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Predicting the adsorption performance to remove organic pollutants from wastewater is an essential environmental-related topic,
requiring knowledge of various statistical tools and artificial intelligence techniques. Hence, this study is the first to develop a
quadratic regression model and artificial neural network (ANN) for predicting biochemical oxygen demand (BOD) removal
under different adsorption conditions. Nanozero-valent iron encapsulated into cellulose acetate (CA/nZVI) was synthesized,
characterized by XRD, SEM, and EDS, and used as an efficient adsorbent for BOD reduction. Results indicated that the medium
pH and adsorption time should be adjusted around 7 and 30min, respectively, to maintain the highest BOD removal efficiency
of 96.4% at initial BOD concentration ðCoÞ = 100mg/L, mixing rate = 200 rpm, and adsorbent dosage of 3 g/L. An optimized
ANN structure of 5–10–1, with the “trainlm” back-propagation learning algorithm, achieved the highest predictive performance
for BOD removal (R2: 0.972, Adj-R2: 0.971, RMSE: 1.449, and SSE: 56.680). Based on the ANN sensitivity analysis, the relative
importance of the adsorption factors could be arranged as pH > adsorbent dosage > time ≈ stirring speed > Co. A quadratic
regression model was developed to visualize the impacts of adsorption factors on the BOD removal efficiency, optimizing pH at
7.3 and time at 46.2min. The accuracy of the quadratic regression and ANN models in predicting BOD removal was
approximately comparable. Hence, these computational-based methods could further maximize the performance of CA/nZVI
material for removing BOD from wastewater under different adsorption conditions. The applicability of these modeling
techniques would guide the stakeholders and industrial sector to overcome the nonlinearity and complexity issues related to the
adsorption process.

1. Introduction

Recently, adsorption has been employed in several types of
research as an efficient and reliable process for wastewater treat-
ment [1–3]. The adsorption systems neither consume a lot of
electricity nor generate large amounts of sludge [4, 5]. More-
over, the adsorbent material could be appropriately synthesized
to provide effective adsorption sites to capture the pollutants

from wastewater [6, 7]. However, the adsorption process is
highly influenced by several operational factors such as time,
pH, and mixing speed [8]. The correlation between these envi-
ronmental factors and pollutant removal efficiency could be
described by nonlinear and complex modeling methods [9].
Hence, more studies are required to investigate the applicability
of various statistical tools and artificial intelligence techniques
for predicting adsorption performance.
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Artificial neural network (ANN) models have been used
in recently published studies as a proper method to describe
the adsorption performance in relation to operational condi-
tions [10–12]. The architecture of ANN is composed of mul-
tiple processing elements (or units) arranged in layers. These
units, known as neurons, are highly interconnected and
work in parallel to solve complex problems and get relevant
relationships among the input attributes. For instance, Mah-
moud et al. [13] found that an ANN model could simulate
and predict phosphate removal in adsorption experimenta-
tion, showing a predictive accuracy of R2: 0.976. Several
operational factors such as solution pH, adsorbent dosage,
and mixing speed were used in the adsorption process,
showing that pH was the most influential attribute [13].
Hamdy et al. [14] also demonstrated that the removal effi-
ciency of methylene blue (MB) dye from wastewater could
be explained by several adsorption factors incorporated into
an ANN model (R2: 0.931). These input attributes included
medium pH, initial MB level, and adsorption time; among
them, time was the most influential factor [14].

Several researchers have also used regression models and a
combination of statistical tools to predict the treatment perfor-
mance under different operational factors. For example,
Fawzy et al. [15] used a quadratic regression model to predict
the Ni(II) removal efficiency via adsorption onto plant bio-
mass. The quadratic equation described the correlation
between Ni(II) and several inputs (e.g., pH, biomass dosage,
and adsorption time) with high predictive accuracy of R2 =
0:837 [15]. Their study demonstrated that the statistical
model could appropriately illustrate the interaction among
the input parameters and the shape of the input-output
curve [15]. In another study, Fawzy et al. [16] employed a qua-
draticmodel to predict the Cd(II) removal efficiency via adsorp-
tion onto Gossypium barbadense waste. Total Cd(II) removal
was achieved under the optimized condition of pH = 7:61, bio-
sorbent diameter = 0:125–0.25mm, and biosorbent dosage =
24:74g/L within 109.77min at initial CdðIIÞ = 50mg/L [16].

Given the aforementioned aspects, the application of the
computational approaches to describe the adsorption pro-
cess is an essential point of research. However, further inves-
tigations are required to verify the implementation of ANN
and quadratic models to predict organic matter removal.
This objective would offer a feasible and sustainable approach
to domestic wastewater treatment.

Hence, this research focused on predicting and optimiz-
ing the BOD removal performance in adsorption experi-
mentation by a computational-based approach (quadratic
regression and ANN models). In particular, the study objec-
tives are fourfold: (1) characterization of adsorbent material
synthesized by the entrapment of nanozero-valent iron into
cellulose acetate polymer (CA-nZVI), i.e., this material has
been widely used in the adsorption system due to its proper
mechanical strength, thermal stability, and accessibility; (2)
use of the CA-nZVI adsorbent to reduce organic matter
from wastewater, expressed by BOD, i.e., BOD is considered
the standard criterion for assessing the organic pollution of
domestic wastewater; (3) describe the influence of various
adsorption factors, i.e., pH, adsorbent dosage, time, mixing

rate, and initial BOD concentration (Co), on BOD removal
efficiency; and (4) employ computational techniques, i.e.,
ANN and polynomial regression models, to predict and
optimize the adsorption process.

