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ABSTRACT 
 

Hurricane occurrence exploration is a heavy task that requires sophisticated methods to accurately 
determine the occurrence and the impact of damage on the tropical environs. To control massive 
damage, several techniques have been developed to measure the accuracy of track forecasting. 
The accurate analysis and exploration of the occurrence of hurricanes are very crucial for the 
affected environs evaluation within a short time to minimize the loss of human life and property. 
Nevertheless, the exact analysis and exploration of these hurricanes is challenging and time-
consuming. Therefore, this study proposed a statistical model whereby the analysis of variance 
(ANOVA) a linear regression scientific data statistical analysis model is applied on the dataset of 
Atlantic hurricane database (HURDAT2) for the exploration of hurricane occurrence and damage in 
the tropical environs. The best tracks of a 6 hour interval, location (latitude, and longitude), wind 
speed, central pressure of all identified hurricanes and subtropical typhoons from the year 2008 to 

2017 (10 year period) are used to determine the 
2R coefficient, which measures the goodness and 

fitness of the model to reveal the variability of the real data. Statistical significance and reliability of 

the data are tested on significance 0.05p value   where four different parameters are considered 
for the analysis in order to determine the destructive of these hurricanes in the tropical environs; 
latitude ( 1 ), longitude ( 2 ), the wind speed ( 3 ), and central pressure. The results of our model 
proved significant with an accuracy of 99.3%, and a mean standard error (MSE) of 1.4952 for all 
the hurricanes that were analyzed, and the year 2012 was established as a year that had much 
damage. 
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1. INTRODUCTION 
 

Drastic climatic change experienced across the 
globe have led to many coastline environs to 
experience the occurrence of hurricanes or the 
tropical cyclones which has resulted in massive 
damages both to human life and properties. 
Hurricanes or tropical cyclones are surge storms 
that are characterized by a low-pressure center 
and copious thunderstorms which produce robust 
winds and flooding rains. They habitually form in 
the tropical environs between latitude of 23.5º 
North and South. A hurricane can also be 
referred as a tropical cyclone. There are a 
number of hurricane basins where these 
hurricanes occur on a regular basis, including the 
Northwest Pacific basin, the Atlantic basin, the 
Northeast Pacific basin, the North Indian basin, 
and the Australian or Southwest Pacific basin [1]. 
Due to the destructive potential of hurricanes, 
there has been a lot of research on hurricanes 
across the world trying to analyze and explore 
their occurrence. 
 

Hurricanes are a part of the terrific, destructive, 
and harmful natural catastrophes, customarily 
producing high winds, storm surges, and intense 
rainfall and flooding along the coastal areas [2], 
[3]. The tropical cyclones and hurricanes 
destructive characteristics are immense perils to 
coastline people and the environs [4], resulting in 
the death of more human lives than other natural 
catastrophes [3]. Since 1968 to 2010, 
approximately eighty-eight humid hurricanes 
developed yearly over the earth [5], [6], fourth 
eight (48) out of the 88 hurricanes attained the 
strength of a hurricane i.e., category 1 and 2 and 
twenty-one (21) acquired the strength of an 
extreme hurricanes that is, categories 3, 4, and 5 
respectively [6]. For about two (2) generations 
globally close to 1.9 million people fell casualty of 
the hurricane catastrophes [5]. The hurricanes 
and tropical cyclones are liable for the massive 
and vast damages in the local economy, 
conservancy, and environs [5], [7], [8]. The 
strength, magnitude of the hurricanes grant an 
increase under certain climate change scenarios 
[9]–[11], and therefore, coastline persons and 
environs are more vulnerable to hurricanes. 
 

For an efficient and precise provision of vital 
information in every step of hurricanes and 
tropical cyclones catastrophe management, tools 
such as remote sensing and spatial analysis are 
essential [12]–[14]. The remote sensing statistics 

unified with spatial analyses yield to appropriate 
information on development on environmental 
situations and the property infrastructure 
because of hurricane impacts and are crucial 
devices for lessening the impacts of prospective 
hurricanes. The aforementioned tools can also 
be applied predictively to explore the hurricane 
hazards over the threats, vulnerability, and 
measure capability planning, and to explore the 
possible forthcoming impacts of the likely 
climatology situations [15–18]. Additionally, the 
satellite remote sensing performs an important 
part in the tracking of hurricanes and tropical 
cyclones and thus, providing a precise 
exploration of the landfall [19], [20]. However, the 
study of the occurrence and damage of tropical 
hurricanes remain an open challenge. Therefore, 
in this work, a statistical model whereby the 
Analysis of variance (ANOVA) a linear regression 
scientific data statistical analysis model is applied 
on the dataset of Atlantic hurricane database i.e., 
the hurricane data version two (HURDAT2) that 
was extracted from [21] for the exploration of 
hurricane occurrence and damage in the tropical 
environs, and Origin85 is applied for graphical 
representation of results. The variance of the 
hurricanes is estimated using the sample 
variance, which is calculated using the shown 
relationship [22], 
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Conversely, the center focus of this study will be 
on, 1) statistical analysis and exploration of 
hurricane occurrence and damage in the tropical 
or coastline environs, in order to determine and 
explore from the analyzed dataset of hurricanes 
for the years 2008-2017, 2) which of the 
hurricanes had a massive damage and impact on 
the globe basin, and 3) investigate the statistical 
models that have been applied in the exploration 
and analysis of hurricanes or tropical cyclones 
occurrences. 
 
