extracts
deep features through unsupervised learning iteratively. Such
feature extraction guarantees model independence from
human control (human feature engineering). Also, deep
learning model accuracy is powered by the existence of ade-
quate data for training and assembles significant information
and data correlations [8, 9].

Carbon capture is employed as an essential tool for
dropping CO, emission rate [10-14], as CO, concentration
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endures a steady increase. In [10], the authors concluded
that process of CO,capture is considered an expensive oper-
ation, accounting for more than 60% of the total CO,capture
and storing process cost. In [11], postcombustion CO, is
considered as the main method for CO,capturing from
manufacturing emission sources and also considered a
cost-effective technique, but due to, its low CO, concentra-
tion with less than 20%, the key challenge of this operation
is to develop of a cost-effective CO, capture process.
Absorption operation named regenerative amine solvent
operation, for CO,capture, is not cost-effective and has high
degree of corrosion, degradation loss, and toxicity [12].
Development of nonexpensive membranes with carbon per-
meability for CO, capture from gas is under consideration in
the research community. In [13], authors proposed a solid
porous carbon adsorption for second-generation carbon
dioxide capture process. It is characterized with low cost,
regulated pore arrangement, with low energy requirement.
Also, biomass waste has encouraging, nonexpensive, and
plentiful sources for manufacturing porous carbon adsor-
bents. Biowaste porous carbons are compounds that are
extensively employed in ecological discard control and car-
bon emission. In [14], Biowaste porous carbon process
(BWPC) for CO, capture can alleviate the ecological pollu-
tion triggered by biowaste management and can attain dec-
arbonization and for climate change diminution.

The CO, adsorption of BWPC at various temperatures
has been studied for explicating the thermodynamic features
of the CO, adsorption operations and managing the CO,
adsorption operation optimization. Thermodynamic fea-
tures such as entropy and isostatic heat emission specify that
CO, adsorption on solid adsorbents is controlled by physio-
sorption [11, 12]. CO, adsorption improvement can be
achieved using carbon selectivity and heteroatom [13, 14].

Deep learning model (DLM) is an intelligent model that
undergoes training phase to accomplish classification from
input data such as images with high precision. DLM is
trained by utilizing supervised learning from labeled dataset
[15]. Machine learning and deep learning in many adsorp-
tion fields, such as waste-to-energy transfiguration [16-20],
compound sorption [21], and biowaste treatment [22, 23]
has received intensive interest. Machine learning models
comprise linear regression, k-nearest neighbors, support vec-
tor machines, neural networks, and deep learning models. A
deep learning model has more layers than convolutional neu-
ral network (CNN) with deeper layers for higher classifica-
tion accuracy [9]. Tree-based classification models are a
type of supervised machine learning model, that utilize recur-
sive data splitting in a binary manner by minimizing the
mean sum of squares. Some of the standard models comprise
decision trees, gradient decision models, random forest, and
gradient boost models. Classification tree-based models are
characterized by the capacity to work with small-size data-
sets, with less overfitting, and noisy counterpart’s resistant
features [24-27].

In this paper, we propose a data-driven model of map-
ping the CO, adsorption by BWPC based on textural and
compositional properties and adsorption parameters. Map-
ping utilizes the adsorption pressure and temperature con-
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duct of the CO, adsorption process. The core idea of the
proposed research is to expose that machine learning tech-
niques for projecting models and utilized to observe appreci-
ated insights into the CO, capture. With this purpose, three
tree machine learning methods, namely, gradient decision
model (GDM), scalable boosting tree model (SBT), and gra-
dient variant decision tree model (GVD), were employed
and validated for the prediction accuracy for CO, capture.
Using tree models, a feature metric was proposed using fea-
ture permutation, and the effect of each feature on the target
output variable was investigated. The important extracted
features from the three employed model were fused and used
as the fusion feature set in our proposed model: fusion
matrix deep learning model (FMDL).

Table 1 depicts different gas adsorption simulation deep
learning prediction models.

In this paper, CO, adsorption data are used as input for
the training layers and the adsorption rate is predicted by the
D-CNN. Using the D-CNN model, adsorption of CO, on
zeolite is predicted. This research employs the deep learning
CNN to predict the amount of CO,adsorption.

