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Abstract

This paper is concerned with the H∞ proportional-integral-derivative (PID) control problem for a
class of discrete-time networked control systems (NCSs). First, a dynamic event-triggered control
(DETC) scheme has been introduced to save the constrained network bandwidth of networked
control systems. In addition, in order to reduce the probability of data packet loss and further
improve the reliability of network communication, a redundant channels transmission mechanism
has been constructed during the sensor transmission process. Considering that the system state
may not be obtained directly, an observer has been added when designing a closed-loop system
to observe the system state. Then, according to the closed-loop system construction, with the
help of Lyapunov function and through a series of derivations, some sufficient conditions are
established to guarantee the exponentially stability and the prescribed H∞ performance for the
controlled system. Meanwhile, under the condition that the system satisfies the H∞ performance,
the gains of the observer and PID controller can be derived by solving linear matrix inequalities
(LMIs). Finally, a simulation example is presented to demonstrate the validity of the proposed
method.
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1 Introduction

In the development and application of automatic control, with the complexity of the practical
systems, various control methods have been proposed. Among these control methods, the propor-
tional-integral-derivative (PID) control is considered to be one of the most effective control methods.
The success of the PID control method is mainly due to its simple structure, strong flexibility
and easy adjustment [1]. Hence, the PID control problem has aroused widespread attention, and
certain research results have been obtained, see [2]-[6]. Specifically, in [2], a new type PID-like
neural network controller has been constructed by using a mix locally recurrent neural network
for multi-variable single-input/multi-output system. A novel fuzzy PID control method combining
the PID control and the optimal fuzzy reasoning model has been proposed in [5] to enhance the
robustness of the control system. Most of the existing study on PID control issues is based on
the assumption that the states of the system is fully available. However, in the actual industrial
process, the system states is often not directly available. Therefore, it has become one of the most
popular methods to obtain the measurement system state through the observer. In recent decades,
a lot of results about complex dynamic network state measurement have been proposed [7]-[10].
Therefore, it is very meaningful to study the observer-based PID control in most network systems
where the system states is unavailable.

For several decades, networked control systems (NCSs) have been widely used in many fields for
their advantages in reducing costs, saving energy, and improving flexibility and reliability. The
signals between the various components of the NCSs are exchanged through some communication
network medium [11]. However, the communication resources of these communication networks are
usually limited. Specifically, the limited network bandwidth will inevitably cause network-induced
phenomenon(e.g. data packet dropouts, data congestion and communication delays) and these
behaviors have attracted considerable research attention, see [12]-[14]. Therefore, how to effectively
save limited bandwidth resources and improve the utilization efficiency of network bandwidth has
significant research value and attracted widespread attention in the field of control and signal
processing [15]-[18]. In the past few years, event-triggered schemes have been extensively studied to
reduce the communication burden [19]-[21]. Under the event-triggered schemes, data will be released
only when the trigger conditions are met. It is worth noting that the above studies are based on
static event-triggered schemes. However, in actual research, due to the existence of network-induced
phenomenon and network delays, the data transmission rate may be time-varying, so the real-time
states of bandwidth utilization should be considered. Therefore, a dynamic event-triggered control
(DETC) scheme is proposed, which can dynamically adjust the threshold parameters according to
the external environment. Recently, control issues based on the dynamic event-triggered schemes
have begun to receive attention, see [22]-[26]. For example, in [22], under the framework of observer-
based PID control system, a DETC scheme has been presented to improve resource utilization
efficiency. The DETC scheme and the complex dynamic network synchronization controller has
been integrated in [23], and the usefulness of the dynamic event-triggered synchronization control
law has been confirmed by a simulation example. However, to the best of the authors knowledge,
PID control based on dynamic event-triggered schemes has not been fully studied, which is one of
our research motivations.

In addition to the aforementioned event-triggered schemes, introducing the transmission protocol
in the data transmission process is another way to improve the reliability of network transmission.
And the frequently-used communication protocols include stochastic communication (SC) protocol
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[27],[28], round-robin (RR) protocol [29],[30], try-once-discard (TOD) protocol [31]-[32] and redundant
channel transmission (RCT) protocol [33]-[34]. In most existing networks, data is transmitted via
a single channel. When a severe communication environment occurs on the network, the data
transmitted in the channel may occur packet dropouts. In practical, however, two or more channels
can be used at the same time to improve the reliability of communication services. Therefore,
inserting redundant channels in network transmission can reduce the probability of packet dropouts.
The key idea of the redundant channels transmission mechanism is that if the main channel suffers
certain communication failure, other channels will be introduced for signal transmission to protect
data transmission, thereby greatly improving the reliability of network communication. As an
effective way to deal with data packet dropouts, redundant channels transmission has been widely
adopted in networked evaluation/control systems. The redundant channels transmission mechanism
has received special attention, and has achieved fruitful results in [35]-[39]. Specifically, in order to
improve the reliability of data transmission, the redundant channels transmission mechanism has
been employed for the singularly perturbed systems in [35]. By taking time-varying random delays
into account, a novel state estimator has been designed in [36] for neural networks via redundant
channels. However, a thorough literature search showed that the related research work has not been
extended to the observer-based PID control problem under the DETC schemes, which constitutes
another research motivation of ours.