The remaining part of this study is organized as 
follows; a review of the earlier methods and 
techniques used to analyze and explore the 
occurrence and damage of hurricanes is 
discussed in Section 2. Section 3 deals with the 
proposed model to explore the occurrence and 
damage of hurricanes in the coastlines while in 
Section 4, emphasis is made on the experiments 
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of this model with its results and discussions 
achieved. Concluding remarks are presented in 
Section 5. 
 

2. RELATED WORK 
 

2.1 Survey on Hurricanes 
 
The historical hurricane data was reported and 
documented on a 6-hourly time period as per the 
World Meteorology Organization (WHO) 
guidelines and standards. For about 167-year 
period 1851 through 2017 numerous hurricanes 
have taken place reaching at least tropical storm 
strength (plus the subtropical storms) have been 
recorded over the North Atlantic zone. The 
establishment of these rainstorms and possible 
escalation into mature hurricanes happens above 
the warm tropical and subtropical waters as 
depicted in Fig. 1 [23]. 
 
Ultimate dissipation or modification, on average 
of 7-8 days, usually takes place over the colder 
waters of the North Atlantic, or when the 
rainstorms travel over land and away from the 
sustaining oceanic environs [24]. Mostly the 
geographical zones influenced by hurricanes are 
frequently known as the tropical cyclone basins. 
 
The wind standards segmenting the different 
phases of hurricanes are rather inflexibly 
determined, nevertheless, the capacity to 
quantify the winds with the exactness by the 
descriptions that rarely happen. The intense wind 
speed must regularly be contained in post-
analysis by indirect information e.g., storm surge, 

loss, pressure, interwinds, and the review of 
satellite imagery [25], [26]. Fundamentally the 
highest uninterrupted wind is allotted at 6-hourly 
period by the trained analyst after taking into 
account the feasible and accessible information. 
Table 1 indicate the categories of hurricane types 
with their descriptions [27]. 

 
Table 1. The types and descriptions of 

hurricanes from U.S Department of 
Commerce, National Weather Service North 

Atlantic Hurricane Tracking Chart, 2017 
 

Category (Type) Description 

MH Major Hurricane 
HU Hurricane 
TS Tropical Storm 
TD Tropical Depression 
SS Subtropical Storm 
SD Subtropical Depression 
WL Wave Low 
ES Extratropical Storm 
ATCF Automated Tropical 

Cyclone Forecast  

 
The life process of the hurricanes spheres from a 
day to preferably several weeks. In the initial 
laps, the primary circulation is frail and moderate 
to intensify and regularity which usually takes five 
(5) days for a hurricane depression to strengthen 
into a tropical cyclone. Nevertheless, 
interruptions occur regularly during the 
strengthening because of flow over land, the 
locomotion over icy water, and destructive 
meteorological surroundings situations, for 
instance, the wind shearing [28]. 

 

 
 

Fig. 1. Life cycle of a North Atlantic Hurricane (Source: Met Office, 2019) 
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2.2 Statistical Metrics 
 

A remarkable work has already been carried out 
in various stages of hurricane hazard 
management through the application of satellite 
remote sensing and spatial analysis [2], [3], [13], 
[29], [30]. Different sorts of processing methods 
such as graphical elucidation, the ground bisects, 
data extraction and change detection, and 
dataset have been unified by researchers as 
unified moderate spatial resolution satellite 
imagery methods for evaluating hurricanes 
effects and reclamation. A variety of risk 
equations such as single criterion, the multi-
criteria have been applied to evaluate the 
hurricane risks. Risk modeling tools have been 
used by many researchers to evaluate and 
assess the future effects of hurricanes under the 
climate change situations [3], [13], [31]. 
 

Bell et al. [32] carried out a research on statistical 
assessment of the OWZ tropical cyclone tracking 
scheme in ERA-Interim, i.e., (European Centre 
for Medium-Range Weather Forecasts - ECMWF 
Re-analysis), the Okubo–Weiss–Zeta (OWZ) 
tropical cyclone (TC) detection scheme, to 
identify the hurricanes which was further 
evaluated on its capability to generate accurate 
hurricane track climatology in the ERA-Interim 
artifact over the 25 year duration from 1989-2013 
[32]. The investigation focused on the hurricanes 

that attained a storm strength of (17 )ms  

contained winds from which an objective criterion 
was determined to describe hurricane tracks 
once they attained the storm strength for both the 
observed and identified hurricanes. Some of the 
hurricane tracks are removed from the analysis 
due to lack of consistency between storm tracks 
on earlier strengths of the track segments [32]. 
To perform the termination transitioning of 
hurricanes the analytical subtropical jet (STJ) is 
applied and has been found to be desirable to a 
fixed latitude limit meridian. The method 
established the track coordinate deviation that 
was within the anticipated scope, however, the 
predominant dropped behind of the Okubo–
Weiss–Zeta (OWZ-D). 
 
Hallowell et al. [33] conducted a research on 
hurricane risk management of offshore with 
turbines via a stochastic process that involved 
the intricacy of hazard strength measures, 
engineering demand parameters (EDPs), and the 
loss measures to explore the likelihood of 
destructions/ disasters. The stochastic process 
was thus adjusted and utilized to a hypothetical 
situation. Nevertheless, the research work only 

quantifies the risk of a miss of the offshore wind 
turbines to hurricane produced storms and surfs. 
 