This paper is structured as follows: Section 2 proposes
the new methodology. Section 3 presents the data collection
and statistics and. In Section 4, experimental results are
demonstrated. Section 5 depicts a comparative study and
result discussion. Section 6 depicts conclusions of the pro-
posed work.

2. Model Description

Feature fusion process enhances neural network prediction
performances after getting rid of redundant properties in
the datasets. In our proposed model, we initiate feature
fusion process and then we enter the learning process
followed by the prediction process. A D-CNN with 12 con-
volutional layers and a dropping layer incorporated with
feature fusion procedure. Accuracy of the D-CNN with
different weights is computed and ordered so that the D-
CNN can pick the attribute of the highest and the least
imperative for each run of the D-CNN learning phase. The
algorithm recaps itself to eliminate multiple input attributes.
When the D-CNN will not reach a sufficient accuracy as
defined in the model, the process will halt, and no more fea-
tures will be removed. Dropout layer is employed to lessen
the overfitting of the input training data. Frame work of
the proposed model in Figure 1.

2.1. Model Work Frame. As seen in Figure 2, the work frame
for the D-CNN model consists of many phase. The first
phase is mainly to identify and gather data items based on
the following parameters such as textural composition and
adsorption parameters. The next phase is to input these data
into the D-CNN network training phase. The input variables
range between the values —1 and 1 and normalized accord-
ing to the following equation:

2(ID_IDmin) 1. (1)

D =
o (D D min)

max
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TaBLE 1: Summary of gas adsorption simulation deep learning prediction models for different gases using density, molecular, and vacancy

volume.
Reference Gas type Model Prediction results
. . The adsorption ground truth is closer
[10] Xe Density parameter function o the experimental results
[28] CO, Dunning’s correlation sets Moderate accuracy
[29] CO, Molecular simulations Moderate accuracy
Scalable boosting tree model .
[22] Co, (SBT) Satisfactory
The data were linearly correlated . -
[17] CO, by Toth and sips equations The sip model showed the least deviation
Gradient variant decision tree
[30] CO,, He, and Ar model (GVD) Accurate for the adsorbed phase
. . Vendor depicts less deviation than the
31] O, The vendor and Langmuir metric Langmuir metric from the ground truth
[32] Kr and N, Vacancy solution method Yeilds parameter optimization
Our proposed work: Fusion matrix Co, Adsorption modeling using the High accuracy

deep learning model (FMDL)

D-CNN approach
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F1GURE 1: The proposed workflow defining model parameters, namely, textural, composition, and adsorption parameters.

The D, indicates normalized data item, D indicates
the raw data, and D, ,, and D,;, denote the maximum and
minimum of D.

The proposed model will tune the D-CNN parameters
and weights to enhance prediction performance. In the sub-
sequent phase, the validation data is tuned using a dataset
partition, and the verification is then executed using the val-
idated inputs. The ratio of the correlation (R) and the mean
square error are employed to evaluate the D-CNN predic-
tion accuracy. The D-CNN model with the highest accuracy
is selected and constructed. In various machine learning and
regression models, the number of inner layers and the total
neurons are accordingly updated. The training model halts
when the optimal D-CNN reaches the best assessment for
the parameters. The mean square error and R are employed

as valuation parameters, and the outputs are matched to the
data set to decide on the best network.

The model simulation was implemented in the 32-bit
Windows-10, using Python 3.6. The experiment was imple-
mented using Keras on the Tensor platform. The model
training was also performed on the tensor platform with
Keras. The system was programmed using Intel ® Core™
i7-7300 CPU @5.60GHz with 16 M Cache, 32GB RAM,
and GTX 1070 video card. The model was implemented in
Python 3.6, employing the Sickie-learn function library [28].

3. Data Collection and Statistics

3.1. Data Collection. Data collection was conducted by col-
lecting data from literature review on BWPC for carbon
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FIGURE 2: The deep learning model consists of many phases. The first phase is mainly to identify and gather data items based on the
following parameters such as textural composition and adsorption parameters. The next phase is to input these data into the network

training phase.

capture utilizing keywords such as biomass, porous carbon,
waste, CO, adsorption, and CO,capture from indexed data-
bases. 1400 data items were collected and utilized in our
research [7, 8]. The common features for the dataset of
CO,adsorbents BWPC incorporate adsorption capacity,
cost-effectiveness, and adsorbent selectivity adsorption kinet-
ics. In our research, we focus on the CO, adsorption capabil-
ity achieved at various temperatures and air pressures versus
the textural features and composition.

