
Journal of Advances in Mathematics and Computer Science

37(2): 67-82, 2022; Article no.JAMCS.85968

ISSN: 2456-9968

(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

An Extended Finite Element Method for the Elasticity
Interface Problem

Pei Cao a∗

aJiangsu Key Lab for NSLSCS, School of Mathematical Sciences, Nanjing Normal University,

Nanjing 210023, China.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/JAMCS/2022/v37i230437

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s)
and additional Reviewers, peer review comments, different versions of the manuscript, comments

of the editors, etc are available here: https://www.sdiarticle5.com/review-history/85968

Received: 02 February 2022

Accepted: 06 April 2022

Original Research Article Published: 12 April 2022

Abstract

In this paper, we propose an extended mixed finite element method for elasticity interface
problems based on Mini finite element space. The stabilization term defined on edges of
interface elements and the ghost penalty term are added, which ensures that the discrete inf-sup
condition holds independent of how the interface intersects the triangulation. Finally, numerical
experiments are carried out to verify the theoretical analysis.

Keywords: Elasticity interface problem; extended mixed finite element method; optimal a priori
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1 Introduction

Elasticity interface problems which describe how solid objects are deformed when external forces are
applied on them have wide applications in continuum mechanics, multi-phase elasticity problems,
solid mechanics, etc. Interface problems usually lead to differential equations with discontinuous or
non-smooth solutions across interfaces.
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Due to the discontinuity of the coefficients across the interface, if using standard finite element
method to solve interface problems, one usually enforces mesh lines along the interface in order to
get optimal a priori error estimates, which is the so-called interface-fitted finite element method.
However, for many problems in which the interface is complicated or varies with time, the generation
of interface-fitted meshes is very costly. Therefore, it is attractive to develop finite method based
on interface-unfitted mesh whose generation is independent of the interface, which is called the
interface-unfitted method. As far as we know, there are mainly two classes of interface-unfitted
methods, the extended finite element method (XFEM) and the immersed finite element method
(IFEM).

Z. Li firstly proposed the immersed finite element method in 1998 [1] to solve one dimensional elliptic
interface problems. The main idea of IFEM is to take a simple Cartesian grid and modify the basis
function to satisfy the interface jump conditions. In [2], Z. Li, T. Lin and X. Wu extended the
immersed finite element method for two dimensional elliptic interface problems. For more details,
please see [3], [4], [5], [6], [7]. However, the research of IFEM is not thorough and the construction
of the discrete spaces is still a challenging work.

XFEM was originally proposed by T. Belytschko and T. Black [8] to solve elastic crack problems. It
was designed by modifying the basis function of interface elements. Whereafter, A. Hansbo and P.
Hansbo firstly presented the extended finite element method (Nitsche’s-XFEM) based on Nitsche’s
method in [9]. The main idea of Nitsche’s-XFEM is to combine a variant of Nitsche’s method to
enforce continuity on the interface with the idea of XFEM to modify the basis function of interface
elements. Later on, based on Nitsche’s-XFEM, there are a lot of researches in the field of the
computational mechanics and flow problems such as [10], [11], [12], [13], [14] and so on.

Among literatures mentioned in the above, most of the works are considered for elliptic interface
problems and Stokes interface problems. As far as we know, there are two papers for elasticity
interface problems with Nitsche’s-XFEM. In 2004, A. Hansbo and P. Hansbo proposed a general
approach that can handle both perfectly and imperfectly bonded interfaces for elasticity interface
problems, but excluding the incompressible case. In order to deal with the incompressible case,
R. Becker, E. Burman and P. Hansbo [15] applied the extended finite element spaces for both the
displacement and the pressure in 2009. They obtained the optimal a priori estimates independent
of the mesh size but not of the ratio of Lamé constants. Furthermore , they ignored the case where
the interface cuts the mesh in a way that very small sub-elements were created, which would make
the system matrix of the method become ill-conditioned.

In this paper, we consider the mixed form for the elasticity interface problem based on XFEM P b
1 -P1

finite element pair. In case of the instabilities because of “small cuts”, we add the ghost penalty
term near the interface. By introducing some stabilization terms, we derive an inf-sup stability
result for the discrete bilinear form uniform with respect to h and the quotient µ1

µ2
. Based on these,

we obtain the optimal a priori estimates in energy and L2 norms.

The outline of the paper is as follows. In Section 2, we introduce the extended finite element method.
The analyses of the extended finite element method are presented in Section 3. In Section 4, the
approximation properties and the optimal convergence are presented. Some numerical examples
are carried out to verify our theoretical analyses in Section 5. Conclusions are given in Section 6.
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2 Preliminaries

2.1 The elasticity interface problem

Let Ω be a bounded domain in R2, with convex polygonal boundary ∂Ω. A C2-smooth interface
defined by Γ = ∂Ω1 ∩ ∂Ω2 divides Ω into two open sets Ω1 and Ω2 such that Ω = Ω1 ∪ Ω2 and
Ω1 ∩ Ω2 = ∅ (see Fig. 1). Consider the following elasticity interface problem: find a displacement
u and a pressure p such that

−div(2µϵ(u)) + gradp = f in Ω1 ∪ Ω2,
divu+ 1

λ
p = 0 in Ω1 ∪ Ω2,

[u] = 0 on Γ,
[pn− 2µϵ(u)n] = −σκn on Γ,

u = 0 on ∂Ω.