To assess the impact and recovery of hurricanes, 
image data mining is a very crucial approach. 
Thus, it contributes to the detection and 
classification of the hurricane-impacted features, 
for example, the buildings, vegetation, highways, 
and railways for destruction valuation. Image 
data mining methodology remains very beneficial 
in the detection impassable entry paths and 
salvage supporting zones for tornado 
catastrophe retort arrangement, which is 
implemented by the use of new lattice frame [34]. 
The high-resolution imagery query features 
required are mined and retrieved from imagery 
through the use of image analysis in order to 
improve a content-based whereby the tree   

carries out inquiries within the stored images for 
an element interplanetary depiction for equating 
important attributes [35]. On the other hand, the 
IKONOS imagery [34] was used to examine the 
hurricane catastrophe evaluation and the results 
proved the ability to identify destruction and 
exploration of zones that needed an urgent 
response. 
 

The composite risk evaluation was conducted on 
the hurricane on the coastal regions of China [18] 
using spatial analysis and remote statistics 
incorporating several significant criteria. The 
outcomes showed that the investigation of extra 
related criterion through the use of the analytic 
hierarchy process offered an extra dependable 
and realistic risk evaluation information although 
not fully realized. A modern historical wind 
statistics founded on statistical archetypes for 
modeling catastrophe and hazard related by 
hurricanes known as humid or tropical cyclone 
risk model (TCRM) [36], was implemented by 
Arthur et al. [37] to examine the recovery times of 
tornado catastrophes in the zones of Australia, 
and established the significant of it in the deriving 
of the needed statistics. Program writing abilities 
plus massive barometric facts are needed for the 
archetypal. Additionally, it’s uncertain if it can be 
used elsewhere in the globe. 
 

The research by Li et al. [3], implemented the 
Gumbel and Pearson-III technique aimed at 
modeling the hurricane tornado gush hazard for 
a hundred (100 year) recovery period founded on 
thirty (30 years) tornado gush statistics in the 
global information system environ. The results 
indicate the precise modelling of hazards, 
however, the produced information had fewer 
details because of the application at the regional 
scale [3]. 
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Rana et al. [13], used the global information 
system and remote sensing stationed basic and 
inclusive hurricane surge model assimilating the 
historical storm data and digital elevation model 
(DEM). A return of 100 year period was 
considered for hurricane risk and proved the 
model to be effective in providing crucial 
information for the future hurricane risk 
management, the model was effectively applied 
by [13], [38] in torrent and flood risk modeling in 
Bangladesh but not to the whole world. 
Moreover, a study carried out by Hoque et al. 
[39], presented the direction in picking the best 
and useful datasets as well as the processing 
techniques for hurricane catastrophe 
management. 
 
Recently, various approaches, for example, 
satellite remote sensing, and spatial analysis 
have been invented to collect data to assist in 
coping with normal catastrophes by means of 
spatial analysis and satellite remote sensing. 
With many kinds of techniques and 
heterogeneous potential data, to pick the best 
and useful processing technique and data for 
hurricane catastrophe management is a big 
challenge. The risk evaluation equation [39] 
below has been suggested as the most essential, 
 
r v e m                (2) 

 
Where r denotes the risk, v is the vulnerability, e 
is the exposure, and m represents the mitigation 
capacity for providing required information for the 
deterrence of hurricane catastrophe 
management. For the effective application of 
equation (2) and making definite decisions 
several approaches have been proposed e.g., 
the strategy analytic hierarchy process (AHP) in 
hazard evaluation process [39]. However, it 
remains hard to come up with the exact number 
of criteria that should be administered to attain 
the needed information as it relies upon the 
analysis context. 
 

2.3 Past Hurricane Damages 
 
The impact of damages by tropical cyclones are 
extremely variable and relies on severe 
hurricanes, which has been predicted as a cause 
of massive damages. Nevertheless, there are 
several other factors that must be considered, 
including wind blasts, the tornado size, the speed 
of translational movement which affects the 
rainfall and fresh-water flooding, the tornado 
tides that are affected by offshore water 

deepness and coastal alignment, the astral flow, 
the terrain topographies, the local structure 
codes, and the distance from the coastlines          
[24]. 
 
In 2017 as a result of tropical storms in Sierra 
Leone West African country, there were 
mudslides that claimed over 500 lives with a 
displacement of more than 20,000 people 
including 5,000 children [40]. In August 2017 
hurricane Harvey hit Texas with high winds of up 
to 130mph (215km/h) and rainfall that affected 
power cuts and more than 200,000 customers 
were left without electricity [41]. Hurricane 
Harvey one of the deadliest hurricane in the last 
12 years slammed the Gulf coast in Texas, near 
the Texas-Louisiana border, in the early hours of 
26

th
 August causing a huge destruction 

approximated to be 150 billion dollars through 
the severe rains [42] with prevalent flooding over 
the affected regions in Texas and Louisiana. As 
a result, it has attracted extensive research 
lately. For example, Gulati et al. [43], conducted 
an investigation on the usage of semi-parametric 
techniques to estimate the maximum damages 
valuation for the Florida community tropical 
cyclone damages. The analyzed results 
demonstrated that the yearly losses and 
destructions from the Florida community tropical 
cyclone damages did not incline to heavy-tailed, 
and so, neither the popular Hill’s technique nor 
the moment’s predictor works perfectly. But, 
Pickard's predictor yielded an 84% threshold 
which provided the best fitting for the maximum 
quantiles for the damages [43]. These hurricane 
damages and their related estimate of maximum 
figures were predicted through the usage of 
advanced computer simulation models that are 
known as catastrophe (“cat”) models. Historical 
data was used in these models to analyze 
thousands of years of hurricane activity and 
applied the analyzed data alongside with the 
present coverage data and susceptibility models 
in order to predict insured damages [43]. The 
valuation of maximum damages was calculated 
through the matching empirical quantile. This is 
presented as, 

1 2,   and 
N  , which denotes a 

random section of the damages of significance 
from the damage spreading. In addition, the 
assessment of p  is basically the order 

statistic
( )k , matching the 100% experiential 

outcome. The expression k n p   can be an 

integer or not, thus, can be found by intercalating 
among two neighboring order statistics. This is 
adopted in the calculation of the statistics for the 
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binomial distribution confidence intervals for the 
estimate maximum damages [43]. 
 
