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Abstract

The global clustering coefficient Cc(G) of a connected graph G of order at least 3 is a metric
that somehow measures how close G to being a complete graph. Its value ranges from 0 to 1. In
this paper, we will show that for the tensor product Km⊗Km and cartesian product Km �Km,
Cc(Km⊗Km) and Cc(Km �Km) approach to 1 and 1/2, respectively, as m → ∞.
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1 Introduction

Let G be a simple undirected graph with vertex set V (G) and edge set E(G). Let NG(v) = {u ∈
V (G) : uv ∈ E(G)} be the open neighborhood of a vertex v ∈ V (G), degG v the degree of v, and
tG(v) = |E(⟨NG(v)⟩)| the number of triangles in G which are incident to v. The local clustering
coefficient of vertex v in G, denoted by Ccv(G), is a measure that evaluates the local triangle
density of G at the level of vertex v. This number Ccv(G) can be defined as
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Ccv(G) =

 0, if degG v ≤ 1,
tG(v)

(degG v
2 )

, if degG v ≥ 2.
(1.1)

This formula is a unifying version between its treatment in [1] and [2]. On the other hand, the
g lobal clustering coefficient Cc(G) of a graph G with order n is a measure that indicates the overall
clustering of G, obtained by averaging the local clustering coefficients of all the vertices in G. That
is, Cc(G) = 0 if degG v ≤ 1 for each v ∈ V (G); otherwise,

Cc(G) =
1

n

∑
v∈V (G)
degG v≥2

Ccv(G) =
1

n

∑
v∈V (G)
degG v≥2

2tG(v)

degG v(degG v − 1)
. (1.2)

This measure was introduced in the field of social network analysis by Duncan J. Watts and Steven
Strogatz [3] in 1998, where one of its goals was to determine whether a graph was a ”small-world
network”. Since then, several studies from various perspectives have also emerged. In [4], the
authors gave some expressions and bounds for the global clustering coefficient of the tensor product
of graphs, although a related study on finding the number of distinct triangles in the tensor product
G ⊗H was done in [5], while a triangle-counting algorithm for large networks appeared in [6].

In this paper, we investigate the global clustering coefficients of the tensor and cartesian product of
complete graphs using some properties that the tensor and cartesian product hold and some inherent
characteristics possessed by the complete graphs Km such as in the observation given below. The
scope of this work falls within the general motivation of investigating graphs under some binary
operations and expressing some of their parameterized values in terms of some relevant invariants
of the constituent graphs such as the ones done in [7, 8, 9, 10]. Our final goal in this study is to
prove that for the tensor product Km⊗Km and cartesian product Km � Km, Cc(Km ⊗Km) and
Cc(Km�Km) approach to 1 and 1/2, respectively, as m → ∞. For basic graph theory terminologies
not specifically described nor defined in this paper, please refer to either [11] or [12].

Lemma 1.1 For the complete graph Km,

Cc(Km) =

{
1 if m ≥ 3,

0 if m = 1, 2.

Proof : This is immediate from Equation (1.2). �

2 Tensor Product of Complete Graphs

The tensor product G⊗H of two graphs G and H is the graph with vertex set V (G⊗H) = V (G)×
V (H) and edge set E(G⊗H) satisfying the following adjacency condition: (u, v)(u′, v′) ∈ E(G⊗H)
if and only if uu′ ∈ E(G) and vv′ ∈ E(H). A regular graph is a graph that has uniform degree
in its vertices. If G is a regular graph with degree d in all its vertices, then we call G a d-regular
graph. In [4], Damalerio and Eballe gave a formula for the global clustering coefficient of the tensor
product of regular graphs in terms of the global clustering coefficient of each factor.

63



Damalerio and Eballe; ARJOM, 18(6): 62-69, 2022; Article no.ARJOM.87167

..

K3 :

..

a

..

b

..

c

.

K4 :

..

a′

..

b′

..
c′

..
d′

.