To summarize the discussions above, this paper focuses on the H∞ PID control problem for
discrete-time network control systems with redundant channels under DETC scheme. The main
contributions of this article are stressed as follows: (1)A new H∞ PID control problem is addressed
for the discrete-time NCSs where both the redundant channels transmission mechanism and the
dynamical event-triggered scheme are considered; (2)Sufficient conditions are proposed to guarantee
the exponential stability as well as the prescribed H∞ performance of the controlled systems;
(3)Based on the Lyapunov stability theory and the matrix inequality approach, an easy-to-implement
PID controller parameter design method is derived.

The organization of the rest of this paper is given as follows. Section 2 presents the main problem
considered in this paper. The observer-based H∞ PID control issue for discrete-time NCSs subject
to redundant channels and the DETC scheme has been addressed in Section 3. Section 4 provides
an example to examine the presented method. Finally, conclusions are drawn in Section 5.

Notations: Rn×m denotes the set of all n×m real matrices. E{·} stands for the expectation and
diag{·} refers to a block diagonal matrix. λmin(·) and λmax(·) denote, respectively, the minimal and
maximal eigenvalues of a matrix. I and 0 represent identity matrix and zero matrix respectively.
sym(Z) = Z + ZT . If there are no special instructions, the matrices are considered to have
appropriate dimensions.

2 Preliminaries

Fig. 1 shows the PID control structure of the controlled object is a discrete-time multi-sensor
system under the redundant channel transmission protocol and event trigger mechanism. Consider
the following discrete-time network control systems (NCSs){

x(k + 1) = Ax(k) +Bu(k) +Dϖ(k)

z(k) = Fx(k)
(2.1)

where x(k) ∈ Rnx is the state vector and u(k) ∈ Rnu denotes the control input; ϖ(k) ∈ (l2[0,∞),Rnω )
and z(k) ∈ Rnz represents, respectively, the system noise and the control output.
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A, B, D, F are known constant matrices with suitable dimensions and assume the matrix B is of
full column rank.
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Fig. 1. Discrete-time PID control system under redundant channels and DETC
scheme

In networked systems, the single channel of data transmission is often unreliable due to the existence
of packet loss. Therefore, in order to reduce the probability of data packet loss, this article considers
introducing the following redundant channels transmission mechanism as shown in Fig. 1, and its
mathematical model is as follows:

y(k) = δ1(k)C1x(k) +

N∑
i=2

{
i−1∏
j=1

(1− δj(k))δi(k)Cix(k)

}
(2.2)

where y(k) ∈ Rny is the measurement output and Ci with i ∈ [1, N ] are know real matrices.
The random variables δi(k)(i = 1, · · · , N) which denotes the randomly occurring packet dropout
phenomenon for the ith channel, are mutually independent Bernoulli distributions with the following
probabilities:

Prob {δi(k) = 1} = δ̄i, P rob {δi(k) = 0} = 1− δ̄i.

where δ̄i ∈ [0, 1] are known constants.

Remark 2.1. In order to reduce the probability of packet loss, the redundant channels transmission
protocol is introduced in this paper. Under this protocol, when δ1(k) = 1 implies that there is no
packet loss occurred in the first channel, and the other channels will not be activated. Moreover,
when δi(k) = 0(i = 1, 2, · · · , q − 1) and δq(k) = 1, which implies that the packet loss happen from
channel 1 to channel q−1 at time k, then the information will be transmitted through the qth channel.
In particular, when δi(k) = 0(i = 1, 2, · · · , N), which means that all channels are not available. As
such, compared with the traditional one-channel transmission system, the probability of data packet
loss is reduced from 1 − δ̄1 to

∏N
i=1(1 − δ̄i) after employing the redundant channels transmission

protocol. Based on the above discussions, although the introduction of redundant channels in the
data transmission process will increase the cost of equipment, the reliability of the data transmission
is guaranteed. Therefore, in engineering practice, the number of redundant channels should be
determined after weighing data reliability and cost.
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Now, considering the effect of redundant channels transmission mechanism, we introduce the
following mathematical notations:

δ(k) , δ1(k)C1 +

N∑
i=2

{
i−1∏
j=1

(1− δj(k)) δi(k)Ci

}
(2.3)

E{δ(k)} = δ̄1C1 +

N∑
i=2

{
i−1∏
j=1

(
1− δ̄j

)
δ̄iCi

}
, δ̄ (2.4)

Then, (2) can be represented by the following form:

y(k) = δ(k)x(k) (2.5)

In this paper, the DETC scheme is introduced to reduce the burden of the communication network.
We employ the event-generator function f(., ., .) as follows:

f(ψ(k), ϕ(k), θ) = ψT (k)ψ(k)− 1

σ
ϕ(k)− θyT (k)y(k) (2.6)

where ψ(k) = y(kt)− y(k)(k ∈ [kt, kt+1)). k and kt denote, respectively, the sampling instant and
the latest triggered time; σ > 0 and θ > 0 are given scalars. ϕ(k) is an internal dynamical variable
satisfying {

ϕ(k + 1) = λϕ(k) + θyT (k)y(k)− ψT (k)ψ(k)

ϕ(0) = 0
(2.7)

where λ ∈ (0, 1) is a given scalar.