(2.1)

Here, ϵ(u) = 1
2

(
∇u + (∇u)T

)
is the strain tensor. σ is the surface tension coefficient and κ is the

curvature of the interface. n is the unit outward normal pointing from Ω1 to Ω2. µ, λ are piecewise
Lamé constants

µ =

{
µ1 in Ω1,
µ2 in Ω2,

λ =

{
λ1 in Ω1,
λ2 in Ω2.

On the basis of Young’s modulus Ei and Poisson’s ratio νi, we have µi = Ei
2(1+νi)

and λi =
Eiνi

(1+νi)(1−2νi)
, i = 1, 2. f ∈ (L2(Ω))2 is a given function, and [v]|Γ = v1|Γ − v2|Γ is the jump

on the interface Γ, where vi = v|Ωi , i = 1, 2.

..

n

.

Ω1

.

Ω2

.

Γ

.

Fig. 1. Domain Ω, its sub-domains Ω1, Ω2, and interface Γ

For the weak formulation, we first introduce the space

L2
0(Ω) = {p ∈ L2(Ω) :

∫
Ω

p(x)dx = 0},

and the inner product between matrices σ, χ,

(σ, χ)L2(Ω) =

∫
Ω

σ : χdx =

∫
Ω

2∑
i=1

2∑
j=1

σijχijdx.

Then weak formulation of the problem can be read as follows: given f ∈ V
′
, find (u, p) ∈ V ×Q =

(H1
0 (Ω))

2 × L2
0(Ω) such that

B[(u, p), (v, q)] = L(v), ∀(v, q) ∈ V ×Q, (2.2)
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where

B[(u, p), (v, q)] =

∫
Ω1∪Ω2

2µϵ(u) : ϵ(v)dx−
∫
Ω1∪Ω2

pdivvdx

+

∫
Ω1∪Ω2

qdivudx+

∫
Ω1∪Ω2

λ−1pqdx,

L(v) =

∫
Ω

f · vdx+

∫
Γ

σκv · nds.

By the abstract theory of mixed problems ([16], [17]), the following theorem holds.

Theorem 2.1. There exists a unique solution (u, p) ∈ V ×Q for the problem (2.2).

2.2 The extended finite element method

Let Th be the triangulation of Ω, generated independently of the location of the interface Γ. For any
element T ∈ Th, denote the diameter of T by hT and h = max

T∈Th

hT . By Gh = {T ∈ Th : T ∩Γ ̸= ∅},
we denote the set of elements that are intersected with the interface. For an element T ∈ Gh, let
ΓT = Γ ∩ T and Ti = T ∩ Ωi. Define the sub-domains Ωi,h = {T ∈ Th : T ⊂ Ωi or meas(T ∩ Γ) >
0}, ωi,h = {T ∈ Th : T ⊂ Ωi and T ∩ Γ = ∅}, i = 1, 2. Let Th,i = Th|Ωi,h , i = 1, 2. For the
notation of edges, let Fi = {e ⊂ ∂T : T ∈ Gh, e * ∂Ωi,h}, i = 1, 2, which are called as the sets
of transmission edges. For an edge e ∈ Fi, let T

l and T r be the two neighboring cells of the edge
e. Denote vl = v|T l , vr = v|Tr , where l, r represent the left and the right, respectively and set
[v]e = vl|e − vr|e. For an integer k ≥ 0, Pk(D) denotes the set of all scalar-valued polynomials on
domain D with degree less than or equal to k. In the subsequent sections, the letter C or c, with
or without subscript, denotes a generic constant that may not be the same at different occurrences
for brevity and assume that Γ intersects with the boundary ∂T of an element T in Gh exactly twice
and each (open) edge at most once.

2.3 Weak form of the discrete problem

Define

Vh,i = [{vh ∈ H1(Ωi,h) : vh|T ∈ P1(T ), ∀T ∈ Th,i, vh|∂Ω = 0} ⊕B]2,

Qh,i = {qh ∈ H1(Ωi,h) : qh|T ∈ P1(T ), ∀T ∈ Th,i},

where

B = {b ∈ C0(Ωi,h) : b|T ∈ P3(T ) ∩H1
0 (T ), ∀T ∈ Th,i}, i = 1, 2.

Thus, our extended Mini finite element spaces are

Vh = Vh,1 × Vh,2,

Qh = (Qh,1 ×Qh,2)/R = {qh ∈ Qh,1 ×Qh,2 :

∫
Ω

qhdx = 0}.

To define the stabilization terms, we first decompose the interface zone of the triangulation Th,i in
Nl,i patches Pl,i with diameter hPl,i = O(h) consisting of a moderate number of elements, in such

a way that each interface element is involved in one patch Pl,i. Denote Πl,i : L
2(Pl,i) 7→ P1(Pl,i) be

the L2-projection onto P1(Pl,i). For more details, please see [18]. For any discontinuous function φ

defined on ΓT , we use the notations {φ} = ω1φ1 + ω2φ2 and {φ}∗ = ω2φ1 + ω1φ2 with ωi =
|Ti|
|T | ,

where T ∈ Gh, |T | = meas(T ), Ti = T ∩ Ωi, i = 1, 2. Clearly, 0 ≤ ωi ≤ 1 and ω1 + ω2 = 1.
Recalling the definition of [φ], we have [φψ] = {φ}[ψ] + [φ]{ψ}∗.
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Now, we present the discrete formulation of the elasticity interface problem: find (uh, ph) ∈ Vh×Qh,
such that for any (vh, qh) ∈ Vh ×Qh,