2. Materials and Methods

2.1. Preparation of Adsorbent Material. For preparing an
iron solution, around 0.0037 M of ferric chloride hexahy-
drate (FeCl3·6H2O; 98.5% pure, Arabic lab.) was dissolved
in 60 mL of a mixture of 4 (ethanol; C2H6O, 95% pure,
World Co.) : 1 (deionized water). In parallel, 0.7564 g
of reducing sodium borohydride (NaBH4; 99% pure, Win
lab.) was dissolved in 200 mL of deionized water to pre-
pare the NaBH4 solution. Further, the reducing NaBH4 solu-
tion was placed in a burette and added drop by drop into the
prepared iron solution. Black iron nanoparticles precipitate
as a result of the direct reaction (Equation ((1)). The iron
nanoparticles, known as nZVI, were then washed with dis-
tilled water and dried at 75°C for 5 h:

2FeCl3 aqð Þ + 6NaBH4 aqð Þ + 18H2O⟶ 2Fe0 sð Þ
+ 21H2 gð Þ + 6B OHð Þ3 aqð Þ + 6NaCl aqð Þ: ð1Þ

Further, the prepared nZVI was capsulated into cellulose
acetate (CA; 99%, Oxford) polymer, using the phase inver-
sion approach [17]. Briefly, at room temperature, 4 g of CA
was dissolved in 25mL dimethylformamide (DMF; 99.99%,
Fisher Chemical) solution and then mixed at 300 rpm until
complete dissolution (within approximately 60min). About
0.4 g of nZVI was mixed into the dissolved CA solution for
10min before being cast into a gelation bath. The prepara-
tion of the gelation bath included 2L of nonsolvent distilled
water, 2wt% DMF, and 0.2wt% sodium lauryl sulphate
(SLS). The prepared CA/nZVI beads (around 3–4mm in
diameter) were collected and washed with distilled water
and then used for the adsorption experimentation.

2.2. Preparation of BOD Containing Solution (Adsorbate).
Raw wastewater samples were collected from a sewage treat-
ment plant located in New Cairo, Egypt. The samples were
analyzed for BOD and subjected to different dilution regimes
with ultrapure water. Working stock solutions with BOD
concentrations of about 100, 200, 300, 400, and 500mg/L
were prepared and used for the individual experiments.

2.3. Batch Studies on Adsorption. Batch experiments were
conducted to determine the effects of adsorption factors on
the BOD removal efficiency. For this objective, a one-fac-
tor-at-a-time approach was used to prepare the batch assays
statistically (Table 1). The factors (pH, CA/nZVI dosage,
time, stirring rate, and Co) and the associated range values
were selected following the approaches of previous studies
[18–20]. After each experimental run, the percentage of
BOD removal (R) and the quantity of sorbed BOD were cal-
culated by Equations (2) and (3). All tests were performed in
triplicate, and the average values were recorded:
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R %ð Þ = C0 − Ce

C0

� �
× 100, ð2Þ

qe mg/gð Þ = C0 − Ceð ÞV
M

, ð3Þ

where Co and Ce refer to the initial and equilibrium BOD con-
centrations (in mg/L), respectively, qe represents the equilib-
rium adsorption capacity (mg/g), V is aqueous phase volume
(L), and M represents the adsorbent’s dry mass (mg).

2.4. Analytical Analysis. The concentrations of BOD in the
aqueous solutions were determined using the procedures of
Standard Methods for the Examination of Water and Waste-
water [21]. An X-ray diffractometer (PANalytical’s, X’Pert
PRO MRD, Netherlands) was used to determine the X-ray
diffraction (XRD) patterns of the synthesized nZVI. The
XRD equipment was operated with current and voltage
levels of 30 mA and 40 kV, respectively. A copper (Cu)
K-alpha radiation with a wavelength ðλÞ = 1:5406 Å
was used to record the XRD patterns in a 40–90° range (step
size of 0.02°) [14]. The XRD spectra were used to estimate
the crystallite size of the prepared nanoparticles, following
Scherrer’s formula:

D =
K λ

β  cos  
, ð4Þ

where D is the average crystal size, K is the nanoparticle
shape factor, θ is the peak diffraction angle, β is pure diffrac-
tion broadening, and λ is the X-ray wavelength.

The nanoparticles’ surface morphology was measured by
a scanning electron microscope (Philips SEM, Quanta 250
field emission gun (FEG), USA). The elemental composition
of nZVI was analyzed using energy-dispersive spectroscopy
(EDS) in conjunction with SEM at a high magnification of
16kx. For determining the pH at the point of zero charge
(pHPZC), the solution pH was incrementally adjusted from
2 to 12 using either 1N H2SO4 or 1N NaOH (pHi) in a
100mL Erlenmeyer flask. About 0.1 g of nZVI was added
to the flasks and kept at 23°C for 24h, and then, the final
pH readings were recorded (pHf).