K3 ⊗K4 :

..
(a,a′)

..

(a,b′)

..

(a,c′)

..

(a,d′)

..
(b,a′)

..

(b,b′)

..

(b,c′)

..

(b,d′)

..
(c,a′)

..

(c,b′)

..

(c,c′)

..

(c,d′)

Fig. 1. The complete graphs K3, K4, and their tensor product K3 ⊗K4

If G and H are regular graphs with regularities dG ≥ 2 and dH ≥ 2, respectively, then Theorem 3.1
in [4] asserts that

Cc(G⊗H) = f · Cc(G) · Cc(H), (2.1)

where f = (dG − 1)(dH − 1)/(dG · dH − 1).

Theorem 2.1 For the tensor product Km ⊗Kn, where m,n ≥ 3,

Cc(Km ⊗Kn) =
mn− 2m− 2n+ 4

mn−m− n
.

Proof : Note that Km and Kn are regular graphs with regularities m − 1 and n − 1, respectively.
Using Lemma 1.1 and Equation (2.1), we have

Cc(Km ⊗Kn) =
(m− 2)(n− 2)

(m− 1)(n− 1)− 1
· Cc(Km) · Cc(Kn)

=
mn− 2m− 2n+ 4

mn−m− n
· 1 · 1. �

In the next result, we give an asymptotic value to Cc(Km ⊗Kn), where n ≥ 3 is held constant and
m → ∞.

Corollary 2.2 If n ≥ 3 is considered constant, then Cc(Km ⊗Kn) → n−2
n−1

as m → ∞.

Proof : Using Theorem 2.1, we have

lim
m→∞

Cc(Km ⊗Kn) = lim
m→∞

n− 2− 2n
m

+ 4
m

n− 1− n
m

=
n− 2

n− 1
. �

Corollary 2.3 For the tensor product Km ⊗Km, Cc(Km ⊗Km) → 1 as m → ∞.

Proof : Using Theorem 2.1, we have

lim
m→∞

Cc(Km ⊗Km) = lim
m→∞

m2 − 4m+ 4

m2 − 2m
= lim

m→∞

1− 4
m

+ 4
m2

1− 2
m

= 1. �

Actually, the values of Cc(Km ⊗Km) = m2−4m+4
m2−2m

can be shown to be strictly increasing. The next
result gives an asymptotic value to Cc(Km ⊗Kn), wherein both orders of the complete graphs, m
and n, approach positive infinity.
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Corollary 2.4 For tensor product Km ⊗Kn, Cc(Km ⊗Kn) → 1 as both m, n → ∞.

Proof : Using Theorem 2.1, we have

lim
m,n→∞

Cc(Km ⊗Kn) = lim
m,n→∞

mn− 2m− 2n+ 4

mn−m− n
= lim

m,n→∞

1− 2
n
− 2

m
+ 4

mn

1− 1
n
− 1

m

= 1. �

3 Cartesian Product of Complete Graphs

Recall that the cartesian product G � H of two graphs G and H is the graph with vertex set
V (G�H) = V (G)×V (H) and edge-set E(G�H) satisfying the following conditions: (u, v)(u′, v′) ∈
E(G�H) if and only if either uu′ ∈ E(G) and v = v′, or u = u′ and vv′ ∈ E(H).
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Fig. 2. The complete graphs K3, K4, and their cartesian product K3 �K4

Lemma 3.1 Let G and H be graphs with orders n1 and n2, respectively, and sizes m1 and m2,
respectively. If u ∈ V (G) and v ∈ V (H), then the following properties hold.

1. degG�H(u, v) = degG u+ degH v,

2. |E(G�H)| = n1m2 + n2m1,

3. tG�H(u, v) = tG(u) + tH(v).

Proof : The proofs of (1) and (2) above follow directly from the definition of the cartesian product
of graphs. As for (3), let (u, v) ∈ V (G � H) such that (u′, v′)(u′′, v′′) ∈ E(⟨NG�H(u, v)⟩). Then
vertices (u, v), (u′, v′), (u′′, v′′) ∈ V (G�H) are pairwise adjacent in G�H.