Bh[(uh, ph), (vh, qh)] + γ1Jp(ph, qh) + γ2Ju(uh,vh) = Lh(vh), (2.3)

where
Bh[(uh, ph), (vh, qh)] = ah(uh,vh) + bh(vh, ph)− bh(uh, qh) + ch(ph, qh),

Lh(vh) =

∫
Ω

f · vhdx+

∫
Γ

σκ{vh · n}∗ds,

with

ah(uh,vh) =

∫
Ω1∪Ω2

2µϵ(uh) : ϵ(vh)dx−
∫
Γ

{2µϵ(uh)n}[vh]ds

−
∫
Γ

{2µϵ(vh)n}[uh]ds+
∑

T∈Gh

∫
ΓT

γuh
−1
T µmax[uh][vh]ds,

bh(vh, ph) = −
∫
Ω1∪Ω2

phdivvhdx+

∫
Γ

{ph}[vh · n]ds,

ch(ph, qh) =

∫
Ω1∪Ω2

λ−1phqhdx,

Ju(uh,vh) =

2∑
i=1

Nl,i∑
l=1

µih
−2
Pl,i

∫
Pl,i

(uh,i −Πl,iuh,i)(vh,i −Πl,ivh,i)dx,

Jp(ph, qh) =
2∑

i=1

Ji(ph,i, qh,i) =
2∑

i=1

µ−1
i h3

∑
e∈Fi

∫
e

[∇ph,i]e[∇qh,i]edx.

γ1, γ2 > 0 are stabilization parameters independent of mesh size and Lamé constants.

Remark 2.1. The fourth term in ah(·, ·) is a standard penalty term in Nitsche’s method [9]. The
third term in ah(·, ·) is introduced for the symmetry. The stabilization term Jp(·, ·) is used to
guarantee the inf-sup condition of the discrete weak formulation. The ghost penalty term Ju(·, ·) is
used to make sure the system matrix of the method is well-conditioned.

3 Analysis of the Scheme

Since the stabilization terms Ju(uh,vh), Jp(ph, qh) are not the residual of the equations, the finite
element formulation (2.3) is not consistent. We have the following weak consistent relation.

Lemma 3.1. Let (u, p) ∈ (H2(Ω1 ∪Ω2)∩H1
0 (Ω))

2 × (H1(Ω1 ∪Ω2)∩L2
0(Ω)) be the solution of the

problem (2.2) and (uh, ph) ∈ Vh × Qh be the solution of the discrete problem (2.3). Then for any
(vh, qh) ∈ Vh ×Qh, there holds

Bh[(u− uh, p− ph), (vh, qh)] = γ1Jp(ph, qh) + γ2Ju(uh,vh). (3.1)

Proof. Multiplying (1.1) and (1.2) by testing functions vh and qh, respectively, using integration
by parts and noting that the interface conditions (1.3) and (1.4), we obtain

ah(u,vh) + bh(vh, p)− bh(u, qh) + ch(p, qh) = Lh(vh). (3.2)

Subtracting (2.3) from (3.2), we get (3.1).

71



Cao; JAMCS, 37(2): 67-82, 2022; Article no.JAMCS.85968

In the following analysis, we need to introduce some mesh dependent norms, i.e.,

∥v∥ 1
2
,h,Γ =

( ∑
T∈Gh

h−1
T ∥v∥20,ΓT

) 1
2 , ∀v ∈ Vh,

∥v∥− 1
2
,h,Γ =

( ∑
T∈Gh

hT ∥v∥20,ΓT

) 1
2 , ∀v ∈ Vh,

∥v∥ =
(
∥µ

1
2 ϵ(v)∥20,Ω1∪Ω2

+ ∥µ
1
2
max[v]∥21

2
,h,Γ + ∥µ− 1

2
max{2µϵ(v)n}∥2− 1

2
,h,Γ

) 1
2 , ∀v ∈ Vh,

∥v∥⋆ =
(
∥µ

1
2 ϵ(v)∥20,Ω1,h∪Ω2,h

+ ∥µ
1
2
max[v]∥21

2
,h,Γ

) 1
2 , ∀v ∈ Vh,

|||(v, q)||| =
(
∥v∥2 + ∥µ− 1

2 q∥20,Ω1∪Ω2
+ ∥µ− 1

2
max{q}∥2− 1

2
,h,Γ

) 1
2 , ∀(v, q) ∈ (Vh, Qh),

|||(v, q)|||h =
(
∥v∥2⋆ + ∥µ− 1

2 q∥20,Ω1,h∪Ω2,h
+ Jp(q, q) + Ju(v,v)

) 1
2 , ∀(v, q) ∈ (Vh, Qh).

3.1 Continuity analysis

By the definition of ah(uh,vh) and the Cauchy-Schwarz inequality, the following lemma holds.

Lemma 3.2. For all uh ∈ Vh, we have

ah(uh,vh) ≤ C1∥uh∥∥vh∥, ∀vh ∈ Vh, (3.3)

where C1 is a positive constant independent of µ1, µ2 and the mesh size.