2.5. Computational-Based Studies

2.5.1. Artificial Intelligence Neural Networks. Figure 1 shows
the ANN architecture used to predict BOD removal from a
given dataset of five input variables (pH, adsorbent dose,
time, stirring rate, and Co), forming 25 experimental runs.

The ANN model is composed of three subsequent layers, i.e.,
an input layer with 5 neurons, a hidden layer with multiple
neurons (m), and the last layer with a single neuron. Each
node in the hidden layer is interconnected with a number of
weighted signals from the neurons of the 5-length input vector
(P5×1). In particular, the inputs were weighted using a m × 5
weight matrix (Wm×5) and summed up, giving the formula
ofΣWm×5 · P5×1. This expression was added to am-length bias
(bm×1), and then, a tangent sigmoid (tansig) transfer function
was employed to generate an output; am×1 = tansigðΣWm×5 ·
P5×1 + bm×1Þ. This output was weighted using a 1 ×m weight
matrix (W1×m), and then, a 1-length bias (b1×1) was added.
Finally, a linear (purlin) transfer function was used to generate
a single neuron in the output layer using the formula of a1×1
= purlinðΣW1×m · am×1 + b1×1Þ. The “tansig” transfer func-
tion limits the output between −1 and +1, whereas the “purlin”
function generates outputs in the −∞ to +∞ range [22]. The
ANN output was compared with the actual BOD removal effi-
ciencies, and the network weights and biases were adapted
until reaching the best predictive performance. The total data
describing the inputs-target correlations were randomly sepa-
rated into three subgroups: training (70%), validation (15%),
and testing (15%).

During the ANN learning phase with a back-
propagation technique, the weights and biases were adjusted
using several epochs (trials). The mean squared error (MSE)
between the ANN output and measured BOD removal
reached its minimum value at the best network performance.
This feed-forward ANN model was used for its simplicity
(no cycles or loops) to describe complex input-output rela-
tionships and to cope with the weighting adjustment issues
[23]. In this study, the number of neurons (m) and the train-
ing algorithms were optimized to develop the most suitable
ANN architecture. The MATLAB (R2015a) software was
used to perform all the ANN computations.

2.5.2. Regression Analysis. A quadratic regression model
(Equation (5)) was developed to predict BOD removal and
estimate the optimum adsorption condition. Moreover, the
results of the polynomial model were used to visualize the
correlation between BOD removal and the adsorption fac-
tors. The model parameters were estimated based on the
least square method [24] to fit the BOD removal data. The
goodness-of-fit criteria (R2 andAdj‐R2) were used to assess
the predictive accuracy of the quadratic model [25]. The t
-test was used to verify the significance level (α = 0:05)
among the adsorption variables [26]. The MATLAB
(R2015a) software was used to conduct all the statistical cal-
culations:

Table 1: Operating conditions of batch adsorption experiments for BOD removal.

Experimental assay pH Dosage (g/L) Time (min) Stirring rate (rpm) Co (mg/L)

Effect of pH 3–11 3 25 200 300

Effect of adsorbent dose 7 1–5 25 200 300

Effect of contact time 7 3 5–60 200 300

Effect of stirring rate 7 3 25 100–500 300

Effect of BOD concentration 7 3 25 200 100–500
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Y = β0 + βi xið Þ + βii xið Þ2, ð5Þ

where Y is the BOD removal efficiency predicted using the
inputs (xi), β0 is the model intercept, and βi andβii represent
the constants associated with the linear and squared forms of
the inputs, respectively.

3. Results and Discussion

3.1. Characterization of nZVI. Figure 2(a) shows the XRD
pattern in the 2θ range of 40–90° for the prepared nZVI.
Two peaks were recorded at 2θ ≈ 44:6 and 64.9° for planes
Fe (110) and Fe (200), respectively. The results of XRD dem-
onstrated the dominance of zero-valent iron (Fe0) in the pre-
pared nanoparticles. Comparable XRD peaks related to
nZVI characterization have been reported elsewhere [13,
27]. Based on Scherrer’s equation, the particle size of the
prepared nZVI adsorbent ranged from 23 to 59 nm, obeying
the results provided by the SEM morphological study
(Figure 2(b)). In particular, the SEM image of the synthe-
sized nZVI showed a heterogeneous and irregular pore
structure with particle sizes ranging from 33 to 56 nm. Addi-
tionally, many pores were observed in the prepared nano-
particles, facilitating the diffusion and mass transfer of
molecules inside the nanomaterial [28]. The SEM image also
showed the presence of larger nanoclusters (agglomerated
particles), which could be assigned to the magnetic forces
existing between the iron nanoparticles. Similar chainlike
aggregates and surface tension properties have also been
reported while preparing the nZVI material [29]. The EDS
analysis observed the presence of iron, gold, and oxygen

with an elemental weight content of 51.49%, 34.53%, and
13.98, respectively (Figure 2(c)). The oxygen element could
be generated from the oxidation reaction with air and/or
water in the outer layer of nZVI. The oxide formation on
the nanoparticles’ surface layer has also been reported [30].
Moreover, the detection of the Au signal in EDS could assign
to the sample coating with a gold layer, following the labora-
tory analytical procedure [31]. The plot of ΔpH versus pHi
indicated that the pHPZC of nZVI could be determined
around 7.5 (Figure 2(d)). At this pHPZC, the net surface
charge of nZVI became zero, where the nZVI surface would
be positively charged at pH < pHPZC and negatively charged
at pH > pHPZC [32]. Moreover, at pH > pHPZC, the nZVI
particles could partially disaggregate because of surface
charge repulsion [33].