Case 1: Suppose that uu′ ∈ E(G). This means that v = v′ is a must. Since (u, v) and (u′′, v′′) are
adjacent in G�H, we must have either u = u′′ and vv′′ ∈ E(H), or uu′′ ∈ E(G) and v = v′′.
But the option u = u′′ and vv′′ ∈ E(H), together with the observation that (u′, v) = (u′, v′)
is adjacent to (u′′, v′′) = (u, v′′) in G � H, leads to u′ = u, which is imposible since we
already have uu′ ∈ E(G). As a consequence, we only have uu′′ ∈ E(G) and v = v′′. Since
v = v′, we now have v = v′ = v′′ and, hence, u′u′′ ∈ E(G), so that ⟨{u, u′, u′′}⟩ is a triangle
incident with vertex u in G. Thus, in this case, a particular triangle in G�H incident with
(u, v) ∈ V (G�H) clearly shows a unique triangle in G incident with u ∈ V (G).

Case 2: In this case we have uu′ /∈ E(G) and hence we have u = u′ and vv′ ∈ E(H). Since
G�H ∼= H �G, we can apply the argument used in Case 1 above to a starting premise that
vv′ ∈ E(H), producing a similar conclusion that in this case, a particular triangle in G�H
incident with (u, v) ∈ V (G�H) would show a unique triangle in H incident with v ∈ V (H).
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The two cases together imply that every triangle in G�H incident with the vertex (u, v) ∈ V (G�H)
is attributable either to a unique triangle in G incident with u ∈ V (G) or to a unique triangle in H
incident with v ∈ V (H).

Conversely, every triangle in G(or in H) incident with u ∈ V (G) (or with v ∈ V (H)) produces a
corresponding unique triangle in G�H incident with (u, y) for every y ∈ V (H) (or with (x, v) for
every x ∈ V (G)). Finally, we can now conclude that tG�H(u, v) = tG(u) + tH(v). �

Theorem 3.2 If u ∈ V (G) and v ∈ V (H) such that degG u ≥ 2 and degH v ≥ 2, then the local
clustering coefficient of (u, v) in G�H is given by the formula

Cc(u,v)(G�H) = p(u, v) · Ccu(G) + q(u, v) · Ccv(H),

where p(u, v) = (degG u)(degG u − 1)/[(degG u + degH v)(degG u + degH v − 1)] and q(u, v) =
(degH v)(degH v − 1)/[(degG u+ degH v)(degG u+ degH v − 1)].

Proof : Using Equation (1.1) and Lemma 3.1(3), we have

Cc(u,v)(G�H) =
tG�H(u, v)(
degG�H (u,v)

2

) =
tG(u) + tH(v)(
degG u+degH v

2

)
=

Ccu(G)
(
degG u

2

)
+ Ccv(H)

(
degH v

2

)(
degG u+degH v

2

)
=

Ccu(G) degG u(degG u− 1) + Ccv(H) degH v(degH v − 1)

(degG u+ degH v)(degG u+ degH v − 1)

=
Ccu(G) degG u(degG u− 1)

(degG u+ degH v)(degG u+ degH v − 1)
+

Ccv(H) degH v(degH v − 1)

(degG u+ degH v)(degG u+ degH v − 1)
,

and the claimed formula follows. �

The next result, which is for Cc(G�H), is a consequence of Theorem 3.2.

Corollary 3.3 Let G and H be graphs of orders n1 and n2, respectively. Suppose δ(G) ≥ 2 and
δ(H) ≥ 2. Then the global clustering coefficient of G�H is given by the expression

Cc(GvH) =
1

n1n2

∑
u∈V (G)

∑
v∈V (H)

p(u, v) · Ccu(G) + q(u, v) · Ccv(H),

where p(u, v) = (degG u)(degG u − 1)/[(degG u + degH v)(degG u + degH v − 1)] and q(u, v) =
(degH v)(degH v − 1)/[(degG u+ degH v)(degG u+ degH v − 1)].