The data collection presumes the following assumptions:

(1) Screened data were accepted, without bias towards
data validity

(2) The data were acquired from experiments performed
by scientists. Data items that are not listed directly
were extracted from listed figures utilizing Plot-
Digitizer web crawler to extract the required data
and cleaned to circumvent duplicates

(3) The selected input features extracted and categorized
into classified into three classes: (1) texture features,
(2) BWPC compositions, and (3) adsorption proper-
ties such as temperature at which CO, adsorption
were done

(4) The primary texture features of the BWPC incorpo-
rate the surface area and the pore volume

(5) The secondary texture features include macropore
area and volume and the weight content of CO,

(6) The CO, uptake rate at various adsorption proper-
ties was utilized as the target optimization variable

3.2. Data Preprocessing. The collected data will be trans-
ferred into predefined units. At the data cleaning phase,
missed data were found to be mostly total pore and macro
pore volume. This missing data is due to the variance in
the data published and the selection of textural features
stated. Most papers described the surface area and total pore
and macropore volumes. Therefore, many data items are
either area or pore volume, while macropore volume was

not listed, and in alternate cases, the area and macropore
volume were listed, but total pore volume was not listed.
Data cleaning is very crucial for missing data reproach of
total pore volume and macropore volume using machine
learning. Data cleaning techniques are performed to evade
removal of tuples with missing attributes.

The linear correlation between the inputs is formulated
using Pearson coeflicient (y) as depicted in the following

equation:
L (ximX\ (yi—y
v/_n—ll;(SDx><SDy>’

where y is the Pearson coefficient for the feature x and
the target y, whereas X and y are the average values of the
input x and output y, respectively. The value of ¥ is in the
range {-1, 1}.

(2)

3.3. The Collected Dataset (DS). The processed 1400 data
items are exposed to several training phases by dividing
the original dataset into random training set and another
test set. 80% of the data items are labeled and utilized for
the learning data, and the 20% partition are used as testing
for the supervised models. Crossvalidation process is utilized
to tune the parameters to concurrently enhance the model’s
prediction accuracy using k-fold [19]. In the k-fold valida-
tion process, the data will be partitioned into k-folds to be
used for every training iteration, while one of them will be
employed for validation. This aids in solving the overfitting
challenge to solve the bias problem in machine learning
model. We utilized different values of k (5, 7, 10, 12) and
tuned the model to the best k value as depicted in Table 2.
K =7 is found to be the best one in validation. The training
dataset has 1120 data items (80% of 1400 total items). There-
fore, using k=7 generates 8 partitions of 160 data items
(Table 2).

3.4. Parameter Tuning. Three tree machine learning models
were employed and fused to predict CO, adsorption on
BWPCs. Recent research [34-39] have revealed the fitness
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TaBLE 2: Crossvalidation testing for k=5, 7, 10, and 12-folds to
determine the best performance k-validation value.

Testing method ~ Accuracy  Precision  Recall ~ Fl-score
5-fold 93.60% 96.61% 93.16% 96.86%
7-fold 96.26% 95.31% 96.26% 96.01%
10-fold 91.35% 91.30% 92.62% 91.86%
12-fold 89.98% 89.96% 89.82% 89.95%

of tree machine learning models in small size datasets with
less than 1200 data items when the number of selected
features is between 5 and 20 features. Such data are usually
collected from experimental research for midsize data.

The gradient decision model (GDM) is an ensemble
learning model that syndicates several connected sequence
decision trees [30]. Decision trees are considered weak
learners. But with incorporation of gradient decision models,
by totaling sequence decision trees in an ensemble will
induce learning boosting. Each sequence decision subtree
optimizes the solutions from the previous subtree, and the
boosting algorithm induces high efficiency of the gradient
decision model. The scalable boosting tree model (SBT) is
a scalable decision tree with a trailing gradient decision algo-
rithm, using many decision trees and biased quantile search
to execute distributed computing. GVD is gradient variant
decision tree model that utilizes fast feature bundling to
enhance efficiency without compromising the accuracy.
Then, as a summary, the three employed tree models are
as follows: the gradient decision model (GDM), the scalable
boosting tree model (SBT), and gradient variant decision
tree model (GVD).