In reference to the prior discussed works, the 
increase in natural catastrophes in the world 
today is positively correlated with economic 
damages that come with the disasters [44], [45], 
and the growing trend in the catastrophes is 
frightening. Therefore, it is worthy of study to 
establish efficient and robust methods to 
measure the damages caused by tropical 
cyclones. 
 

3. PROPOSED METHODOLOGY 
 
Several techniques have been applied in 
analyzing the formation and impact of hurricanes 
in the prone areas, such as statistical models, 
which are based on the analysis of storm 
behaviour using the climatology and correlate a 
storm’s position and the date to produce a 
forecast [46]. In addition, the traditional statistical 
model [47], the dynamical model [46], which 
forecasts the numerical weather prediction, and 
the weather research and forecast model [48]. 
 
Recent studies conducted by [49]–[53] 
endeavored at finding out the nature of different 
hurricanes along the Atlantic coast. Related 

studies for the Gulf coast have been relatively 
rare and even those which have largely focused 
on the impact of hurricanes like [54]–[56]. 
Motivated by the previous works, in this study we 
analyzed four parameters i.e., the latitude (Nº), 
the longitude (Wº), the wind speed, and the 
central pressure of the hurricane dataset for the 
year 2008 to 2017 that was obtained from [21] to 
understand the hurricane occurrence and 

damage by looking at the 
2R and the significant 

F of each hurricane. The research focused on 
the regression of the four parameters as the 
hurricane strike the ground and advanced within. 
 
Furthermore, we focused on the statistical 
analysis and exploration of hurricane occurrence 
and damage in the tropical/coastlines environs. 
Fig. 2 illustrates the proposed framework of our 
work. 
 
Finding the coefficients of the hurricane 
formation from the HURDAT2 there are two 
metrics of determination i.e., the simple linear 
regression model that only considers a simple 
linear regression mean function of a single 
variable as formulated [22], 
 

                              (3) 

 
 

Fig. 2. Proposed statistical analysis model for HURDAT2 dataset 

 1 0 1 1iE Y X x x   
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Now suppose we have a second and third 
variables 

2 , 
3 , we apply them  to predict the 

response. By adding 
2 , and 

3  to the problem, 

we will get a mean function that depends on both 
the value of 

1  and the value of 
2 , and 

3 , 

 

 1 2 2 3 3 0 1 1 2 2 3 3, ,iE Y x x x x x x              (4) 

 

The main objective of adding the 
2 , and 

3  is 

to explain the part of Y  that has not already 
been explained by 

1 , and 
2 . 

 
Equation (3) can also be represented as, 
 

0 1 1 2 2 3 3ŷ x x x                  (5) 

 
Whereby the beta coefficients are determined by, 
 

0 1
ˆ ˆy x                                                 (6) 

 

Y  is the mean of longitude and   is the mean of 
latitude degrees respectively, gives the intercept 
value from the analysis of variance (ANOVA) 

table of the analyzed scientific data and 0̂  is 

the intercept. 
 

1
ˆ 1

SXY
Variable

SXX
                           (7) 

 

X  represents the latitude, Y  represents the 
longitude, and SXY  is the summation of latitude 

and longitude degrees and SXX  is the 

summation of latitude. 
 

Calculation of the Standard error ( se ) of the 

provided data can be expressed mathematically 
as, 
 

 
2

2

0

1

1

( )  

x
se

n SXX

se ANOVA value

 



 
  

 
 



          (8) 

 

  2

1

1

1

( )  

se
SXX

se ANOVA value

 



 
  

 



          (9) 

 

Where se  represents the standard error of the 

analyzed data, 2  is the variance that is 

determined by the residual of sum squares ( RSS
) divided by the number of observations minus 3 

(the number of parameters in this case its three 
(3) i.e., latitude (Lat), longitude (Lon), and central 
pressure (CP)), 
 

2

2

RSS

n
 


                                            (10) 

 
2R  is the coefficient value that measures the 

goodness of fit of the model with the regression 
line that disclose the variability of the real data 

being analyzed. Hence, 
2R  is calculated as by 

the functional expression [22], 
 

2 Regression

Total

SS
R

SS
                                   (11) 

 

Where RegressionSS  represents the sum of squares 

of regression error and 
TotalSS  denotes the sum 

squared of total error. 
 
The multiple linear regression was performed to 
test the significance of regression using the 
analysis of variance (ANOVA). Moreover, we 
used the variance of the observed data to define 
if our model can be applied to the observed data. 
Table 2 features an example of the sampled 
hurricane to demonstrate the various coefficients 
extracted for our study. 
 
Fig. 3 illustrates the fitted regression line passing 
on most of the observed points, thus revealing 
the variability of the observed data. 
 