It is obvious that once the triggering condition f(ψ(k), ϕ(k), θ) > 0 is satisfied, the measurement
output y(k) is sent to the observer. Let us define the triggering time as 0 < k0 < k1 < · · · < kt < · · · .
Then the next transmitted instant kt+1 can be described as

kt+1 = min {k ∈ N |k > kt, f(ψ(k), ϕ(k), θ) > 0} (2.8)

Remark 2.2. It can be observed from (2.6) that the triggering threshold is time-varying, which
depends on the time-varying ϕ(k). Compared with the traditional static event-triggered scheme
proposed in [19], the dynamic event-triggered scheme whose threshold parameters can be dynamically
adjusted can better meet the engineering needs. In particularly, when σ approaching to infinity, the
dynamic event-triggered scheme can be regarded as the traditional static event-triggered scheme
proposed in [19]. Therefore, the proposed dynamic event-triggered method includes the static one as
a special case.

In practice, it is difficult to directly obtain the states information of the system. Thus, the observer
is designed to estimate the system states. The specific design is that

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(kt)− ŷ(k)) (2.9)

where x̂(k) ∈ Rnx is the estimate of x(k) and ŷ(k) ∈ Rny is the estimate of y(k), L is the observer
gain.

Then, the considered observer-based PID controller is described as follows:

u(k) = KP x̂(k) +KI

k−1∑
s=k−d

x̂(s) +KD(x̂(k)− x̂(k − 1)) (2.10)

where KP , KI , KD are the controller gains and d > 1 is a give scalar representing the length of
time window.
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Remark 2.3. Considering the fact that the state of system is often obtained directly unavailable,
this paper introduces an observer to measure the state of system. Moreover, due to the strong
practicability of the PID controller in engineering practice, the observer-based PID controller has
been designed. The PID controller consists of three parts: the proportional part (reflecting the
present), the integral part (reflecting the past), and the derivative part (reflecting the future). In
particular, a time window of finite length is applied in the integral part, which greatly reduces the
computational burden.

Defining e(k) = x(k) − x̂(k) as the estimation error. Then, according to (2.1) and (2.9), the
estimation error system can be obtained as follows:

e(k + 1) = (A− Lδ(k))e(k) +Dϖ(k)− Lψ(k) (2.11)

Now, based on the system (2.11) and the observer-based PID control law (2.10), we derive the
following closed-loop system:{

X (k + 1) = (Ā+ Ã)X (k) + B̄η(k) + D̄ϖ(k) + L̄ψ(k)

z(k) = F̄X (k)
(2.12)

where

X (k) = [xT (k) eT (k)]T , η(k) = [X T (k − 1) X T (k − 2) · · · X T (k − d)]T ,

Ā =

[
A+B(KP +KD) −B(KP +KD)

0 A− Lδ̄

]
, Ã =

[
0 0

0 −Lδ̃(k)

]
,

B̄ =

[
BK̄
0

]
, D̄ =

[
D
D

]
, L̄ =

[
0
−L

]
, F̄ =

[
F 0

]
,

K̄ =

K̄1 − K̄2 K̄1 K̄1 · · · K̄1︸ ︷︷ ︸
d−1

 , K̄1 = [KI −KI ] ,

K̄2 = [KD −KD] , δ̃(k) = δ(k)− δ̄.

Definition 2.1. The closed-loop system (2.12) with ϖ(k) = 0 is exponentially stable if there exist
two scalars α(α > 0) and β(0 < β < 1), satisfying

E
{
∥X (k)∥2

}
≤ αβk max

−d≤q≤0
E
{
∥Ψ(q)∥2

}
(2.13)

Definition 2.2. The considered system (2.1) under the DETC scheme and the redundant channels
transmission mechanism is exponentially stable and satisfy a prescribed H∞ performance index γ,
if the following requirements are satisfied simultaneously

(1)The considered system is exponentially stable in the sense of Definition (2.1).

(2)Under zero initial condition, for all nonzero ϖ(k) ∈ l2[0,∞), there exist a scalar γ > 0,
such that the controlled output z(k) satisfies

E

{
∞∑

k=0

zT (k)z(k)

}
≤ γ2E

{
∞∑

k=0

ϖT (k)ϖ(k)

}
(2.14)
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Lemma 2.1. [35] For stochastic varying matrix δ̃(k) = δ(k)− δ̄, a positive-definite matrix P and
a real matrix M , it has:

E{Mδ̃(k)} = 0; (2.15)

E{(Mδ̃(k))TP (Mδ̃(k))}

= −δ̄TMTPMδ̄ + δ̄1C
T
1 M

TPMC1

+

N∑
i=2

{
i−1∏
j=1

(1− δ̄j)δ̄iC
T
i M

TPMCi

}
. (2.16)

Lemma 2.2. [40] For given positive matrix Y , any matrix X and any scalar θ, the following
inequality holds:

−XTY X ≤ θ2Y −1 − θX − θXT (2.17)

Lemma 2.3. [41] For positive definite matrix R ∈ Rnx×nx , and vectors x(x > 0), y(y > 0), it
has:

2xT y ≤ xTRx+ yTR−1y (2.18)

Lemma 2.4. [42] Suppose that the matrix Q with appropriate dimension, the following two items
are equivalent:

1. There exist two symmetric and positive-definitive matrices X, Y such that[
−X ∗
Q −Y −1

]
< 0

2. There exist two symmetric and positive-definitive matrices X, Y , and constant matrix Z
satisfying [

−X ∗
ZQ sym(−Z) + Y

]
< 0

Lemma 2.5. [43] For the DETC scheme consists of (2.6) and (2.7) with the initial value ϕ(0) ≥ 0,
the internal dynamic variable satisfies ϕ(k) ≥ 0 for all k ≥ 0 if the parameters σ(σ > 0) and
λ(0 < λ < 1) satisfy λσ ≥ 1.