Parameter adjusting is the procedure of extracting
parameters to attenuate the performance. Parameters are
usually tuned in the training phase. Parameter tunings are
performed using grid search and Bayesian inference [31].
In our research, multiple parameter tuning procedures are
performed and tested, and then best parameters are selected
with the highest accuracy. In the propose model, the grid
search technique was performed for parameter tuning yield-
ing a small set of input features (seven features).

3.4.1. Metrics. The performance metrics of the regression
techniques are mostly use linear dependency metric (R)
and the mean absolute error (MAE) [32, 33]. The greater
the R and the lesser the MAE, the higher the accuracy, as
depicted in the following equations:

I/N(Zf\;{(ﬂti_pl")
Z?LIOLDi - m| ’ (3)

| M
MAE = NZV:‘ =pil

where pi and ti are the predicted and the ground truth,
respectively. M is the number of various classes. M is the
average values of the predicted classes, and M is the number
of the data items.

3.4.2. Feature Importance. Decision tree models face the
challenge of computing the significance of an input feature
and its effect on the output accuracy. Permutation mean
decline accuracy (PMD) is a method utilized to identify the
significance of each feature for tree prediction models by
computing the changes in the model prediction performance
when an input feature is used or not used. PMD is the aver-
age drop in the Gini score, which computes the contribution
of each independent variable to the homogeneity of the tree
nodes [34]. The greater the value of the PMD score, the
significance of the input in the prediction. The model is fit
for identifying the significance when the permutation count
of the features is reasonable or the computation will be
resource and time intensive. Our proposed model utilizes
seven input features; the permutation model is utilized to
compute the feature ensemble importance. Permutation
significance accuracy can identify the respective importance
of an input feature to the prediction model as a whole and
the effect of the input on the target dependent variable.
The PMD is a regression formula that lowers the effect of
the inputs on the prediction of the deep learning model, with
the exception of the single input of interest, thus denoting
sensitivity analysis. Thus, by disregarding the impact of
one independent input feature is attained. In our model,
each single feature is used at an instance of time to measure
its impact on the target output for each data item in the
dataset. We should note that the GDM utilizes global and
local estimates, and local sensitivity study from the PMD
was utilized in this research. PMD allows the effect of the
inputs on the output variables by computing their impact
across individual data items.

3.4.3. Data Statistics. Analysis of the features and the target
dependent variable is performed using raw data; for
instance, the dataset consists of 1400 data items [7, 8] that
were analyzed statistically, realizing the minimum and max-
imum values as well as the mean of the input values. The tar-
get dependent variable is also analyzed to gain insights.
Figures 3-5 depict the representation of the data statistics
for the inputs and the target output. The average values of
CO, adsorbed on the porous biomass for the data composed
was 3.38 mmol/g + 1.58 mmol/g, with CO, adsorption of
maximum 8.23 mmol/g at 0°C and 1bar, and minimum of
0.24 mmol/g at 0.13 bar. The surface area is the texture fea-
ture that was described for the dataset. The reported surface
area (SA) varies from 800 to 2436 mz/g, with an average of
1442.70 m*/g + 755 m*/g. The average values for pore vol-
ume (PV) are 0.77 with standard deviation 0.46 while
macropore volume (MV) has an average of 0.52 with stan-
dard deviation of 0.49cm’/g. The results summaries are
depicted in Figures 3-5. The SA and PV were considerably
impacted by the carbonation treatments. The authors in
[35], produced coconut shell porous for CO, adsorption
using KOH galvanization. The outcomes depicted that the
SA ranges from 880 to 2687 m’/g, and the pore volume
ranges from 0.378 to 1.329 cm’/g. The greatest CO, uptake
of 4.257 mmol/g at 26°C and 1bar was produced with SA
of 1478 m?/g and a pore volume of 0.67 cm>/g. This results



Adsorption Science & Technology

Carbon dioxide
adsorption rate

1000 £
1040 3
1050
1090
1140
1140
1180
1410
1440
1470
1400
1440
1450
1490
1440
1440
1480
1410

1440
1470
1500
1540
1550
1590
1740
1740 3
1780 1

Surface area

Carbon adsorption

FIGURE 3: Representation of the data statistics for the input (CO, adsorption) versus the target output which is the surface area (data is

collected from the dataset in [7, 8]).
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FIGURE 4: Representation of the data statistics for the input CO, adsorption) versus the target output (pores volume) (data is collected from

the dataset in [7, 8]).
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FIGURE 5: Representation of the data statistics for the input (CO, adsorption) versus the target output (macro pores volume) (data is

collected from the dataset in [7, 8]).

infer that no simple path was available to produce the best
porous carbons for CO, capture from biomass wastes.