4. EXPERIMENTS RESULTS & 
DISCUSSION 

 

This section focus on experimental results with a 
significant p<0.5 on the ten years (i.e., 2008 -
2017) hurricane dataset, which is 6-hourly 
hurricanes. Four parameters, namely the latitude 
(Nº), longitude (Wº), the wind speed (m/s), and 
the central pressure (mb) were used to 

determine the  r-squared, p-value, and the 
significant F. The obtained results are listed in 

different tables illustrating the  with high 
values nearing 100%, the p-values with less than 
0.05, the significant F, and the graphical 
representation of the r-squared of different years 
(i.e., 2008-2017). 
 

a) Hurricanes statistical analysis of the year-
2017 

2R

2R
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Table 2. Model summary 
 

Model R R Square Adjusted R 
Square 

Std. Error of 
the Estimate 

Change Statistics 

R Square 
Change 

F Change df1 df2 Sig. F 
Change 

1 .997 .993 .992 1.495 .993 1809.549 3 38 .000 
a. Predictors: (Constant), The wind speed, West-degrees, North-degrees; b. Dependent Variable: The central pressure 

 

 
 

Fig. 3. A plot of the sample MICHAEL hurricane data for the year 2012 
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Table 3. Hurricane for the 2017, the highest r-squared results is indicated in bold 
 

ATCF 
Cyclone 
number 

YEAR - 2017 

 P-value of coefficients  

Name  MSE RSS β0 β1X1 β2X2 β3X3 Record (n) 

AL032017 CINDY 0.8824 1.5689 295.5674 1.12E-23 0.007211165 0.004923021 2.96986E-06 20 
AL112017 IRMA 0.9768 4.8291 60918.1176 4.98356E-81 4.93049E-05 8.05828E-13 2.59443E-22 66 
AL152017 MARIA 0.9383 6.6686 43297.6951 2.65079E-87 0.001391347 1.38436E-06 5.42184E-32 68 
AL162017 NATE 0.9128 2.5795 1949.6652 1.18154E-42 0.000603269 0.000701845 2.63246E-12 32 

 
Table 4. Hurricanes for the 2016, the highest r-squared results is indicated in bold 

 

2R

ATCF 
Cyclone 
number 

YEAR - 2016 

 P-value of coefficients  

Name  MSE RSS β0 β1X1 β2X2 β3X3 Record (n) 

AL012016 ALEX 0.5651 4.3232 922.8656 9.76296E-56 0.04405635 0.022166361 0.000224315 42 
AL022016 BONNIE 0.8754 1.3594 675.4522 1.17665E-90 7.95354E-05 6.05151E-17 9.6356E-07 56 
AL062016 FIONA 0.955 0.7949 362.2932 2.01741E-50 0.0001465 7.05933E-05 2.72197E-05 31 
AL092016 HERMINE 0.8772 2.741 2308.5493 1.30465E-44 3.98585E-06 1.16868E-07 5.49043E-19 47 
AL122016 KARL 0.9451 1.8046 2801.3248 1.1124E-110 1.59373E-09 0.00975366 5.30245E-11 54 
AL132016 LISA 0.8802 1.5006 430.1506 7.26889E-43 4.67953E-06 0.001965867 5.28924E-10 30 
AL152016 NICOLE 0.9652 3.0746 15471.6995 1.16474E-64 0.01175076 1.76329E-06 5.27925E-35 63 

2R
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From Table 3, it can be observed that IRMA 
hurricane significantly had a higher impact (98%) 
and much damage since, its p-value was found 
to be less than 0.05 (p<0.05) as demonstrated. 
Although CINDY hurricane showed significance 
as confirmed from its p-value in Table 3, it 
registered the lowest impact, that is, 88%. 
 

b) Hurricanes statistical analysis of the year-
2016 

 
NICOLE hurricane significantly had a higher 
impact (97%) and much damage since, its p-
value was found to be less than 0.05 (p<0.05) as 
demonstrated in Table 4. Though ALEX 
hurricane showed significance as confirmed from 
its p-value, it registered the lowest impact of 
57%. 
 

c) Hurricanes statistical analysis of the year-
2015 

 
We can see from the results in Table 5 that 
DANNY hurricane significantly has a higher 
impact (98%) and much damage since, its p-
value was found to be less than 0.05 (p<0.05). 
Although NINE hurricane showed to be of 
significance as confirmed from its p-value in 
Table 5, it registered the lowest impact i.e., 92%. 
 

d) Hurricanes statistical analysis of the year-
2014 

 
From Table 6, we can see that GONZALO 
hurricane significantly had a higher impact (98%) 
and much damage. This is evident from its p-
value that was found to be less than 0.05 
(p<0.05). Although BERTHA hurricane showed 
significance as confirmed from its p-value in 
Table 6, it registered the lowest impact i.e., 81%. 
 

e) Hurricanes statistical analysis of the year-
2013 

 
INGRID hurricane significantly had a higher 
impact (98%) and much damage since, its p-
value was found to be less than 0.05 (p<0.05) as 
demonstrated in Table 7. Although ANDREA 
hurricane showed significance as confirmed from 
its p-value in Table 7, it registered the lowest 
impact, that is, 66%. 
 

f) Hurricanes statistical analysis of the 
year-2012 

 
From Table 8, it can be noticed that MICHAEL 
hurricane significantly had a higher impact (99%) 

and much damage as indicated and verified by 
its p-value that was found to be less than 0.05 
(p<0.05). Even though BERYL hurricane showed 
significance as confirmed from its p-value in 
Table 8, it registered the lowest impact of              
84%. 
 