3 Main Results

In this section, sufficient conditions are given to guarantee the H∞ performance requirement for
designed systems (2.1) under DETC scheme and redundant channels transmission mechanism.

Theorem 3.1. Consider the matrices KP , KI , KD and L are given. Assume that the parameters
σ(σ > 0) and λ(0 < λ < 1) satisfy λσ ≥ 1. If there exist positive scalar θ, τ , positive definite
matrices P , Qi(i = 1, 2, · · · , d) satisfying the following matrix inequalities:

Π̄ =

[
Π̄11 ∗
Π̄21 Π̄22

]
< 0 (3.19)
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where

Π̄11 =


Q̄+ τ̄ Ĉ − P +Σ ∗ ∗ ∗

0 −Q ∗ ∗
0 0 −( 1

σ
+ τ)Iny ∗

0 0 0 λ+τ−1
σ

I1

 ,

Π̄21 =


PĀ PB̄ P L̄ 0
PΛ1 0 0 0
PΛ2 0 0 0
...

...
...

...
PΛN 0 0 0

 ,

Π̄22 = diag

−P,−P, · · · ,−P︸ ︷︷ ︸
N+1

 , Q̄ =

d∑
i=1

Qi, Σ = Σ1 − Σ2 − Σ3,

Σ1 =

[
0 ∗
0 P̂

]
, Σ2 =

[
0 ∗
0 δ̄TLT P̂

]
, Σ3 =

[
0 ∗
0 P̂Lδ̄

]
,

P = diag{P̂ , P̂}, Q = diag {Q1, Q2, · · · , Qd} ,

Ĉ =

[
−δ̄T δ̄ + δ̄1C

T
1 C1 +

∑N
i=2

{∏i−1
j=1(1− δ̄j)δ̄iC

T
i Ci

}
∗

0 0

]
,

τ̄ = θ(
1

σ
+ τ), Λ1 =

[
0 ∗
0

√
δ̄1LC1

]
,

Λn =

[
0 ∗
0

√∏n−1
j=1 (1− δ̄j)δ̄nLCn

]
, n = 2, 3, · · · , N.

then the closed-loop system (2.12) is exponentially stable and satisfies the prescribed H∞ performance
index.

Proof. First, we choose the following Lyapunov functional:

V (k) =

3∑
i=1

Vi(k) (3.20)

where

V1(k) = X T (k)PX (k)

V2(k) =
d∑

i=1

k−1∑
q=k−i

X T (q)QiX (q)

V3(k) =
1

σ
ϕ(k).

Then, according to the state evolution of the system (2.12), calculating the difference of V (k), and
taking the mathematical expectation, we have
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E {△V1(k)} =E
{
X T (k + 1)PX (k + 1)−X T (k)PX (k)

}
=E{((Ā+ Ã)X (k) + B̄η(k) + D̄ϖ(k) + L̄ψ(k))TP ((Ā+ Ã)X (k)

+ B̄η(k) + D̄ϖ(k) + L̄ψ(k))−X T (k)PX (k)}

=E{XT (k)(ĀTPĀ+ 2ĀTPÃ+ ÃTPÃ− P )X (k)

+ ηT (k)B̄TPB̄η(k) +ϖT (k)D̄TPD̄ϖ(k) + ψT (k)L̄TPL̄ψ(k)

+ 2X (Ā+ Ã)TPB̄η(k) + 2X T (k)(Ā+ Ã)TPD̄ϖ(k)

+ 2X T (k)(Ā+ Ã)TPL̄ψ(k) + 2ηT (k)B̄TPD̄ϖ(k)

+ 2ηT (k)B̄TPL̄ψ(k) + 2ϖT (k)D̄TPL̄ψ(k)} (3.21)

E {V2(k)} =E


d∑

i=1

k∑
q=k+1−i

X T (q)QiX (q)−
d∑

i=1

k−1∑
q=k−i

X T (q)QiX (q)


=E

{
d∑

i=1

X T (k)QiX (k)−
d∑

i=1

X T (k − i)QiX (k − i)

}
(3.22)

E {V3(k)} =E
{
1

σ
ϕ(k + 1)− 1

σ
ϕ(k)

}
=E

{
1

σ
(λϕ(k) + θyT (k)y(k)− ψT (k)ψ(k)− ϕ(k))

}
=E

{
λ− 1

σ
ϕ(k) +

θ

σ
xT (k)δT (k)δ(k)x(k)− 1

σ
ψT (k)ψ(k)

}
=E

{
λ− 1

σ
ϕ̄T (k)ϕ̄(k) +

θ

σ
X (k)T C̄T C̄X (k)− 1

σ
ψT (k)ψ(k)

}
(3.23)

where

ϕ̄(k) = ϕ
1
2 (k), C̄ = [δ(k) 0].