In the following analysis, we need a trace inequality on the interface and we just state the following
lemma without proof (see [9]).

Lemma 3.3. Map a triangle T onto the unit reference triangle T̃ by an affine map and denote by
Γ̃T̃ the corresponding image of ΓT . Under the assumptions in Section 2, there exists a constant C,
depending on Γ but independent of the mesh, such that

∥w∥20,Γ̃
T̃
≤ C∥w∥0,T̃ ∥w∥1,T̃ , ∀w ∈ H1(T̃ ). (3.4)

Lemma 3.4. For any qh ∈ Qh, we have

∥µ− 1
2

max{qh}∥− 1
2
,h,Γ ≤ C2∥µ

− 1
2

maxqh∥0,Ω1,h∪Ω2,h ,

where C2 is a positive constant independent of µ1, µ2 and the mesh size.

Proof. By the definition of ∥ · ∥− 1
2
,h,Γ, Lemma 3.3 and the inverse inequality, there holds

∥µ− 1
2

max{qh}∥2− 1
2
,h,Γ ≤ C

∑
T∈Gh

hT

(
h−1
T ∥µ− 1

2
maxqh∥20,T + hT |µ

− 1
2

maxqh|21,T
)

≤ C
∑

T∈Gh

hT · h−1
T ∥µ− 1

2
maxqh∥20,T

≤ C2∥µ
− 1

2
maxqh∥20,Ω1,h∪Ω2,h

.

The proof is completed.

Similarly, we can get the following result.

Lemma 3.5. There exists a positive constant CI independent of µ1 and µ2 such that

∥{2µϵ(uh)n}∥2− 1
2
,h,Γ ≤ CIµmax∥µ

1
2 ϵ(uh)∥20,Ω1,h∪Ω2,h

, ∀uh ∈ Vh.
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Combining the definitions of |||(·, ·)||| and |||(·, ·)|||h with Lemmas 3.4-3.5, we can derive the following
relation immediately.

Lemma 3.6. For any (vh, qh) ∈ Vh ×Qh, there exists a constant C > 0, such that

|||(vh, qh)||| ≤ C|||(vh, qh)|||h.

Together with Lemmas 3.2, 3.4-3.6 and the discrete Korn inequality
(
(1.15) in [19]

)
, we can derive

the following result.

Lemma 3.7. For any (uh, ph) ∈ Vh ×Qh, (vh, qh) ∈ Vh ×Qh, we have

Bh[(uh, ph), (vh, qh)] + γ1Jp(ph, qh) + γ2Ju(uh,vh) ≤ CB |||(uh, ph)|||h|||(vh, qh)|||h,

where CB is a positive constant independent of µ1, µ2 and the mesh size.

3.2 Stability analysis

In this part, we are devoted to the stability of the weak formulation. We first give the coercivity of
ah(·, ·).

Lemma 3.8. There exists a positive constant Ca independent of µ1 and µ2 such that

ah(uh,uh) + Ju(uh,uh) ≥ Ca∥uh∥2⋆, ∀uh ∈ Vh.

Proof. According to the definition of ah(uh,uh), one has

ah(uh,uh) = 2∥µ
1
2 ϵ(uh)∥20,Ω1∪Ω2

− 2

∫
Γ

{2µϵ(uh)n}[uh]ds+ γu∥µ
1
2
max[uh]∥21

2
,h,Γ. (3.5)

Using the Cauchy-Schwarz inequality, the Young’s inequality with parameter ε and Lemma 3.5, we
derive

2

∫
Γ

{2µϵ(uh)n}[uh]ds ≤ 2∥µ− 1
2

max{2µϵ(uh)n}∥− 1
2
,h,Γ∥µ

1
2
max[uh]∥ 1

2
,h,Γ

≤ ε∥µ− 1
2

max{2µϵ(uh)n}∥2− 1
2
,h,Γ +

1

ε
∥µ

1
2
max[uh]∥21

2
,h,Γ

≤ CIε∥µ
1
2 ϵ(uh)∥20,Ω1,h∪Ω2,h

+
1

ε
∥µ

1
2
max[uh]∥21

2
,h,Γ. (3.6)

Combining (3.5) with (3.6), we obtain

ah(uh,uh) ≥ 2∥µ
1
2 ϵ(uh)∥20,Ω1∪Ω2

− CIε∥µ
1
2 ϵ(uh)∥20,Ω1,h∪Ω2,h

+ (γu − 1

ε
)∥µ

1
2
max[uh]∥21

2
,h,Γ. (3.7)

By Theorem 2.12 in [19], we know

∥ϵ(uh)∥20,Ω1∪Ω2
+ ∥[uh]∥21

2
,h,Γ ≥ C∥∇uh∥20,Ω1∪Ω2

, ∀uh ∈ Vh. (3.8)

According to Lemma 4.2 in [18], there holds

∥∇uh∥20,Ω1∪Ω2
+ Ju(uh,uh) ≥ CJ∥∇uh∥20,Ω1,h∪Ω2,h

, ∀uh ∈ Vh. (3.9)

Applying (3.8)-(3.9) to (3.7), we deduce

ah(uh,uh) + Ju(uh,uh)

≥C∥µ
1
2∇uh∥20,Ω1∪Ω2

− CIε∥µ
1
2 ϵ(uh)∥20,Ω1,h∪Ω2,h

+ (γu − 1

ε
− 1)∥µ

1
2
max[uh]∥21

2
,h,Γ + Ju(uh,uh)

≥ (CJ − CIε)∥µ
1
2 ϵ(uh)∥20,Ω1,h∪Ω2,h

+ (γu − 1

ε
− 1)∥µ

1
2
max[uh]∥21

2
,h,Γ. (3.10)

Let ε = CJ
2CI

, γu = 2CI
CJ

+ 2. Choosing Ca = min{CJ
2
, 1}, we finally obtain the desired result.
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According to Lemma 2.2 in [14], we can derive the following lemma directly.