3.2. Effect of Operating Conditions on BOD Removal. The
BOD removal efficiency varied considerably in response to
the change in the adsorption factors (Figure 3). For instance,
adapting the solution pH to 7–8 would provide a suitable
condition for BOD reduction (Figure 3(a)). This pH range
complied with the pHPZC, supporting the involvement of
strong attractive and binding forces to remove organic
impurities. Moreover, the optimum pH condition would
facilitate the generation of hydroxyl radicals (⋅OH) to
degrade and oxidize a series of organic compounds [29].
However, decreasing the pH level below pHPZC was associ-
ated with unsatisfactory BOD removal, probably due to the
dissolution and/or separation of Fe from nZVI [34]. The
BOD removal efficiency was also maximized (above 90%)
at pH of 7 in an adsorption process using mixed adsorbent
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Figure 1: Flowchart of feed-forward back-propagation ANN model for predicting BOD removal efficiency using five adsorption factors, i.e.,
solution pH, CA/nZVI dosage, time, stirring speed, and initial BOD concentration.
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Figure 2: Continued.
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carbon [35]. Their study also demonstrated that the alka-
line condition (pH > pHPZC) would promote the abun-
dance of OH− ions to hinder the diffusion of organic
ions [35].

The BOD removal efficiency was also enhanced by
increasing the CA/nZVI dosage for the 1–5 g/L range
(Figure 3(b)). For instance, the BOD removal efficiency
improved from 66.3% to 83.2% when the CA/nZVI dosage
increased from 1.0 g/L to 5.0 g/L, respectively. Increasing
the adsorbent dosage provided more vacant sites to capture
large amounts of organic ions. Similar behavior was
observed for organic matter removal via an adsorption sys-
tem with wood fly ash (adsorbent), showing an increase in
BOD removal from 4 to 24% with elevating the dosage from
20 to 160 g/L, respectively [36]. Their study demonstrated
that raising the adsorbent dosage was accompanied by
greater surface area and carbon content, finally promoting
higher sorption of organic pollutants [36].

The adsorption time within the range of 5–60min also
influenced the BOD removal efficiency (Figure 3(c)). A
high BOD reduction (61.5%) occurred rapidly within the
first 10min, assigning to the availability of a large number
of vacant sites at the initial stage. This BOD removal
reached 76.8% after 25min and then slightly increased to
81.2% after 60min (Figure 3(c)). It could be observed that
the adsorption process started to reach the equilibrium
state after 25min due to nZVI saturation. This time was
shorter than 60min used to remove BOD with an effi-
ciency of 91.3% via adsorption onto green synthesized
nanomaterials [37].

The BOD removal efficiency also varied according to the
rate of mixing nZVI particles in the aqueous solutions
(Figure 3(d)). The mixing speed of about 200–300 rpm was
suitable to improve BOD removal due to facilitating the
transfer and diffusion of organic ions through the nZVI
pores. However, increasing the mixing speed over 300 rpm
would not be recommended in the adsorption process, prob-
ably due to further desorption of the captured contaminants
under fast agitation. Moreover, the operational cost of the
adsorption system would be expensive due to the surplus
electricity input to reach 500 rpm.

The results in Figure 3(e) depict that increasing Co in the
100–500mg/L range was associated with a drop in BOD
removal from 96.4% to 61.5%. Most vacant adsorption sites
are available for entrapping organic ions at low Co, in agree-
ment with previous results [27, 37, 38]. Increasing Co tends
to provide a driving force to overcome the mass transfer
resistance of solute onto nZVI. However, at a high Co condi-
tion, the adsorption capacity of nZVI would suffer from
increased competition among organic ions and blockage of
the available active sites [10]. This finding verifies the slight
reduction in the adsorption performance at an excessive Co.

3.3. BOD Removal by Different Adsorbents Reported in the
Literature. Table 2 includes the removal efficiencies of
BOD using various adsorbent materials reported in the liter-
ature compared to CA/nZVI applied in this study. For
example, Mahmoud et al. [37] used soft black tea to prepare
nZVI, which removed 91.3% of BOD at pH8, stirring rate
200 rpm, and adsorbent dosage 3.2 g/L within 60min. To
avoid the unmanaged disposal of wood residues, Laohapra-
panon et al. [36] used wood fly ash to remove BOD via batch
sorption experiments. Their study achieved BOD removal of
24% using an ash dosage of 160 g/L within 20min. Due to its
high carbon content and quite accessibility, date palm waste
was used to prepare activated carbon, which is further
employed for organic matter adsorption [39]. Their study
showed that 1 g/L of this activated carbon could eliminate
92.8% of BOD at pH = 6:0, agitation rate = 400 rpm, and
25°C within 150min [39]. It could be noticed that nZVI
exhibited higher BOD reduction than the application of agri-
cultural wastes. This finding could be assigned to the dual
effects of adsorption and degradation caused by nZVI.