4. Experiments

The three different feature extraction algorithms that were
utilized to get best features are the gradient decision models,
random forest, and gradient boost models, and the texture
type, composition, and adsorption parameters are utilized
as input data. The amount of adsorbed CO, is the target out-
put data. The experimental dataset (1400 data items) was

distributed into training subset (85%) and validation subset
(15%) at random. By measuring different parameters, the
D-CNN activation functions are reached. The CPU utilized
in the executing the experiment is an Intel i7-8200 CPU @
3.30 GHz, and the memory is 16.00 GB. We used MATLAB
R3012a. The experiments were executed 200 runs, and we
took the average for the results.

4.1. Neuron Selection. A number of activation functions have
been employed in this research. Sigmoid function is utilized
for the hidden layers, and Purlin transfer is utilized for the
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FIGURE 6: The optimum number of neurons is estimated using the least mean square error function value in the range from 1 to 80.

TaBLE 3: Hidden layers’ number against the mean square error and the correlation factors for different models, where the adsorption
parameters (pressure and temperature) are selected using the Bayesian ordered function with the least mean square error values.

Model Mean square error Correlation Epoch Hidden layer number Optimal number of neurons
Machine learning 0.000053 0.9898 62 [20] 25
Bayesian 0.000047 0.9798 100 [15] 65

Training mean square error = 0.00099 Training mean square error = 0.00092

Our proposed model
predicted adsorption amount

0 0.2 0.4 0.6 0.8 1

Our proposed model predicted
adsorption amount

T T T
Labeled adsorption amount 0 0.2 0.4 0.6 08 1
Labeled adsorption amount
(a) Correlation between the prediction of our model and the (b) Correlation between the prediction of our model and the
labeled adsorption data for mean square error of 0.00099 labeled adsorption data for mean square error of 0.00092

Training mean square error = 0.00019

Adsorption amount

0 T T T T
0 0.2 0.4 0.6 0.8 1

Labeled adsorption amount
(c) Correlation between the prediction of our model and the

labeled adsorption data for mean square error of 0.00019

F1GURE 7: Correlation between the prediction of our model and the benchmark data for different mean square error versus the ground truth
(labeled adsorption amount).
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FIGURE 8: Adsorption rate and pressure versus temperature, with average surface area of 1442.70 m*/g. The average values for pore volume
(PV) are 0.77, and macropore volume (MV) has an average of 0.52 cm3/g.

TABLE 4: Pearson’s coefficient matrix for all features included in the research. Insignificant correlation was found between the inputs, only
textural features (surface area, pore volume, and macropore volume). The features with units are depicted as follows: surface area: (mz/g),
pore volume: (cm®/g), macropore volume: (cm®/g), H: hydrogen, N: nitrogen, O,: oxygen, and CO, adsorption (mmol/g).

Surface area Pore volume Macropore volume 0, N H CO,
Surface area 1 0.93 0.83 0.38 0.21 0.012 0.33
Pore volume 0.93 1 0.77 0.33 0.013 0.014 0.013
Macropore volume 0.83 0.77 1 0.29 0.31 0.22 0.31
0, 0.38 0.34 0.31 1 0.12 0.31 0.12
N 0.21 0.19 0.17 0.15 1 0.25 0.014
H 0.012 0.013 0.011 0.011 0.014 1 0.22
CO, 0.33 0.30 0.28 0.26 0.22 0.31 1

TaBLE 5: Evaluation of the tree machine learning models using the benchmark data, the gradient decision model (GDM), the scalable
boosting tree model (SBT), and gradient variant decision tree model (GVD) and our proposed model fusion matrix deep learning model

(FMDL).