g) Hurricanes statistical analysis of the 
year-2011 

 
From Table 9, we can see that FRANKLIN 
hurricane significantly had a higher impact (99%) 
and much damage. This is confirmed through its 
p-value that was found to be less than 0.05 
(p<0.05). Though PHILIPPE hurricane showed 
significance as confirmed from its p-value in 
Table 9, still, it recorded the lowest impact, that 
is, 89%. 
 

h) Hurricanes statistical analysis of the 
year-2010 

 
LISA hurricane significantly had a higher impact 
(97%) and much damage since, its p-value was 
found to be less than 0.05 (p<0.05) as 
demonstrated in Table 10. BONNIE hurricane 
showed significance as confirmed from its p-
value in Table 10, but it registered the lowest 
impact i.e., 88%. 
 

i) Hurricanes statistical analysis of the 
year-2009 

 
From the results in Table 11, EIGHT hurricane 
significantly had a higher impact (99%) and much 
damage. This is validated from its p-value, which 
was found to be less than 0.05 (p<0.05). Looking 
at the p-value of DANNY hurricane in Table 11, 
we can confirm some significance, however, it 
registered the lowest impact, that is, 87%. 
 

j) Hurricanes statistical analysis of the 
year-2008 

 
OMAR hurricane significantly had a higher 
impact, i.e., 98% with much damage. This can be 
seen from its p-value of <0.05, as demonstrated 
in Table 12. Although hurricane LAURA showed 
some significance as confirmed by its p-value in 
Table 12, it registered the lowest impact of 66%. 
 
Fig. 4 defines the combination of all hurricanes 
for the ten years, i.e., 2008-2017, which were 
analyzed and the ones that had a significant 

 and their corresponding  

values. 

0.05p value 
2R
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Table 5. Hurricanes for the 2015, the highest r-squared results is indicated in bold 
 

ATCF 
Cyclone 
number 

YEAR - 2015 

 P-value of coefficients  

Name 2R  MSE RSS β0 β1X1 β2X2 β3X3 Record (n) 

AL042015 DANNY 0.976 2.3375 6007.4463 2.81137E-51 0.030552798 0.019608334 7.75633E-21 31 
AL072015 GRACE 0.9729 0.4647 100.7226 1.77666E-23 0.00297909 6.93618E-05 4.3149E-11 17 
AL092015 NINE 0.9194 0.5324 48.4856 1.21688E-25 5.78856E-05 0.000281711 4.56494E-05 19 
AL102015 IDA 0.9695 0.4392 288.2660 6.8778E-120 2.55977E-05 2.52486E-10 5.36298E-18 31 

 
Table 6. Hurricanes for the 2014, the highest r-squared results is indicated in bold 

 

ATCF 
Cyclone 
number 

YEAR - 2014 

 P-value of coefficients  

Name 2R  MSE RSS β0 β1X1 β2X2 β3X3 Record (n) 

AL012014 ARTHUR 0.9609 2.8961 8870.6616 2.9428E-31 1.22304E-05 2.90702E-09 6.72372E-31 47 
AL032014 BERTHA 0.8075 2.1554 838.1143 2.46794E-88 9.46934E-09 3.96072E-05 8.06127E-09 47 
AL082014 GONZALO 0.9784 3.3368 17684.9794 9.36982E-45 9.9464E-11 6.23337E-06 8.41513E-14 39 
AL092014 HANNA 0.8932 1.0691 315.3064 5.46249E-55 4.11769E-05 0.001704968 1.42416E-15 37 

 
Table 7. Hurricanes for the 2013, the highest r-squared results is indicated in bold 

 

ATCF 
Cyclone 
number 

YEAR - 2013 

 P-value of coefficients  

Name 2R  MSE RSS β0 β1X1 β2X2 β3X3 Record (n) 

AL012013 ANDREA 0.6649 2.5968 133.7793 3.46736E-07 0.009131152 0.010556685 0.021563904 14 
AL042013 DORIAN 0.8658 1.4595 645.8031 1.69536E-96 0.004993522 2.29358E-07 8.9109E-10 51 
AL092013 HUMBERTO 0.9616 1.865 3661.1333 9.35654E-86 7.56483E-09 1.39551E-06 6.54185E-31 46 
AL102013 INGRID 0.9799 1.2151 1296.3761 6.75653E-21 0.002691928 0.005490583 6.56614E-16 22 
AL112013 JERRY 0.7622 0.8664 69.7488 5.39281E-39 0.002223675 0.002489598 7.77989E-09 33 
AL142013 MELISSA 0.9768 1.3848 1774.3116 4.30527E-38 8.21259E-10 4.65987E-08 4.09607E-10 26 
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Table 8. Hurricanes for the 2012, the highest r-squared results is indicated in bold 
 

ATCF 
Cyclone 
number 

YEAR - 2012 

 P-value of coefficients  

Name 2R  MSE RSS β0 β1X1 β2X2 β3X3 Record (n) 