3.4. Isotherm and Kinetic Studies. Three isotherm models
were used to describe the adsorption equilibrium between
organic pollutants and CA/nZVI (Figure 4(a)). These models
were Langmuir [40] (Equation (6)), Freundlich [41] (Equation
(7)), and Tempkin and Pyzhev [42] (Equation (8)):

Ce

qe
=

1
Qm

� �
Ce +

1
KL:Qm

, ð6Þ
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Figure 2: Characterization of the prepared CA/nZVI adsorbent (a) XRD, (b) SEM, (c) EDS, and (d) pHPZC.

6 Adsorption Science & Technology



log qeð Þ = 1
n

� �
log Ceð Þ + log KFð Þ, ð7Þ

qe = BT ln ATð Þ + BT ln Ceð Þ, ð8Þ

where qe is the number of biological pollutants adsorbed in the
form of BOD at equilibrium per gram of CA/nZVI (mg/g) cor-
responding to the equilibrium BOD concentration (Ce, in mg/
L), Qm (mg/g), and KL (L/mg) which are the Langmuir model
parameters, 1/n and KF ((mg/g) ðL/mgÞ1/n) are the Freundlich
model parameters, and BT (J/mol) andAT (L/g) are the Temp-
kin and Pyzhev model parameters.

Table 3 lists the values of isotherm parameters and the
corresponding fitting accuracies (R2 values). A low R2 of
0.881 obtained by fitting the adsorption data to the Lang-
muir model suggested that BOD removal by nZVI could
not follow the monolayer adsorption hypothesis [43]. The
Freundlich model achieved a sufficient fitting accuracy
(R2 = 0:994) to describe the adsorption isotherm. This
goodness-of-fit indicates that multilayer adsorption and het-
erogeneous sites could facilitate BOD removal by CA/nZVI
[44]. The 1/n and KF values were 0.285 and 23.014 (mg/g)
ðL/mgÞ1/n, indicating that the adsorption of organic ions
onto CA/nZVI was preferable under the experimental con-
ditions. A high R2 value (0.985) was also observed using
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Figure 3: Influences of adsorption factors on BOD removal efficiency: (a) solution pH, (b) adsorbent dosage, (c) contact time, (d) stirring
rate, and (e) initial adsorbate concentration.
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Table 2: Removal efficiencies of BOD using various adsorbent materials reported in literature.

Adsorbent
Experimental factor

Removal
efficiency (%)

ReferenceAdsorbent dosage
(g/L)

pH
Co

(mg/L)
Time
(min)

Stirring rate
(rpm)

Wood fly ash 160 1.4 15001 20 600 24
Laohaprapanon

et al. [36]

FeSO4·7H2O coagulant 2.0 5 25500 30 200/50 78 Hossain et al. [46]

nZVI from black tea extract 3.2 8.0 365 60 200 91.3
Mahmoud et al.

[37]

Activated carbon prepared from date
palm waste

1.0 6.0 14 150 400 92.8 Nayl et al. [39]

CA/nZVI 3.0 7.0 100 30 200 96.4 This study

Mixed adsorbent carbon 35 7 505 150 600 99.1
Devi and Dahiya

[35]

Commercial activated carbon 40 2 505 180 600 99.5
Devi and Dahiya

[35]
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Figure 4: Fitting of adsorption data to (a) isotherm models and (b) kinetic models.

Table 3: Results of isotherm and kinetic studies for BOD removal by CA/nZVI adsorbent.

Model Parameter Fitting formula Fitting accuracy (R2)

Langmuir isotherm
Qm = 88:496mg/g
KL = 0:155 L/mg
RL = 0:013–0.060

Qe = 13:755Ce/ 1 + 0:155Ceð Þ 0.881

Freundlich isotherm
1/n = 0:285

KF = 23:014 mg/gð Þ L/mgð Þ1/n Qe = 23:014Ce
0:285 0.994

Tempkin and Pyzhev isotherm
BT = 17:009 J/mol
AT = 1:630 L/g Qe = 17:009ln 1:630Ceð Þ 0.985

Pseudo-first-order kinetic
Qe = 42:442mg/g
k1 = 0:0791/min

Qt = 42:442 1 – exp −0:079tð Þ½ � 0.997

Pseudo-second-order kinetic
Qe = 86:207mg/g

k2 = 0:003 g/mg/min
Qt = 23:202t/ 1 + 0:269tð Þ 0.984
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the Tempkin and Pyzhevisotherm model, signifying a good
fit with the experimental data. The estimated Tempkin and
Pyzhev parameters (BT = 17:009 J/mol ; AT = 1:630 L/g) were
assigned to the occurrence of physical adsorption and uni-
form distribution of bounding energies for BOD removal.

The pseudo-first-order (PFO) (Equation (9)) and
pseudo-second-order (PSO) (Equation (10))) kinetic models
[45] were used to quantitatively describe the kinetic adsorp-
tion of organic impurities onto CA/nZVI:

log qe − qtð Þ = log qeð Þ − k1
2:303

t, ð9Þ

t
qt

=
1

k2 × q2e 
+

1
qe
t, ð10Þ

where k1 (1/min) and k2 (g/mg/min) are the PFO and PSO
constants, respectively, and qt (mg/g) and qe (mg/g) repre-
sent the amount of adsorbed molecules at time t and equilib-
rium, respectively.