Lemma 3.9. Let ph = (ph,1, ph,2) ∈ Qh, there exists a constant C > 0 such that

∥µ− 1
2

i ph,i∥20,Ωi,h
≤ C

(
∥µ− 1

2
i ph,i∥20,ωi,h

+ Ji(ph,i, ph,i)

)
, i = 1, 2. (3.11)

According to the LBB stability of the standard P b
1 -P1 on ωi,h, for any ph,i ∈ Qh,i, there exists

vph,i ∈ Vh,i with supp(vph,i) ⊂ ω̄i,h satisfies

bh(vph,i , ph,i) ≥ C∥µ− 1
2

i ph,i∥20,ωi,h
, (3.12)

and

∥µ− 1
2

i ph,i∥0,ωi,h ≥ C|µ
1
2
i vph,i |1,ωi,h , i = 1, 2. (3.13)

By Lemma 3.9 and (3.12), there holds

Cp∥µ
− 1

2
i ph,i∥20,Ωi,h

≤ 1

C
bh(vph,i , ph,i) + Ji(ph,i, ph,i), ∀ph,i ∈ Qh,i, i = 1, 2. (3.14)

By the definition of ∥ · ∥⋆ and (3.13)-(3.14), we get the stability of bh(·, ·) on Vh ×Qh.

Lemma 3.10. For any ph = (ph,1, ph,2) ∈ Qh, there exists vph = (vph,1 ,vph,2) ∈ Vh with
vph |Gh = 0 such that

bh(vph , ph) + Jp(ph, ph) ≥ Cb∥µ− 1
2 ph∥20,Ω1,h∪Ω2,h

, (3.15)

and
∥µ− 1

2 ph∥0,Ω1,h∪Ω2,h ≥ C∥vph∥⋆. (3.16)

Proof. By (3.14), we can get (3.15) directly. Since vph,1 |Gh = 0, vph,2 |Gh = 0, it implies

∥vph∥⋆ = ∥µ
1
2 ϵ(vph)∥0,ω1,h∪ω2,h . (3.17)

By (3.13), we know

∥µ− 1
2

1 ph,1∥20,ω1,h
+ ∥µ− 1

2
2 ph,2∥20,ω2,h

≥ C∥vph∥
2
⋆. (3.18)

Then we get (3.16).

Now, we show the stability of the discrete formulation.

Theorem 3.11. Let (vh, qh) ∈ Vh ×Qh, for sufficient small h, there exists a positive constant Cs,
such that

sup
(vh,qh)∈Vh×Qh

Bh[(uh, ph), (vh, qh)] + γ1Jp(ph, qh) + γ2Ju(uh,vh)

|||(vh, qh)|||h
≥ Cs|||(uh, ph)|||h. (3.19)

Proof. Let (vh, qh) = (uh, ph), by Lemma 3.8, one has

Bh[(uh, ph), (uh, ph)] = ah(uh,uh) ≥ Ca∥uh∥2⋆ − γ2Ju(uh,uh). (3.20)

Let (vh, qh) = (vph , 0) which satisfies Lemma 3.10, then we obtain

Bh[(uh, ph), (vph , 0)] ≥ ah(uh,vph) + Cb∥ph∥20,Ω1,h∪Ω2,h
− Jp(ph, ph). (3.21)

Using the Cauchy-Schwarz inequality and (3.16), we get

ah(uh,vph) ≤ ∥uh∥⋆∥vph∥⋆ ≤ C∥uh∥⋆∥µ− 1
2 ph∥0,Ω1,h∪Ω2,h . (3.22)
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By (3.21)-(3.22) and the arithmetic-geometric inequality, we derive

Bh[(uh, ph), (vph , 0)] ≥− C

2ε
∥uh∥2⋆ +

(
Cb −

Cε

2

)
∥µ− 1

2 ph∥20,Ω1,h∪Ω2,h
− Jp(ph, ph). (3.23)

Combining (3.20) with (3.23), we deduce

Bh[(uh, ph), (uh + ηvph , ph)]

≥Ca∥uh∥2⋆ − Ju(uh,uh) + η

(
− C

2ε
∥uh∥2⋆ +

(
Cb −

Cε

2

)
∥µ− 1

2 ph∥20,Ω1,h∪Ω2,h
− Jp(ph, ph)

)
≥
(
Ca − Cη

2ε

)
∥uh∥2⋆ − Ju(uh,uh) + η

(
Cb −

Cε

2

)
∥µ− 1

2 ph∥20,Ω1,h∪Ω2,h
− ηJp(ph, ph).