Gradient decision

Scalable boosting

Gradient variant decision ~ Fusion matrix deep learning

model tree model tree model model (FMDL)
Training correlation 0.97 0.91 0.94 0.97
7-fold correlation 0.78 0.77 0.78 0.82
Testing correlation 0.74 0.77 0.75 0.81
Mean absolute error (mmol/g) 0.67 0.77 0.64 0.52

output layers. The least mean square error function value
and the maximum correlation (R) value are utilized to com-
pute the optimum number of neurons that ranges from 1 to
80, as depicted in Figure 6. The adsorption parameters (pres-
sure and temperature) are selected using the Bayesian
ordered function with the least mean square error values as
depicted in Table 3.

4.2. D-CNN Architecture for Adsorption. Both the machine
learning and the Bayesian regression models have several
hidden layers of 20 and 15 neurons and one layer of 65 neu-

rons. The D-CNN consists of input, hidden, and output
layers. The input layer utilizes the input data for adsorption
parameters and other inputs. The hidden layers are selected
by the precision required. The hidden layers in this research
are set to three layers which achieve suitable precision. The
neurons in the hidden layers are set to 15 or 20. The Sigmoid
function is employed in these layers. The output layer uti-
lizes a linear transfer function, namely, Purlin.

The R parameter for the D-CNN model is depicted in
Figure 7 and is nearly one (R=0.9989). Figure 7 exhibits
that the D-CNN model outputs and the labeled adsorption
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FIGURE 9: Prediction using scalable boosting tree model (a), gradient decision model (b), gradient variant decision tree model (c), and our
proposed model Fusion matrix deep learning model (d). The red color represents 96% confidence of the regression for the test items. The
black line is the equality line (y = x). The prediction accuracy of the models followed comparable trends but with diffused accuracy.

Permutation importance

Macro pore volume
Pore volume
Surface area

B Permutation importance

F1GURE 10: Feature importance analysis where the impact of each
factor on the target output. The experiment illustrates the
permutation importance on the output.

amount from the benchmark dataset have exactly value of
correlation.

The machine learning model with the Bayesian regres-
sion technique for the adsorption procedure is fitted to nor-
malize the impact. These results indicate that the predicted
D-CNN model fit the labeled adsorption dataset concisely.
The regression correlation coefficient (R) of the proposed
model is 0.99989 and 0.99784, respectively. We can denote
that the developed D-CNN offers a prediction accuracy that
is consistent with the benchmark labeled dataset. Based on
the experimental results, the proposed model avoided being
caught in local optima by altering the radial basis range
function. The results have also shown that the RBF model
can perform the same functions as the MLP model in most
datasets.

To study the relationship of the adsorption parameters (i.
e., pressure, temperature, and adsorbents amount) and to
identify each variable impact on the adsorption amount,
charts of a response surface for the proposed model predicted
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TABLE 6: Recall, precision, and F-measure metric comparison.
Enhancement of our proposed
Models Results regarding other adsorption prediction
models
Recall Precision F-measure Recall Precision F-measure
Model 1 scikit machine learning model [36] 091 0.92 0.91 +5.59% +6.52% +6.59%
Model 2 interpretable machine learning model [37] 0.92 091 0.92 +4.35% +7.67% +6.59%
Model 3 light gradient boosting machine [31] 0.92 0.915 0.93 +4.35% +7.10% +4.30%
Our proposed model 0.96 0.98 0.97 — — —

versus the labeled benchmark data are depicted in Figure 8.
The average values of CO, adsorbed on the porous biomass
for the data composed were 3.38 mmol/g+ 1.58 mmol/g,
with CO, adsorption of maximum 8.23 mmol/g at 0°C and
1bar, and minimum of 0.24 mmol/g at 25°C and 0.13 bar.
The surface area is the texture feature that was described
for the dataset. The reported surface area (SA) varies from
800 to 2436 m’/g, with an average of 1442.70 m?/g+ 755
m?/g. The average values for pore volume (PV) are 0.77
with standard deviation 0.46 while macropore volume
(MV) has an average of 0.52 with standard deviation of
0.49 cm®/g. The result summaries are depicted in Figure 8.
The SA and PV were considerably impacted by the carbon-
ation treatments. The authors in [38-41] produced coconut
shell porous for CO,adsorption using KOH galvanization.
The outcomes depicted that the SA ranges from 880 to
2687m?*/g and the pores volume ranges from 0.378 to
1.329cm’/g. The greatest CO, uptake of 4.257 mmol/g at
26°C and 1bar was produced with SA of 1478 m*/g and a
pore volume of 0.67 cm®/g. This results infer that no simple
path was available to produce the best porous carbons for
CO, capture from biomass wastes.