The plot of qe vs. t shows the applicability of the adsorp-
tion kinetic models for fitting the experimental data
(Figure 4(b)). This fitting reveals that the interaction
between organic pollutants and CA/nZVI for BOD removal
is influenced by the physisorption and chemisorption path-
ways. In another kinetic adsorption study [39], a chemisorp-
tion reaction was dominant for removing BOD by activated
carbon. Hossain et al. [46] also demonstrated that the
removal of BOD from palm oil mill effluent by coagula-
tion/adsorption using FeSO4·7H2O followed the PSO kinetic
modeling.

3.5. Artificial Neural Network (ANN) for
Adsorption Computation

3.5.1. ANN Optimization. Table 4 lists the predictive perfor-
mances of several ANN structures derived by altering the
number of hidden layer neurons and the back-propagation

learning algorithm. The input layer (with 5 neurons)
received data from the five adsorption factors. Only one hid-
den layer was used in these ANNs to avoid an overcomplex
network’s architecture and obey the optimality criterion
(e.g., save computational cost, minimize MSE, and fasten
the learning speed). The output layer included a single node,
and hence, the ANN configuration could be expressed as 5
–m – 1. The network performance was unsatisfactory for
small m, probably due to a lower learning capability caused
by the insufficient computational neurons. It was also found
that 10 neurons yielded the highest R2 values, where a fur-
ther increase in the number of neurons would cause more
fitted functions and prolong the computation time. Hence,
local minima or overfitting might affect the ANN training
process by either elevating or lowering the number (m)
beyond 10 neurons, finally leading to an imprecise fit. More-
over, Levenberg-Marquardt (trainlm) yielded the best
goodness-of-fit statistics compared with other learning algo-
rithms. The “trainlm” training function is one of the fastest
back-propagation algorithms to adapt the weight and bias
values [22]. Although some functions such as “trainbfg”
showed high R2 values for the training dataset, R2 of the val-
idation and testing procedures were unsatisfactory. Accord-
ingly, the “trainlm” training function with m = 10 neurons
was selected for the optimized network configuration.

3.5.2. ANN Training, Validation, and Test. During network
optimization, the predictive accuracies for the training, vali-
dation, and testing processes were recorded (Figure 5(a)). In
these figures, the theoretical and best regression fittings are
given by the dashed and solid lines, respectively. These pro-
cesses showed R2 values of 0.975, 0.926, and 0.998 for the
optimum ANN structure (5–10–1), respectively. The overall
R2 value was 0.972, in which the ANN model would explain
97.2% of variability within the BOD removal efficiencies via
a linear regression model. Figure 5(b) shows the validation
checks during training that stopped at epoch number 6. This
epoch corresponded to a validation check of 6, in which the

Table 4: Determining the best ANN predictive performance by adapting the number of hidden layer neurons and the back-propagation
learning algorithm.

ANN structure Back-propagation learning algorithm
Coefficient of determination (R2) Goodness of fit
Training Validation Testing R2 Adj-R2 RMSE SSE

5–3–1 trainlm 0.992 0.579 0.931 0.740 0.730 3.067 254.000

5–5–1 trainlm 0.174 0.980 0.830 0.198 0.168 3.088 257.500

5–8–1 trainlm 0.908 0.955 0.910 0.914 0.911 2.207 131.500

5–10–1 trainlm 0.975 0.926 0.998 0.972 0.971 1.449 56.680

5–15–1 trainlm 0.752 0.430 0.819 0.741 0.731 4.103 454.500

5–20–1 trainlm 0.992 0.994 0.684 0.910 0.908 2.831 216.400

5–10–1 trainbfg 0.960 0.992 0.924 0.960 0.949 1.729 80.690

5–10–1 traingdm 0.228 0.598 0.399 0.246 0.218 2.359 150.200

5–10–1 traingda 0.823 0.740 0.968 0.824 0.819 3.175 272.300

5–10–1 traincgb 0.169 0.441 0.027 0.127 0.095 10.940 3234.000

5–10–1 traincgf 0.835 0.918 0.507 0.815 0.809 3.762 382.100

5–10–1 trainoss 0.904 0.891 0.982 0.906 0.903 2.696 196.200

5–10–1 trainscg 0.000 0.005 0.264 0.000 -0.037 10.290 2860.000
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Figure 5: Continued.
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errors were repeated six times before the process termina-
tion. During the 6 error repetitions (Figure 5(c)), the
MSE of the training dataset dropped due to the fact that
“trainlm” is an efficient algorithm to improve the learning
of ANN subjected to complex relationships [47]. For
instance, the ANN parameters (weights and biases) were
appropriately adjusted during training. The validation
curve initiated to rise after epoch 0, giving the best valida-
tion performance at the minimum MSE of 8.644. Based on
the validation plot, the ANN model would overfit the data