Let ε = Cb
C
, η = CaCb

C2 , γ1 = η + 1, γ2 = 2. Choosing Cs = min
{

Ca
2
,
CaC2

b
2C2 , 1

}
, we can get

Bh[(uh, ph), (uh + ηvph , ph)] + γ1Jp(ph, ph) + γ2Ju(uh,uh + ηvph) ≥ Cs|||(uh, ph)|||2h. (3.24)

It is easy to check
|||(uh, ph)|||h ≥ C|||(uh + ηvph , ph)|||h. (3.25)

In fact, since vph |Gh = 0, we know

Ju(uh + ηvph ,uh + ηvph) ≤ C(Ju(uh,uh) + η2Ju(vph ,vph)),

and we only need to prove

Ju(vph ,vph) ≤ C∥µ− 1
2 ph∥20,ω1,h∪ω2,h

, (3.26)

∥uh + ηvph∥⋆ ≤ C|||(uh, ph)|||h. (3.27)

By means of the approximation property of L2 projection and (3.13), we obtain (3.26). Combining
the definitions of ∥ · ∥⋆ and |||(·, ·)|||h with inequality (3.16), using the triangle inequality, we can get
(3.27) directly. This completes the proof.

Remark 3.1. Combining Lemma 3.7 with Theorem 3.11 and applying Babuška theorem, we can
know that the solution of the discrete problem (2.3) is existent and unique.

4 Approximation Properties and Optimal Convergence

According to extension theorem (see [20] (Theorem 1, Sect. 5.4) or [21] (Theorem 5.24)), there are
extension operators for i = 1, 2, Es

i : Hs(Ωi) → Hs(Ω) such that (Es
i v)|Ωi = v and

∥Es
i v∥s,Ω ≤ C∥v∥s,Ωi , ∀v ∈ Hs(Ωi), s = 0, 1.

Let Ih :
(
H2(Ω) ∩H1

0 (Ω)
)2 → Vh be the nodal interpolation operation, πh : H1(Ω) → Qh be the

local L2 projection. Define

(I∗hv, π
∗
hq) =

(
(I∗h,1v1, I

∗
h,2v2), (π

∗
h,1q1, π

∗
h,2q2)

)
, (4.1)

where I∗h,ivi =
(
IhE

2
i vi

)
|Ωi , π

∗
h,ivi =

(
πhE

1
i vi

)
|Ωi .

Theorem 4.1. For (u, p) ∈
(
H2(Ω1 ∪Ω2)∩H1

0 (Ω)
)2 × (

H1(Ω1 ∪Ω2) ∩L2
0(Ω)

)
, let (I∗h, π

∗
h) be the

interpolation operator defined in (4.1). There exist a positive constant C independent of µ1, µ2 and
how the interface Γ intersects the triangulation, such that

|||(u− I∗hu, p− π∗
hp)||| ≤ Ch

(
∥µ

1
2
maxu∥2,Ω1∪Ω2 + ∥µ− 1

2 p∥1,Ω1∪Ω2

)
. (4.2)
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Proof. Let ui = u|Ωi , Ti = T ∩ Ωi, i = 1, 2. Using the approximation property of Ih, we have

∥ϵ(ui − I∗h,iui)∥20,Ti
≤ |E2

i ui − IhE
2
i ui|21,T ≤ Ch2∥E2

i ui∥22,T . (4.3)

Similarly, there holds

∥pi − π∗
h,ipi∥20,Ti

≤ Ch2
T ∥E1

i pi∥21,T . (4.4)

Summing over all the triangles T ∈ Th,i in (4.3) and (4.4), using the property of the extension
operator, we get

2∑
i=1

∑
T∈Th,i

∥ϵ(ui − I∗h,iui)∥20,Ti
≤ C

2∑
i=1

h2∥E2
i ui∥22,Ω ≤ C

2∑
i=1

h2∥ui∥22,Ωi
, (4.5)

and
2∑

i=1

∑
T⊂Ωi

∥pi − π∗
h,ipi∥20,Ti

≤
2∑

i=1

∑
T⊂Ωi

Ch2
T ∥E1

i pi∥21,T ≤
2∑

i=1

Ch2∥pi∥21,Ωi
. (4.6)

Next, we consider the jumps on the interface. By Lemma 3.3, the approximation property and
stability of the interpolation operators and the property of the extension operator, we derive

∥[u− I∗hu]∥21
2
,h,Γ ≤

2∑
i=1

∑
T∈Gh

C(h−2
T ∥E2

i ui − IhE
2
i ui∥20,T + |E2

i ui − IhE
2
i ui|21,T )

≤
2∑

i=1

∑
T∈Gh

Ch2
T ∥E2

i ui∥22,T ≤
2∑

i=1

Ch2∥ui∥22,Ωi
, (4.7)

and

∥{p− π∗
hp}∥2− 1

2
,h,Γ ≤

2∑
i=1

∑
T∈Gh

C(∥E1
i pi − πhE

1
i pi∥20,T + h2

T |E1
i pi − πhE

1
i pi|21,T )

≤
2∑

i=1

∑
T∈Gh

Ch2
T ∥E1

i pi∥21,T ≤
2∑

i=1

Ch2∥pi∥21,Ωi
. (4.8)

According to Lemma 3.3, it holds

∥▽w · n∥20,ΓT
≤ C(h−1

T |w|21,T + hT |w|22,T ), ∀w ∈ H2(T ). (4.9)