AL022012 BERYL 0.8366 1.7553 457.3789 1.61455E-35 0.000200143 0.003773548 6.37755E-13 33 
AL042012 DEBBY 0.9009 1.2844 209.8483 1.20238E-13 1.36544E-06 0.000526152 0.032650631 18 
AL052012 ERNESTO 0.9372 2.6978 3800.0289 2.0906E-57 2.50378E-05 0.002100616 7.38266E-08 39 
AL082012 GORDON 0.9908 1.4522 5017.9535 1.60429E-31 0.02103372 1.51286E-06 8.00572E-23 26 
AL092012 ISAAC 0.939 3.3392 8066.2762 4.38785E-82 8.90507E-09 0.002358 8.78446E-23 51 
AL132012 MICHAEL 0.993 1.4952 12136.1198 1.72804E-62 4.43053E-09 0.001075176 9.41162E-42 42 
AL172012 RAFAEL 0.9815 1.8166 9094.5147 1.8695E-102 1.82313E-33 3.05788E-11 8.40555E-24 56 
AL182012 SANDY 0.946 4.7587 16272.7438 3.01057E-25 1.32387E-11 4.38132E-09 1.59375E-14 45 

 
Table 9. Hurricanes for the 2011, the highest r-squared results is indicated in bold 

 

ATCF 
Cyclone 
number 

YEAR - 2011 

 P-value of coefficients  

Name 2R  MSE RSS β0 β1X1 β2X2 β3X3 Record (n) 

AL032011 CINDY 0.9833 0.7605 307.1025 1.08859E-11 0.018490984 0.048753969 4.94781E-08 13 
AL062011 FRANKLIN 0.9922 0.3878 210.0789 5.29719E-23 6.33998E-06 5.6228E-08 2.48838E-06 15 
AL092011 IRENE 0.9581 4.1013 15008.7989 5.64971E-51 3.64128E-05 7.47308E-14 9.55642E-06 43 
AL142011 MARIA 0.9401 1.9391 2242.7284 1.20755E-70 8.50142E-09 1.84944E-09 5.38784E-07 42 
AL152011 NATE 0.9631 0.9096 410.2796 9.27924E-15 0.00844571 0.000674963 5.03041E-05 23 
AL172011 PHILIPPE 0.8909 3.1677 5000.1033 1.7113E-120 2.91113E-07 8.47715E-05 6.51051E-17 65 
AL192011 SEAN 0.9041 2.5572 1478.9087 7.91478E-18 9.13814E-07 3.70117E-05 0.03753162 28 
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Table 10. Hurricanes for the 2010, the highest r-squared results is indicated in bold 
 

ATCF 
Cyclone 
number 

YEAR - 2010 

 P-value of coefficients  

Name 2R  MSE RSS β0 β1X1 β2X2 β3X3 Record (n) 

AL032010 BONNIE 0.8816 1.1961 149.0811 2.21341E-16 0.040282778 0.022612414 0.020847455 18 
AL062010 DANIELLE 0.9559 3.825 14909.546 1.90112E-83 8.48921E-13 6.86784E-05 6.65284E-13 51 
AL112010 IGOR 0.9665 4.9746 40723.6451 1.0352E-100 1.21234E-09 7.35777E-13 1.61662E-28 61 
AL142010 LISA 0.9669 1.5117 2267.6683 1.39824E-48 1.50543E-11 0.000444507 2.28542E-19 38 

 
Table 11. Hurricanes for the 2009, the highest r-squared results is indicated in bold 

 

ATCF 
Cyclone 
number 

YEAR - 2009 

 P-value of coefficients  

Name 2R  MSE RSS β0 β1X1 β2X2 β3X3 Record (n) 

AL012009 ONE 0.9358 0.4303 29.6963 1.26152E-19 1.78081E-05 0.001301862 0.00740087 15 
AL032009 BILL 0.9773 2.8118 14312.9196 2.5172E-83 4.38424E-13 0.000211778 9.73978E-29 46 
AL052009 DANNY 0.8684 0.5289 14.7625009 8.62002E-12 0.002889166 0.028150763 0.000791701 12 
AL082009 EIGHT 0.9907 0.1071 3.6799 4.56492E-09 0.027585414 0.041014167 0.001662216 7 

 
Table 12. Hurricanes for the 2008, the highest r-squared results is indicated in bold 

 

ATCF 
Cyclone 
number 

YEAR - 2008 

 P-value of coefficients  

Name 2R  MSE RSS β0 β1X1 β2X2 β3X3 Record (n) 

AL052008 EDOUARD 0.9399 1.4948 349.3686 1.05134E-15 0.033912838 0.017093727 0.001305343 14 
AL082008 HANNA 0.8547 3.0309 2430.5919 1.57822E-69 7.09286E-05 0.000799606 8.36839E-11 49 
AL102008 JOSEPHINE 0.9677 0.9646 807.5615 1.16599E-53 0.017685271 0.031838121 5.43484E-18 33 
AL122008 LAURA 0.6626 3.2525 623.1169 4.20118E-43 3.12442E-06 1.75963E-06 7.24163E-05 34 
AL152008 OMAR 0.9801 2.242 6934.4738 3.07446E-23 0.000120815 3.02433E-05 8.5268E-22 32 
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Fig. 4. Combined Results for all Tables 3 through Table 12 for Hurricane occurrence in 2008-
2017 

 
From Fig. 4, we can see that only seven (7) 
months, i.e., May to November experienced 
various hurricanes, whereby some years had the 
same fierce and violent tempest extending to the 
second month. For example, hurricane Maria of 
2017 was experienced in September and 
October, respectively. 
 

k) The best 
2R  for the 10 years (2008-2017) 

data that was analyzed on four (4) 
parameters 

 
The determination and choosing of the highest 

 value was based on the simple graphical 
method and the behavior analysis of the extreme 
value in compassion with other hurricanes of 
other years. From Table 13, we notice that 
hurricane Michael had the most and much 
damage in the year 2012 with a percentage of 
99% and an MSE of 1.4952 of all the hurricanes 
that were analyzed from the year 2008 to 2017 
(10 years), thus clearly discloses the massive 
damages of tropical storms that were precisely 
predicted in the year 2012, applying Equation 
(12) [22] unto the Henri hurricane that took place 
in year 2012, 

 

          (12) 

 

We replace the coefficients in the equation with 
the values from the analysis of variance table in 
order the determine the maximum value of the 

, 
 

                     (13) 

 
The study also considered single variables to find 
out the effect of our model using equation (3). 
Fig. 5 is a result of the different parameters that 
were tested to prove our model’s efficiency and 
effectiveness when applied on a single 
parameter and multiple parameters separately. 
 