after epoch 0, giving unsatisfactory generalization power.
The testing curve gradually declined until epoch 2,
followed by a slight rise; where the MSE between the pre-
dicted and target outputs increased. The MSE of the test-
ing dataset implied that the ANN model could predict
BOD removal using new input records not seen during
training and validation. Based on the network perfor-
mance during training, validation, and test, the optimum
weights and biases were determined at epoch 0 to give
precise results when importing new input data.
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Figure 5: Performance of ANN model for predicting BOD removal efficiency: (a) regression plot, (b) validation checks, (c) best validation,
and (d) relative importance. The number of data points in the training, cross-validating, and testing sets had 70%, 15%, and 15%
proportions, respectively.
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3.5.3. ANN Applicability for Adsorption Studies. In this
study, a three-layer feed-forward back-propagation ANN
with a “trainlm” training algorithm and 5–10–1 architecture
was the optimized artificial intelligence model. This model
would be beneficial in predicting the adsorption perfor-
mance to remove BOD under varying environmental condi-
tions. Moreover, the obtained weights (W10×5 andW1×10)
and thresholds (b10×1 and b1×1) would be used to determine
the relative importance of the input factors. This step was
achieved by partitioning the network’s connection weights,
as reported elsewhere [47, 48].

Figure 5(d) shows each experimental factor’s relative
importance, where the solution pH experienced the most
influence on the BOD removal efficiency. Accordingly, the
medium pH should be adjusted to around 7.5 for maintain-
ing the highest adsorption performance. Controlling and
adjusting the medium pH would be essentially considered
to design and scale up the adsorption system. The relative
importance of adsorbent dosage, time, and mixing speed
was almost comparable at around 18%. Lower relative
importance for Co could be assigned to the efficient adsorp-
tion process for the investigated range of BOD (100–500mg/
L). Moreover, all the relative importance percentages were
satisfactory, implying that no input factor could be excluded
during the adsorption experimentation.

3.6. Quadratic Regression Model for Adsorption
Computation. Table 5 lists the statistical results generalized
from the t-test analysis for predicting BOD removal
(response variable). The model’s performance showed a reli-
able goodness-of-fit with R2 of 0.973 and Adj-R2 of 0.959.
Adj-R2 was approximately comparable to R2, which could
be assigned to the importance of the selected parameters in
describing the adsorption process. Moreover, significant
(p < 0:05) results were observed for the linear correlations
of x1, x2, x3, and x5, suggesting that the BOD removal effi-
ciency would be improved with incrementing pH, dosage,
and time. Moreover, an increase in Co tended to reduce
the BOD removal significantly (p < 0:05) because the
vacant adsorbent sites would be exhausted by increasing

the BOD concentration. The model output also showed
significant correlations with the quadratic forms of x1, x3
, and x5. Hence, a quadratic linear concave up curve would
be visualized for the plot of BOD removal against each pH
and time. This curve indicated that the improvement of
BOD removal after certain values of pH and time would
be insignificant (p > 0:05). The optimum values of these
parameters were numerically assigned as 7.3 and
46.2min, respectively. Moreover, a quadratic linear convex
down shape would be noticed for the plot of BOD
removal versus Co because increasing the BOD concentra-
tion would deteriorate the adsorption performance of CA/
nZVI. The plot of the BOD removal vs. mixing rate
showed a “flat” curve, assigning to the insignificant
(p > 0:05) influence of the input “x4” on the model
response. This “flat” pattern could be attributed to the
narrow range of stirring rate during the investigation,
making it imprecise to demonstrate a considerable rela-
tionship. Accordingly, the mixing rate was selected as
100 rpm to reduce the cost of the adsorption process.

3.7. Model Verification. The accuracy of the developed com-
putational models to predict BOD removal under new condi-
tions was estimated. In particular, additional 25 experimental
runs were performed by varying the adsorption factors,
followed by the analysis of BOD concentrations. In parallel,
these inputs were incorporated into the quadratic and ANN
models to predict the corresponding BOD removal efficien-
cies. The average of the absolute differences between the
experimental results and model outputs was used to estimate
themean absolute error (MAE). The results in Table 6 demon-
strate that the MAE values for the ANN and quadratic regres-
sion models were 0.73% and 1.91%, respectively. Apparently,
both models showed a promising ability to predict the BOD
removal efficiencies remarkably close to experimental values.
However, the ANN model was more reliable and robust than
the quadratic regression method in providing the predictions
closer to the measured data. Each of the modeling techniques
has advantages, regarding the prediction, optimization, and
recognition applications in wastewater treatment processes.

Table 5: t statistics and p values for coefficients of the quadratic regression model to predict BOD removal efficiency. Significant level at
p < 0:05. Goodness-of-fit indices are R2 = 0:973 and Adj-R2 = 0:959, with MSE = 3:096 and DFE = 18.

Variable Beta SE t ratio Prob > tj j Effect

Constant β0: 33.0635 9.049 3.654 0.002 Significant

pH β1: 6.2763 1.202 5.222 0.000 Significant

Dosage β2: 6.2479 2.070 3.019 0.007 Significant

Time β3: 1.7217 0.123 14.022 0.000 Significant

Rate β4: 0.0496 0.027 1.805 0.088 Insignificant

Co β5: -0.1421 0.021 -6.866 0.000 Significant

pH × pH β11: -0.4274 0.084 -5.110 0.000 Significant

Dosage × dosage β22: -0.3297 0.332 -0.992 0.334 Insignificant

Time × time β33: -0.0186 0.002 -10.551 0.000 Significant

Mixing ×mixing β44: -0.0001 0.000 -1.286 0.215 Insignificant

Co × Co β55: 0.0001 0.000 2.549 0.020 Significant
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However, ANN is able to overcome some shortages that
could arise during regression analysis implementation. In
particular, the input factors do not require a statistical
experimental design to train the ANN model (compared
to the regression analysis that only provides first- or
second-order polynomial models). ANN as a soft comput-
ing technique and a black-box model depends on the anal-
ysis of available data to simulate any form of nonlinearity.
In parallel, the regression models utilize a small number
of experiments to generate manifold information, provide
graphical illustrations for input-output relationships, and
establish significance analysis. Hence, the authorities are
encouraged to develop and scale up these modeling
approaches in real-scale wastewater adsorption systems.