According to the dynamical event-triggered condition (2.6), we can obtain

τ(−ψT (k)ψ(k) +
1

σ
ϕ(k) + θyT (k)y(k)) ≥ 0 (3.24)

where τ > 0 is a given scalar.
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Letting ϖ = 0, by combining (3.20)-(3.24), it follows from Lemma(2.1) that

E{△V (k)} =E

{
3∑

i=1

△Vi(k)

}
≤E{X T (k)(ĀTPĀ+ ÃTPÃ− P )X (k) + ηT (k)B̄TPB̄η(k)

+ ψT (k)L̄TPL̄ψ(k) + 2X T (k)ĀTPB̄η(k)

+ 2X T (k)ĀTPL̄ψ(k) + 2ηT (k)B̄TPL̄ψ(k)

+

d∑
i=1

X T (k)QiX (k)−
d∑

i=1

X T (k − i)QiX (k − i)

+
λ− 1

σ
ϕ̄T (k)ϕ̄(k) +

θ

σ
X T (k)C̄T C̄X (k)− 1

σ
ψT (k)ψ(k)

+ τ(−ψT (k)ψ(k) +
1

σ
ϕ̄T (k)ϕ̄(k) + θyT (k)y(k))}

=ΦT
1 (k)(Π̄

∗
11 +ΘT

1 P
−1Θ1)Φ1(k) (3.25)

where

Φ1(k) =
[
X T (k) ηT (k) ψT (k) ϕ̄T (k)

]T
,

Π̄∗
11 =


Q̄+ τ̄ Ĉ − P + Σ̂ ∗ ∗ ∗

0 −Q ∗ ∗
0 0 −( 1

σ
+ τ)Iny ∗

0 0 0 λ+τ−1
σ

I1

 ,
Θ1 =

[
PĀ PB̄ P L̄ 0

]
.

in which

Ĉ = E{C̄T C̄}

=

[
−δ̄T δ̄ + δ1C

T
1 C1 +

∑N
i=2

{∏i−1
j=1(1− δ̄j)δ̄iC

T
i Ci

}
∗

0 0

]
,

Σ̂ = E{ÃTPÃ} =

[
0 ∗
0 −δ̄TLT P̂Lδ̄

]
+ Λ,

Λ =

[
0 ∗
0 δ1C

T
1 L

T P̂LC1 +
∑N

i=2

{∏i−1
j=1(1− δ̄j)δ̄iC

T
i L

T P̂LCi

}] .
For matrix Σ̂, it follows from Lemma(2.2) that

−δ̄TLT P̂Lδ̄ ≤ P̂ − δ̄TLT P̂ − P̂Lδ̄ (3.26)

which implies that
Σ̂ ≤ Σ+ Λ. (3.27)

Then, by further utilizing the Schur complement lemma, it is clear that E{△V (k)} < 0 can be
ensured by (3.19).

From (3.25), we know that there exists a sufficient small scalar ℓ > 0 such that the following
inequality holds:

Π̄∗
11 +ΘT

1 P
−1Θ1 + ℓdiag{I, 0, 0, I} < 0 (3.28)

which implies that

E{△V (k)} < −ℓE
{∥∥∥ΨT (k)

∥∥∥2
}

(3.29)

10
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where
Ψ(k) =

[
X T (k) ϕ̄T (k)

]T
.

In the following, we shall proceed to deal with the exponential stability analysis of the closed-loop
system (2.12). According to the definition of V (k), we have

E{V (k)} ≤ E

a ∥Ψ(k)∥2 + d̄

k−1∑
q=k−d

∥Ψ(q)∥2
 (3.30)

where

a = max{λmax(P ),
1

σ
}, d̄ = dλmax(Q).

Then, for any r > 0, it follows from (3.29) and (3.30) that

E
{
rk+1V (k + 1)

}
− E

{
rkV (k)

}
= rk+1E {△V (k)}+ rk(r − 1)E {V (k)}

≤ b1(r)r
kE

{
∥Ψ(k)∥2

}
+ b2(r)

k−1∑
q=k−d

rkE
{
∥Ψ(q)∥2

}
(3.31)

where
b1(r) = −ℓr + (r − 1)a, b2(r) = (r − 1)d̄.

Futhermore, for any m ≥ d + 1, summing up both sides of (3.31) from 0 to m − 1 with respect to
k, we obtain

E{rmV (m)} − E{V (0)} ≤b1(r)
m−1∑
k=0

rkE
{
∥Ψ(k)∥2

}
+ b2(r)

m−1∑
k=0

k−1∑
q=k−d

rkE
{
∥Ψ(q)∥2

}
(3.32)

The last term in (3.32) can be computed as

m−1∑
k=0

k−1∑
q=k−d

rkE
{
∥Φ(q)∥2

}
≤(

−1∑
q=−d

q+d∑
k=0

+

m−d−1∑
q=0

q+d∑
k=q+1

+

m−1∑
q=m−d

m−1∑
k=q+1

)rkE
{
∥Φ(q)∥2

}
≤d

−1∑
q=−d

rq+dE
{
∥Φ(q)∥2

}
+ d

m−d−1∑
q=0

rq+dE
{
∥Φ(q)∥2

}
+ d

m−1∑
q=m−d

rq+dE
{
∥Φ(q)∥2

}
≤drd max

−d≤q≤0
E
{
∥Φ(q)∥2

}
+ drd

m−1∑
k=0

rkE
{
∥Φ(k)∥2

}
(3.33)

Substituting the (3.33) into (3.32) results in

E{rmV (m)} − E{V (0)} ≤π1(r)

m−1∑
k=0

rkE
{
∥Ψ(k)∥2

}
+ π2(r) max

−d≤q≤0
E
{
∥Φ(q)∥2

}
(3.34)

11



Lin et al.; JAMCS, 37(2): 1-20, 2022; Article no.JAMCS.84860

where

π1(r) = b1(r) + drdb2(r), π2(r) = drdb2(r).