Therefore, combining (4.9) with the approximation property of Ih, we deduce

∥{ϵ(u− I∗hu)n}∥2− 1
2
,h,Γ ≤ C

2∑
i=1

∑
T∈Gh

hT ∥ϵ(E2
i ui − IhE

2
i ui)n∥20,ΓT

≤ C

2∑
i=1

∑
T∈Gh

(|E2
i ui − IhE

2
i ui|21,T + h2

T |E2
i ui − IhE

2
i ui|22,T )

≤ C

2∑
i=1

∑
T∈Gh

h2
T ∥E2

i ui∥22,T ≤ C

2∑
i=1

h2∥ui∥22,Ωi
. (4.10)

Together with (4.5), (4.7) and (4.10), we get

|||u− I∗hu||| ≤ Ch∥µ
1
2
maxu∥2,Ω1∪Ω2 . (4.11)

The desired result follows from (4.6), (4.8) and (4.11).
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Theorem 4.2. Let (u, p) ∈
(
H2(Ω1∪Ω2)∩H1

0 (Ω)
)2×(

H1(Ω1∪Ω2)∩L2
0(Ω)

)
be the solution of the

elasticity interface problem (2.2), and (uh, ph) ∈ Vh × Qh be the solution of the discrete problem
(2.3). It is true that

|||(u− uh, p− ph)||| ≤ Ch(∥µ
1
2
maxu∥2,Ω1∪Ω2 + ∥µ− 1

2 p∥1,Ω1∪Ω2), (4.12)

where C is a positive constant independent of µ1, µ2 and how the interface Γ intersects the triangulation.

Proof. Note that

|||(u− uh, p− ph)||| ≤ |||(u− I∗hu, p− π∗
hp)|||+ |||(uh − I∗hu, ph − π∗

hp)|||h. (4.13)

By Theorem 4.1, we only need to deal with |||(uh − I∗hu, ph − π∗
hp)|||h. Let ξh = uh − I∗hu, ζh =

ph − π∗
hp, ξ = u− I∗hu, ζ = p− π∗

hp. By means of Theorem 3.11 and Lemma 3.1, there holds

|||(ξh, ζh)|||h ≤C sup
(vh,qh)∈Vh×Qh

Bh[(ξh, ζh), (vh, qh)] + γ1Jp(ζh, qh) + γ2Ju(ξh,vh)

|||(vh, qh)|||h

≤C sup
(vh,qh)∈Vh×Qh

Bh[(ξ, ζ), (vh, qh)]− γ1Jp(π
∗
hp, qh)− γ2Ju(I

∗
hu,vh)

|||(vh, qh)|||h
. (4.14)

Applying the Cauchy-Schwarz inequality and Lemma 3.6, we have

Bh[(u− I∗hu, p− π∗
hp), (vh, qh)] ≤ |||(u− I∗hu, p− π∗

hp)||||||(vh, qh)|||
≤ C|||(u− I∗hu, p− π∗

hp)||||||(vh, qh)|||h. (4.15)

Let E2u = (E2
1u1, E

2
2u2). By the Cauchy-Schwarz inequality, the properties of L2 projection, it

holds

Ju(I
∗
hu,vh) = Ju(I

∗
hu−E2u,vh) + Ju(E

2u,vh)

≤
2∑

i=1

Nl,i∑
l=1

µih
−2
Pl,i

(
∥(E2

i ui − I∗h,iui)−Πl,i(E
2
i ui − I∗h,iui)∥0,Pl,i

+ ∥E2
i ui −Πl,iE

2
i ui∥0,Pl,i

)
∥vh,i −Πl,ivh,i∥0,Pl,i

≤
2∑

i=1

Nl,i∑
l=1

µih
−2
Pl,i

ch2∥E2
i ui∥2,Pl,i · ch∥▽vh,i∥0,Pl,i

≤ ch∥µ
1
2
maxu∥2,Ω1∪Ω2 |||(vh, qh)|||h. (4.16)

Using the Cauchy-Schwarz inequality, we get

Jp(π
∗
hp, qh) ≤

2∑
i=1

µ−1
i h3

∑
e∈Fi

∥[∇π∗
h,ipi]e∥0,e∥[∇qh,i]e∥0,e ≤ Jp(π

∗
hp, π

∗
hp)

1
2 |||(vh, qh)|||h. (4.17)

By the stability of πh and the property of the extension operator, it follows

Jp(π
∗
hp, π

∗
hp) =

2∑
i=1

∑
e∈Fi

µ−1
i h3∥[∇π∗

h,ipi]e∥20,e ≤ ch2
2∑

i=1

µ−1
i

∑
e∈Fi

∥∇π∗
h,ipi∥20,T l∪Tr

≤ ch2
2∑

i=1

µ−1
i

∑
T∈Th

∥πhE
1
i pi∥21,T ≤ ch2

2∑
i=1

µ−1
i

∑
T∈Th

∥E1
i pi∥21,T

≤ ch2µ−1
i ∥p∥21,Ω1∪Ω2

, (4.18)

where T l, T r are two elements sharing an edge e.

Together with (4.13)-(4.18), we get the desired result.

77



Cao; JAMCS, 37(2): 67-82, 2022; Article no.JAMCS.85968

5 Numerical Experiments

In this section, we are going to present two numerical experiments to demonstrate our method. In
the following tests, we choose the penalty parameters γ1 = γ2 = 1, γu = 10 in the model problem
(2.1).