4. Conclusions

This study focused on the application of computational-
based techniques to predict BOD removal in an adsorption
process. The adsorbent material was characterized by XRD,
SEM, and EDS, showing a successful preparation of Fe nano-
particles in the zero-valent state. The highest BOD removal

efficiency (96.4%) was observed at pH = 7, adsorbent
dosage = 3 g/L, mixing rate = 200 rpm, and Co = 100mg/L
within 25min. A quadratic regression model was developed
to enhance BOD reduction, showing optimum pH of 7.3 and
time of 46.2min, equivalent to a BOD removal efficiency of
over 99%. Moreover, an ANN structure was properly opti-
mized as 5–10–1 with the “trainlm” back-propagation learn-
ing algorithm to predict BOD removal (R2: 0.972, Adj-R2:
0.971). The results of the computational-based studies
revealed that the adjustment of medium pH at the 7–8
range would be essentially considered to design and scale
up the adsorption system. The results also showed that
the ANN model (MAE 0.73%) was more reliable than
the quadratic regression model (MAE 1.91%) in predicting
the BOD removal efficiency; however, both models main-
tained acceptable predictive accuracies. Hence, both
modeling approaches would be employed to guide the
stakeholders and industrial sector to overcome the nonlin-
earity and complexity issues associated with the adsorption
process. Further studies are required to apply these ANN
and quadratic models to enhance organic pollution reduc-
tion at a large scale.

Table 6: Verification of quadratic regression and ANN models for predicting BOD removal using additional experimental runs.

Run
Experimental parameters∗ BOD removal efficiency (%) Absolute error (%)

x1 x2 x3 x4 x5 Actual ANN Quadratic regression model ANN Quadratic regression model

1 3 3 25 200 300 69.0 69.0 67.5 0.0 1.5

2 5 3 25 200 300 70.6 70.6 73.2 0.0 2.6

3 6 3 25 200 300 72.7 75.4 74.8 2.7 2.1

4 7 3 25 200 300 76.8 76.8 75.5 0.0 1.3

5 8 3 25 200 300 75.8 74.4 75.4 1.4 0.4

6 9 3 25 200 300 71.4 71.4 74.4 0.0 3.0

7 11 3 25 200 300 70.9 70.9 69.9 0.0 1.0

8 7 1 25 200 300 66.3 66.3 65.7 0.0 0.6

9 7 2 25 200 300 70.5 70.5 70.9 0.0 0.4

10 7 4 25 200 300 79.4 79.4 79.5 0.0 0.1

11 7 5 25 200 300 83.2 83.2 82.8 0.0 0.4

12 7 3 5 200 300 50.7 54.5 52.3 3.8 1.6

13 7 3 10 200 300 61.5 61.5 59.5 0.0 2.0

14 7 3 15 200 300 67.3 67.3 65.8 0.0 1.5

15 7 3 20 200 300 72.4 72.2 71.1 0.2 1.3

16 7 3 30 200 300 77.9 81.0 79.0 3.1 1.1

17 7 3 60 200 300 81.0 81.0 80.5 0.0 0.5

18 7 3 25 100 300 73.0 73.0 73.6 0.0 0.6

19 7 3 25 300 300 78.9 78.9 75.5 0.0 3.4

20 7 3 25 400 300 79.1 79.1 73.5 0.0 5.6

21 7 3 25 500 300 79.0 76.7 69.4 2.3 9.6

22 7 3 25 200 100 96.4 96.4 96.0 0.0 0.4

23 7 3 25 200 200 88.9 93.2 84.7 4.3 4.2

24 7 3 25 200 400 67.4 66.9 68.3 0.5 0.9

25 7 3 25 200 500 61.5 61.5 63.1 0.0 1.6

Mean absolute error (MAE) (%) 0.73 1.91
∗x1 is pH; x2 is adsorbent dose (g/L); x3 is contact time (min); x4 is stirring rate (rpm); x5 is initial concentration (mg/L).
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Nomenclature

ANN: Artificial neural network
BOD: Biochemical oxygen demand
CA: Cellulose acetate
CA/nZVI: Nanozero-valent iron encapsulated into cellu-

lose acetate
DMF: Dimethylformamide
EDS: Energy-dispersive spectroscopy
FeCl3·6H2O: Ferric chloride hexahydrate
MAE: Mean absolute error
MSE: Mean squared error
NaBH4: Sodium borohydride
PFO: Pseudo-first-order
PSO: Pseudo-second-order
SEM: Scanning electron microscope
SLS: Sodium lauryl sulphate
XRD: X-ray diffraction.
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