It is clear that

E {V (m)} ≥ g1E
{
∥Ψ(m)∥2

}
, (3.35)

E {V (0)} ≤ g2 max
−d≤q≤0

E
{
∥Φ(q)∥2

}
. (3.36)

where

g1 = min{λmin(P ),
1

σ
}, g2 = max{λmax(P ), dλmax(Q)}.

Duing to the fact that π1(1) = −ℓ < 0 and lim
r→∞

= +∞, there exists a scalar r0 > 1 such that

π1(r0) = 0. Then, considering (3.34)-(3.36), we have

E
{
∥X (m)∥2

}
≤E

{
∥Ψ(m)∥2

}
≤ 1

rm0

g2 + drd0b2(r0)

g1
max

−d≤q≤0
E
{
∥Φ(q)∥2

}
. (3.37)

Denoting k = m, α = (g2 + drd0b2(r0))/g1, β = 1/r0 and considering ϕ̄(q) = 0(−d ≤ q ≤ 0), from
Definition 2.1, we can know that the system (2.1) is exponentially stable. The proof is complete.

Now, we are ready to deal with the H∞ performance analysis issue for the closed-loop system (2.12).

Theorem 3.2. Assume that the parameters σ(σ > 0) and λ(0 < λ < 1) satisfy λσ ≥ 1. And
the H∞ performance index γ > 0, the matrices KP , KI , KD and L are given. Then, the closed-
loop system (2.12) is exponentially stable with the prescribed H∞ performance if there exist positive
scalar θ, τ , and positive definite matrices P , Qi(i = 1, 2, · · · , d) satisfying

Π̂ =

[
Π̂11 ∗
Π̂21 Π̂22

]
< 0 (3.38)

where

Π̂11 =


Q̄+ τ̄ Ĉ − P + FTF +Σ ∗ ∗ ∗ ∗

0 −Q ∗ ∗ ∗
0 0 −( 1

σ
+ τ)Iny ∗ ∗

0 0 0 λ+τ+1
σ

I1 ∗
0 0 0 0 −γ2Iω

 ,

Π̂21 =


PĀ PB̄ P L̄ 0 PD̄
PΛ1 0 0 0 0
PΛ2 0 0 0 0
...

...
...

...
...

PΛN 0 0 0 0

 , Π̂22 = Π̄22.

and other parameters are defined in Theorem 3.1.
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Proof. For any ϖ(k) ̸= 0, considering the (3.20)-(3.24), we have

E{△V (k)}+ E{ZT (k)Z(k)} − γ2E{ϖT (k)ϖ(k)}

≤E{XT (k)(ĀTPĀ+ ÃTPÃ− P )X (k) + ηT (k)B̄TPB̄η(k)

+ϖT (k)D̄TPD̄ϖ(k) + ψT (k)L̄TPL̄ψ(k) + 2X T (k)ĀTPB̄η(k)

+ 2X T (k)ĀTPL̄ψ(k) + 2X T (k)ĀTPD̄ϖ(k) + 2ηT (k)B̄TPL̄ψ(k)

+ 2ηT (k)B̄TPD̄ϖ(k) + 2ϖT (k)D̄TPL̄ψ(k) +

d∑
i=1

X T (k)QiX (k)

−
d∑

i=1

X T (k − i)QiX (k − i) +
λ− 1

σ
ϕ̄T (k)ϕ̄(k) +

θ

σ
X T (k)C̄T C̄X (k)

− 1

σ
ψT (k)ψ(k) + τ(−ψT (k)ψ(k) +

1

σ
ϕ̄T (k)ϕ̄(k) + θyT (k)y(k))

+ X T (k)(FTF)X (k)− γ2ϖT (k)ϖ(k)}

=ΦT
2 (k)(Π̂

∗
11 +ΘT

2 P
−1Θ2)Φ2(k) (3.39)

where

Φ2(k) =
[
X T (k) ηT (k) ψT (k) ϕ̄T (k) ϖT (k)

]T
,

Π̂∗
11 =


Q̄+ τ̄ Ĉ − P + FTF + Σ̂ ∗ ∗ ∗ ∗

0 −Q ∗ ∗ ∗
0 0 −( 1

σ
+ τ)Iny ∗ ∗

0 0 0 λ+τ−1
σ

I1 ∗
0 0 0 0 −γ2Inω


Θ2 =

[
PĀ PB̄ P L̄ 0 PD̄

]
.