The results on three (3) parameters (i.e., latitude, 
longitude, wind speed),  
 

         (14) 

 
Taking equation (5) into account, Fig. 6 
represents the results of the four (4) parameters 
(i.e., latitude, longitude, wind speed, and 
pressure). 
 

Table 14 presents the results obtained on 
different parameters that were tested to explore 
the response and impact of the variables on our 
proposed model. 

 

2R

2 Regression

Total

SS
R

SS


2R

2 12136.1198
0.9930%

12221.0714
R  

0 1 1 2 2y x x    
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Table 13. The highest R-Squared for the years-2008-2017, the highest r-squared results is 
indicated in bold 

 

Year Name 2R  MSE 

2008 OMAR 0.9801 2.242 
2009 EIGHT 0.9907 0.1071 
2010 LISA 0.9669 1.5117 
2011 FRANKLIN 0.9922 0.3878 
2012 MICHAEL 0.9930 1.4952 
2013 INGRID 0.9799 1.2151 
2014 GONZALO 0.9784 3.3368 
2015 DANNY 0.9760 2.3375 
2016 NICOLE 0.9652 3.0746 
2017 IRMA 0.9768 4.8291 

 

 
 

Fig. 5. Chart a) two parameters that were tested that is Latitude & Longitude against pressure, 
b) the wind speed against pressure, c) Latitude against pressure, and d) Longitude against 

pressure 
 

 
 

Fig. 6. Chart a) Three parameters (Lat, Lon, wind speed) were tested, and b) the chart on four 
parameters (Lat, Lon, wind speed & pressure) 
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Table 14. Results obtained on different parameters 
 

Parameters 2R  MSE Hurricane name Year 

Lat, Lon & Pressure 0.9715 1.6243 Fay 2014 
Wind Speed & Pressure 0.9900 1.6051 Fred 2009 
Lat & Pressure 0.9039 1.9735 Colin 2016 
Lon & Pressure 0.9775 0.9542 Colin 2016 
Lat, Lon & Wind Speed 0.9459 1.9837 Henri 2015 
Lat, Lon, Wind speed & Pressure 0.9930 1.4952 Michael 2012 

 
From Table 14, we can clearly ascertain that the 
more the number of parameters combined and 
used as predictors the higher the response 
achieved. 

 
The four parameters considered in our model, 
i.e., the latitude (Nº), longitude (Wº), the wind 
speed (m/s), and the central pressure (mb) for 
the analysis and prediction of hurricane 
occurrence and damage on the tropical environs, 
it reveals strong relationships in the geographical 
location for most ocean basins around the globe. 
In our study, first, we calculated the strength of 
damage and prediction of hurricanes to obtain 

the 
2R  of each cyclone for a period of 10 year. 

Then, we chose the highest 
2R  with almost 

100%. 
 
The results of our model reveals that hurricane 
Michael (2012) periodically broke off the outside 
of the eye and propagated azimuthally (around 
the tropical cyclone) at 99.3% with the mean of 
latitude 31.1Nº, longitude 42.7Wº, the wind 
speed 59.5m/s and the central pressure 991.8mb 

that was used to measure the location. Thus, 
obtained by the statistical expression [22], 
 

1 2 3 ...

i

i n

x
x

n

x x x x x



    





        (15) 

 

Where   is the number of observations in this 

case it was 42 and 1 2 3, , ... nx x x x represents the 

number of each record of latitude (Nº), longitude 
(Wº), wind speed (m/s), and the central pressure 
(mb) that was captured and recorded in an 
interval of 6hours. 
 

Considering Tables 13 and 14, it shows that 
hurricane Michael had the highest R-squared for 
the ten years that was analyzed and the trend of 
the occurrence of the identified hurricanes is 
shown in Fig. 7. 
 

From Fig. 7, we can clearly see that an extreme 
tropical cyclone was expressed in the year 2012, 
but the question remains Do We Expect The 
Worst in the coming years? 

 

 
 

Fig. 7. R-Squared analysis for the years-2008-2017 
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5. CONCLUSION 
 

The 
2R  of the analyzed hurricanes for the ten 

years (2008-2017) showed a good agreement 
between the analyzed and the best observed 
tracks from National Hurricane Center (NHC). 
Our model for a statistical analysis and 
exploration of Atlantic hurricanes occurrence and 
damage in the tropical environs proved to have 
the ability to predict the best results that shows 
the hurricane of massive damage, thus it can be 
effectively applied to establish the impact of 
hurricanes regardless of the region of hurricane 
occurrences. Our model achieved an accuracy 

2R  of 99.3% and mean standard error (MSE) of 
1.4952 of the analyzed hurricanes. Future study 
is required to determine the best practices of 
minimizing the ambiguity of life-threatening 
coastal disaster predictions due to climate 
change, with the natural erraticism or variability 
of surf climate. 
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