Proof : Using Equation (1.2) and Theorem 3.2, we obtain

Cc(G�H) =
1

n1n2

∑
(u,v)∈V (G�H)

Cc(u,v)(G�H)

=
1

n1n2

∑
u∈V (G)

∑
v∈V (H)

(
Ccu(G)(degG u)(degG u− 1)

(degG u+ degH v)(degG u+ degH v − 1)

+
Ccv(H)(degH v)(degH v − 1)

(degG u+ degH v)(degG u+ degH v − 1)

)
.

The claimed formula follows. �
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Theorem 3.4 Let G and H be graphs with orders n1 and n2, respectively. If G and H are regular
graphs with regularities dG ≥ 2 and dH ≥ 2, respectively, then

Cc(G�H) = p · Cc(G) + q · Cc(H),

where p = dG(dG − 1)/[(dG + dH)(dG + dH − 1)] and q = dH(dH − 1)/[(dG + dH)(dG + dH − 1)].

Proof : Using Equation (1.2), Corollary 3.3, and the fact that G � H is also a regular graph with
regularity dG�H = dG + dH from Lemma 3.1(1), we have

Cc(G�H) =
1

n1n2

∑
u∈V (G)

∑
v∈V (H)

(
Ccu(G)dG(dG − 1)

(dG + dH)(dG + dH − 1)
+

Ccv(H)dH(dH − 1)

(dG + dH)(dG + dH − 1)

)

=
1

n1n2

((
n2dG(dG − 1)

(dG + dH)(dG + dH − 1)

∑
u∈V (G)

Ccu(G)

)

+

(
n1dH(dH − 1)

(dG + dH)(dG + dH − 1)

∑
v∈V (H)

Ccv(H)

))

=
dG(dG − 1)

(dG + dH)(dG + dH − 1)
· Cc(G) +

dH(dH − 1)

(dG + dH)(dG + dH − 1)
· Cc(H),

and the claimed formula holds. �

Theorem 3.5 For the cartesian product Km �Kn, where m, n ≥ 3,

Cc(Km �Kn) =
m2 − 3m+ n2 − 3n+ 4

m2 − 5m+ 2mn+ n2 − 5n+ 6
.

Proof : Given that Km is (m − 1)-regular, Kn is (n − 1)-regular, and Cc(Km) = Cc(Kn) = 1,
Theorem 3.4 asserts that

Cc(Km �Kn) =
(m− 1)(m− 2)

(m+ n− 2)(m+ n− 3)
+

(n− 1)(n− 2)

(m+ n− 2)(m+ n− 3)

=
(m− 1)(m− 1) + (n− 1)(n− 2)

(m+ n− 2)(m+ n− 3)

=
m2 − 3m+ n2 − 3n+ 4

m2 − 5m+ 2mn+ n2 − 5n+ 6
,

which completes the proof. �

The next result gives an asymptotic value to Cc(Km �Km) as m → ∞.

Corollary 3.6 For the cartesian product Km �Km, Cc(Km �Km) → 1
2
as m → ∞.

Proof : Using Corollary 3.5, we have

lim
m→∞

Cc(Km �Km) = lim
m→∞

2m2 − 6m+ 4

4m2 − 10m+ 6
= lim

m→∞

2− 6
m

+ 4
m2

4− 10
m

+ 6
m2

=
1

2
.

�
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4 Conclusion

In this paper we were able to generate some useful formulas for the global clustering coefficient of
the tensor product Km ⊗Kn and the cartesian product Km �Kn. It was interesting to see that as
m increases without bound, Cc(Km ⊗Km) → 1 while Cc(Km �Km) →1/2. There might be other
parameterized graphs resulting from other graph binary operations and even some unary operations
that may exhibit similar interesting properties. Their determination can be a subject of a separate
investigation.
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