Then, by using the Schur complement lemma, it follows from (3.38) that Π̂∗
11 + ΘT

2 P
−1Θ2 < 0,

which means
E {△V (k)}+ E

{
ZT (k)Z(k)

}
− γ2E

{
ϖT (k)ϖ(k)

}
< 0 (3.40)

Moreover, summing up both sides of (3.40) frrom 0 to ∞ with respect to k, we can obtain

E

{
∞∑

k=0

ZT (k)Z(k)

}
− γ2E

{
∞∑

k=0

ϖT (k)ϖ(k)

}
< E {V (0)} − E {V (∞)} (3.41)

Noting that V (0) = 0 and V (∞) ≥ 0, we have

E

{
∞∑

k=0

ZT (k)Z(k)

}
≤ γ2E

{
∞∑

k=0

ϖT (k)ϖ(k)

}
(3.42)

The proof is accomplished.

Finally, the designed PID controller and observer are proposed in the following theorem.

Theorem 3.3. Let the parameters σ(σ > 0) and λ(0 < λ < 1) satisfy λσ ≥ 1 and the H∞
performance index γ > 0 be given. Assume that there exist positive scalar θ, τ and positive definite
matrices P , Qi(i = 1, 2, · · · , d), X satisfyingΠ̃ + E1Y E

T
1 ∗ ∗

BTBK̃PE2 sym−BTBX ∗
0 P̂B −BX −Y

 < 0 (3.43)
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where

Π̃ =

[
Π̃11 ∗
Π̃21 Π̃22

]
, Π̃21 =


Â B̂ L̂ 0 D̂

Λ̂1 0 0 0 0

Λ̂2 0 0 0 0
...

...
...

...
...

Λ̂N 0 0 0 0

 ,

Π̃11 =


Q̄+ τ̄ Ĉ − P + FTF + Σ̃ ∗ ∗ ∗ ∗

0 −Q ∗ ∗ ∗
0 0 −( 1

σ
+ τ)Iny ∗ ∗

0 0 0 λ+τ+1
σ

I1 ∗
0 0 0 0 −γ2Inω


Π̃22 = Π̄22, Σ̃ = Σ1 − Σ̃2 − Σ̃3, Σ̃2 =

[
0 0

0 δ̄T L̃T

]
, Σ̃3 =

[
0 0

0 L̃δ̄

]
,

Â =

[
P̂A+B(K̃P + K̃D) −B(K̃P + K̃D)

0 P̂A− L̃δ̄

]
, B̂ =

[
BK̂
0

]
,

D̂ =

[
P̂D

P̂D

]
, L̂ =

[
0

−L̃

]
, K̂ =

K̂1 − K̂2 K̂1 K̂1 · · · K̂1︸ ︷︷ ︸
d−1

 ,
K̂1 =

[
k̃I , −K̃I

]
, K̂2 =

[
K̃D − K̃D

]
, Λ̂1 =

[
0 ∗
0

√
δ̄1L̃C1

]
,

Λ̂n =

[
0 ∗
0

√∏n−1
j=1 (1− δ̄j)δ̄nL̃Cn

]
, n = 2, 3, · · · , N,

ET
1 =

[
Inx 0nx×(2(N+d+1)nx+nx+2ny+nω+1)

]
,

E2 =
[
0nx×2nx Inx 0nx×(2(N+d)nx+nx+2ny+nω+1)

]
.

and other parameters are defined in Theorem 3.1 and Theorem 3.2. Moreover, if the inequality
(3.43) is available, the desired PID control gains and observer gain are given by:

KP = X−1K̃P , KI = X−1K̃I , KD = X−1K̃D, L = P̂−1L̃. (3.44)

Proof. The inequality (3.38) is equivalent to

Π̃ + sym{E1(P̂B −BX)(X−1K̃P )E2} < 0 (3.45)

From Lemma 2.3, it is clear that there exist a positive definite matrix Y ∈ Rnx×nx satisfying

Π̃ + E1Y E
T
1 + ET

2 (X
−1K̃P )

T (P̂B −BX)TY −1(P̂B −BX)(X−1K̃P )E2 < 0 (3.46)

According to the Schur complement, the above inequality is equivalent to[
Π̃ + E1Y E

T
1 ∗

(X−1K̃P )E2 −Ω

]
< 0 (3.47)

where Ω = (P̂B −BX)TY −1(P̂B −BX).

Then, based on the Lemma 2.4, we have[
Π̃ + E1Y E

T
1 ∗

BTBK̃PE2 sym{−BTBX} − Ω

]
< 0 (3.48)

Finally, by further using the Schur complement lemma, it is obvious that (3.43) can be ensured by
(3.48). Thus, the proof is now complete.
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Remark 3.1. It is worth noting that Theorem 3.3 derives a LMI-based solution to co-design the
observer and the PID controller for the discrete-time NCSs under the redundant channel transmission
protocol and the DETC scheme. As such, the conservative effect of the results has been reduced.
Moreover, compared with other linearization methods, the linearization method used in Theorem 3.3
can directly calculate the variable X matrix in the LMI, so as to quickly obtain the PID controller
gain and greatly reduce the computational complexity.

4 Examples

In this section, a numerical simulation example is presented to illustrate the effectiveness of proposed
observer-based PID controller design scheme.

Consider system (2.1) with the following parameters:

A =

[
−0.02 0.1
0.01 −0.02

]
, B =

[
−0.2 0.03
0.2 0.03

]
,

D =

[
−0.03
0.1

]
, F =

[
0.2 −0.3

]
.