The proposed model underwent experiments and the
results are summarized using the optimized D-CNN weights
for adsorption rate prediction. The results are summarized
in Table 4.

In the linear dependency correlation between the input
independent variables, a high positive correlation was per-
ceived in the textural features including the surface area,
prone, and macroprone volume. The Pearson coeflicient
for those variables is greater than 0.736, indicating a high
correlation. Only textural properties have high correlation
but no substantial correlation was perceived for the other
input variables with Pearson coefficient between —0.5 and
0.5. Table 3 represents the Pearson coefficient matrix. The
shortage of a correlation between the inputs aided in main-
taining all of them for constructing the prediction method,
as every single feature contributes independently to the pre-
diction. There is a high correlation between the textural fea-
tures, and this set of inputs contained a large portion of the
missing information in the raw data.

The overfitting is countered as the 7-fold validation is
reached in terms of R and thus enhancing model generaliza-
tion as depicted in Table 5.

Figure 9 displays the joint plots of the actual cases ver-
sus predicted cases of CO2 adsorption, as computed by

the three tree models. Although the GDM and SBT pre-
sented analogous performances in the training and cross-
validation, GDM outperformed SBT within higher test R
at 0.85 and 0.78 and lesser MAE at 0.63 and 0.70. These
experimental results prove that all the models have similar
performances. In general, the GDM outperformed the SBT
and GVD with less overfitting yielding the minimum R,
proving the generalization competence. Our fusion matrix
deep learning model outperforms the three models when
they act separately.

4.3. Feature Analysis. The permutation mean decline accu-
racy (PMD) is utilized to define the impact of the inputs,
which contained the compositions and textural features ver-
sus the adsorption parameters on the output target (CO,
adsorption rate). This study was performed for the GDM
model, which is indicated as the best model in performance
in our research. Figure 10 depicts the impact of each input
on the target output. The experiment illustrates the permu-
tation importance for each independent variable on the out-
put. A high permutation importance value for the input
indicates a reduction in the model accuracy when the factor
is not employed. Thus, a factor with a high permutation
importance specifies a weighty impact on the accuracy.

5. Comparison Study and Discussion

5.1. Comparison Study. We conducted a comparative study
of our model versus similar machine and deep learning
published models. We completed the comparison on the col-
lected dataset (DS). The comparison is portrayed in Table 6
of the recall, precision, and F-measure metrics. The results
designate that our adsorption prediction model outperforms
other models in adsorption precision. Our system demon-
strated enhancement of 6.59%, 6.59%, and 4.3%, in the F-
measure w.r.t. the other state of the art adsorption prediction
model. It is found that our model’s performance is greater
than peer models.

Table 7 demonstrates the statistical metrics for the com-
pared adsorption prediction models. Table 8 portrays the
confusion matrix of the accuracy, specificity, and sensitivity
for the compared adsorption prediction models for three
adsorption states (high, moderate, and low) for temperature
25°C and pressure of 1 bar.

5.2. Discussion. In the experimental study, we applied accu-
racy, specificity, and sensitivity metrics. The results
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TaBLE 8: Confusion matrix for the accuracy, specificity, and sensitivity for the compared adsorption prediction models for three adsorption
states (high, moderate, and low) for temperature 25°C and pressure of 1 bar.

Model Precision Precision Recall F-measure ROC Category
0.812 0.812 0.741 0.811 0.831 High adsorption
Model 1 [36] 0.732 0.732 0.763 0.733 0.733 Moderate adsorption
0.712 0.712 0.741 0.711 0.791 Low adsorption
0.812 0.812 0.741 0.811 0.831 High adsorption
Model 2 [37] 0.732 0.732 0.763 0.733 0.733 Moderate adsorption
0.712 0.712 0.741 0.711 0.791 Low adsorption
0.812 0.812 0.841 0.811 0.871 High adsorption
Model 3 [31] 0.732 0.732 0.763 0.733 0.733 Moderate adsorption
0.612 0.612 0.641 0.611 0.671 Low adsorption
0.912 0.912 0.941 0.911 0.971 High adsorption
Our proposed model 0.972 0.972 0.967 0.957 0.987 Moderate adsorption
0.912 0.912 0.941 0911 0.991 Low adsorption
Performance average on 2000 runs
100% -
90% -
80%
70% -
60% ~
50% -

Percentage (%)

1 -
0.9 +
0.8 -
0.7 -
0.6
0.5
0.4
0.3 1
0.2 1
0.1 1

Accuracy

Senstivity

M Our proposed model without feature fusion

M Our proposed model with feature fusion

FIGURE 11: Accuracy results for proper feature fusion.