In this example, the redundant channels’ number is N = 3. The probabilities of successfully
transmitting data packets on three different channels are taken as δ1 = 0.8, δ2 = 0.7 and δ3 = 0.6.
The measurement matrices are

C1 =


0.1 0.02
0.03 −0.1
0.1 0.01
0.04 −0.1

 , C2 =


0.2 0.01
0.02 −0.2
0.2 0.03
0.01 −0.2

 , C3 =


0.3 0.03
0.01 −0.3
0.3 0.02
0.01 −0.3

 .
The target for us is to design a state observer like (2.9) and a PID controller like (2.10) such that
the controller closed-loop systems exponetially stable and achieve the desired performance index
γ = 1. The other relevant parameters are given as θ = 0.2, σ = 5, τ = 0.3, λ = 0.6, d = 2.

By solving the linear matrix inequality in Theorem(3.3), we have:

P =


4.1659 0.0905 0 0
0.0905 4.5781 0 0

0 0 4.1659 0.0905
0 0 0.0905 4.5781

 ,

Q1 = Q2 =


1.2424 0.0387 0.0001 −0.0002
0.0387 1.3410 −0.0005 0.0007
0.0001 −0.0005 0.1236 0.0286
−0.0002 0.0007 0.0286 0.1260

 ,
X =

[
4.9775 0.0363
0.0363 5.5443

]
, Y =

[
1.0221 0.0421
0.0421 1.1006

]
,

L̃ =

[
0.7238 −0.0651 0.7131 −0.0257
0.1928 −0.8480 0.1510 −0.8443

]
, K̃P =

[
0.0283 −0.0644
0.0344 −0.6450

]
,

K̃I =

[
0.0010 −0.0027
0.0005 −0.0135

]
, K̃D =

[
0.0020 −0.0053
0.0010 −0.0269

]
.
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Then, by taking (3.44) into consideration, the observer gain and the controller gains can be expressed
as follows:

L =

[
0.1729 −0.0116 0.1705 −0.0020
0.0387 −0.1850 0.0296 −0.1844

]
, KP =

[
0.0047 −0.0121
0.0062 −0.1163

]
,

KI =

[
0.0002 −0.0005
0.0001 −0.0024

]
, KD =

[
0.0004 −0.0010
0.0002 −0.0049

]
.

In this simulation, the initial value of the state is set to be x(0) = [−0.3 0.4]T , and x(−2) = x(−1) =
[0 0]T . The system noise is assumed to be ϖ(k) = 0.2sin(k)/k. The simulation results are shown
in Figs. 2-3. Specifically, Fig. 2 reveals the trajector of the system state x(k). Fig. 3 plots the
trajectories of the system noise ϖ(k) and the control output z(k), respectively. It is easy to see
that the fluctuation of z(k) is smaller than that of ϖ(k). Furthermore, by computation, the desired
H∞ performance is satisfied.

0 20 40 60 80 100
Time (k)

-0.4

-0.2

0

0.2

0.4
x1(k)
x2(k)

Fig. 2. State trajectories x(k) of the system with PID control

0 20 40 60 80 100
Time (k)

-0.04

-0.02

0

0.02

0.04
z(k)
w(k)

Fig. 3. The trajectory of controller output z(k) and system noise ϖ(k)

In order to examine the effectiveness of the redundant channel transmission mechanism in reducing
data packet loss, the random data packet dropouts of three transmission channels are shown in Fig.
4. Therefore, we can know that compared with a single channel, the possibility of data packet loss
in the transmission channel is greatly reduced by adopting the redundant channels.

Fig. 5 and Fig. 6, respectively, describe the dynamic triggering instants and the static triggering
instants. Comparing the above two figures, we can conclude that compared to the static event-
triggered control (SETC) scheme, the DETC scheme can better save network bandwidth resources
and increase the reliability of data transmission.

Remark 4.1. Based on the above considerations, we can summarize as follows: the network system
that combines the redundant channel transmission mechanism and DETC scheme can effectively
improve the reliability of network transmission. At the same time, in our future work, we can
consider applying the above framework to the more complex network system.
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0 20 40 60 80 100
Time (k)

0

1

2

3

4
Primary channel

Redundant channel 1

Redundant channel 2

Fig. 4. Random packet dropouts in three channels

0 20 40 60 80 100
Time (k)

0

0.5

1

1.5

2

Fig. 5. Dynamic triggering instants

0 20 40 60 80 100
Time (k)

0

0.5

1

1.5

2

Fig. 6. Static triggering instants

5 Conclusions

This paper has addressed the H∞ PID control issue for a class of discrete-time NCSs network control
under dynamic event-triggered control scheme. The redundant channel transmission mechanism
has been introduced to improve the reliability of network communication during the transmission
process. Based on the Lyapunov theory, the sufficient conditions have been proposed to guarantee
the exponentially stability and the H∞ performance index for the designed system. Furthermore,
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by using linear matrix inequality technology, the PID controller gains have been obtained. Finally,
an illustrative example has been provided to show the validity of the proposed method.

6 Future Works

In this paper, when analyzing the problem of limited communication resources in the network, the
controlled object considered is a linear system. However, in practical network control systems, most
of the systems are nonlinear. Therefore, in the future work, the nonlinear network control system
with limited communication resources can be further studied and a PID controller to ensure the
stability of the system can be designed. Furthermore, we will consider extending the proposed
method to the PID security control for T-S fuzzy systems under cyber attacks.
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