Specificity

Correctly classified Incorrectly classified  Kappa coefficient (inter-

qualitative reliability)

Mean square error

—e— Model 1 with feature fusion
Model 2 with feature fusion
—e— Model 3 with feature fusion

—o— Model 1 without feature fusion

Model 2 without feature fusion
—e— Model 3 without feature fusion
—e— Our proposed model

F1GURE 12: Correctly classified versus incorrectly classified case comparison for different models with and without feature fusion.
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TaBLE 9: Comparison of the prediction time in seconds with the
same training dataset.

Method Execution time (sec)

4.42%107°

Our proposed model

Model 1 without feature fusion 12.05%x 1071 +8.09x 1073

Model 1 with feature fusion 7.05x 1071 +4.09 x 107
1731 x 10" +2.03 x 107"
12.42x 10" +7.19x 102

117.42x 10" £12.09 x 107!

67.17 x 10*' £7.09 x 107

Model 2 without feature fusion
Model 2 with feature fusion
Model 3 without feature fusion

Model 3 with feature fusion

demonstrate that by employing feature fusion, all prediction
models including our proposed model were more able in
terms of accuracy with respect to the same classifiers without
feature fusion. The best accuracy level for adsorption detec-
tion was attained by our proposed D-CNN classifier, which
gained 98% accuracy outperforming other classifiers by
about 6%.

The experiments with feature fusion designated that
suitable feature space fusion can enhance the results by a
realistic margin. Accuracy outcomes of these cases are repre-
sented in Figure 11.

Figure 12 exhibits correctly predicted cases and incor-
rectly predicted cases. The results display upgrading with
feature fusion. The mean square error stayed less consider-
ably when using feature fusion. The Kappa metric for the
all compared prediction model also was better when feature
fusion was incorporated. This suggests that feature fusion
upsurges accuracy because it fuses all relevant features. Of
all the compared models, our model attained the maximum
improvement with feature fusion.

Table 9 depicts the comparison study of execution time
of classifying CO, adsorption with the same training dataset.
Our model with feature fusion has the least prediction time
(in contrary to training time because of more features incor-
porated in training). Model 1 is the next in prediction time
with feature fusion still slower than our model by an order 2.

6. Conclusions

In this paper, we employed a supervised deep learning
model for CO, adsorption prediction form fused adsorp-
tion features. Both the textural and compositional features
of biomass porous carbon waste are utilized as inputs for
the D-CNN architecture. The deep learning neural net-
work (D-CNN) predicts the adsorption rate of CO, on
zeolites. 1400 data items of different adsorbent rates and
adsorption pressure is built and used as inputs for the
D-CNN model. The adsorbed rate will be classified and
predicted by the D-CNN. The correlation (R) for the deep
learning model and Bayesian model models was 0.9998
and 0.9978, respectively. The produced weight matrix
was able to predict the CO, adsorption under diverse pro-
cess settings with high accuracy of 96.4%.
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The permutation importance of fused features yields the
following observations: the pressure and temperature are the
weightiest parameters impacting the model prediction accu-
racy. The textural features (SA, TV, MV) in the order of
declining precedence and the last important are the compo-
sitional factors on the feature importance analysis, and the
significance of the features was individually observed and
categorized into three classes, with the adsorption being
the utmost important one.

A comparison of our model versus deep learning pub-
lished models (recall, precision and F-measure, execution
time) was performed. The comparison results indicate that
our adsorption prediction D-CNN model is better than
other models in adsorption precision. Our system demon-
strated enhancement of 6.59%, 6.59%, and 4.3%, in the F-
measure versus the other models. Our model exhibits fast
computational time with an average execution time of 4.2
seconds which is better than all other models by half the
time at least.

These results indicate that adsorption parameters highly
impacted the CO, adsorption rate. For example, we will find
a decrease in the CO, adsorption with the more temperature
and less pressure.
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