5.1 Example 1

In this example, we consider the straight interface Γ : x− π
8
= 0 and take the exact solution

u(x, y) =


( 1

µ1
x(x− 1)y(y − 1)(x− π

8
)2

1
µ1
x(x− 1)y(y − 1)(x− π

8
)2

)
in Ω1,( 1

µ2
x(x− 1)y(y − 1)(x− π

8
)2

1
µ2
x(x− 1)y(y − 1)(x− π

8
)2

)
in Ω2,

in the domain Ω = (0, 1) × (0, 1). The domain Ω is divided by the interface into two sub-domains
Ω1 = {(x, y) ∈ Ω : x > π

8
} and Ω2 = {(x, y) ∈ Ω : x ≤ π

8
}.

In Tables 1-6, we list the errors with respect to different mesh sizes
(
h = 1

n
, n = 8, 16, 32, 64

)
and different pairs of Lamé constants (µ1, µ2, λ1, λ2)=(40, 4, 80, 8), (4, 40, 8, 80), (400, 4, 800, 8),
(4, 400, 8, 800), (4000, 4, 8000, 8), (4, 4000, 8, 8000). From Tables 1-6, we can observe that the
convergences of u− uh in the energy norm and p− ph in the norm ∥ · ∥0 are optimal. Moreover,

the convergence of u− uh in the norm ∥ · ∥0 is second order. All the numerical results mentioned
in the above are optimal independent of the quotient µ1

µ2
.

Table 1. The finite element errors with µ1 = 40, µ2 = 4, λ1 = 80, λ2 = 8

n |u− uh|H1 order ∥u− uh∥L2 order ∥p− ph∥L2 order

8 2.6190e-03 8.8870e-05 6.1961e-03
16 1.3311e-03 0.9764 2.1896e-05 2.0210 2.0403e-03 1.6026
32 6.6785e-04 0.9950 5.3448e-06 2.0345 6.9453e-04 1.5547
64 3.3421e-04 0.9988 1.3748e-06 1.9589 2.4402e-04 1.5090

Table 2. The finite element errors with µ1 = 4, µ2 = 40, λ1 = 8, λ2 = 80

n |u− uh|H1 order ∥u− uh∥L2 order ∥p− ph∥L2 order

8 1.2791e-03 4.2218e-05 6.0436e-03
16 6.3771e-04 1.0041 1.0651e-05 1.9869 2.0372e-03 1.5688
32 3.2067e-04 0.9918 2.7102e-06 1.9745 6.9444e-04 1.5527
64 1.6167e-04 0.9880 6.6027e-07 2.0373 2.4433e-04 1.5070
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Table 3. The finite element errors with µ1 = 400, µ2 = 4, λ1 = 800, λ2 = 8

n |u− uh|H1 order ∥u− uh∥L2 order ∥p− ph∥L2 order

8 2.6308e-03 9.3428e-05 6.6212e-03
16 1.3318e-03 0.9821 2.2311e-05 2.0661 2.1151e-03 1.6464
32 6.6715e-04 0.9973 5.3365e-06 2.0638 6.9768e-04 1.6001
64 3.3385e-04 0.9988 1.3825e-06 1.9486 2.4484e-04 1.5107

Table 4. The finite element errors with µ1 = 4, µ2 = 400, λ1 = 8, λ2 = 800

n |u− uh|H1 order ∥u− uh∥L2 order ∥p− ph∥L2 order

8 1.2059e-03 4.1114e-05 6.0709e-03
16 6.2263e-04 0.9537 1.0454e-05 1.9756 2.0484e-03 1.5674
32 3.1401e-04 0.9876 2.7131e-06 1.9460 6.9982e-04 1.5494
64 1.5739e-04 0.9965 6.4646e-07 2.0693 2.4545e-04 1.5116

Table 5. The finite element errors with µ1 = 4000, µ2 = 4, λ1 = 8000, λ2 = 8

n |u− uh|H1 order ∥u− uh∥L2 order ∥p− ph∥L2 order

8 2.6504e-03 9.8701e-05 7.5144e-03
16 1.3341e-03 0.9903 2.2849e-05 2.1109 2.2377e-03 1.7476
32 6.6723e-04 0.9996 5.3403e-06 2.0971 7.0191e-04 1.6727
64 3.3384e-04 0.9990 1.3813e-06 1.9509 2.4431e-04 1.5226

Table 6. The finite element errors with µ1 = 4, µ2 = 4000, λ1 = 8, λ2 = 8000

n |u− uh|H1 order ∥u− uh∥L2 order ∥p− ph∥L2 order

8 1.2055e-03 4.1110e-05 6.0754e-03
16 6.2273e-04 0.9529 1.0467e-05 1.9736 2.0592e-03 1.5609
32 3.1511e-04 0.9827 2.8950e-06 1.8543 8.2469e-04 1.3202
64 1.5735e-04 1.0019 6.4564e-07 2.1647 2.5308e-04 1.7042

5.2 Example 2

In this part, we consider a circular interface Γ : x2 + y2 − r20 = 0, with r0 = π
8
. The exact solution

is given by

u(x, y) =



( 1
λ1

(x2 + y2)
α1
2

1
λ1

(x2 + y2)
α2
2

)
in Ω1,( 1

λ2
(x2 + y2)

α1
2 + ( 1

λ1
− 1

λ2
)rα1

0

1
λ2

(x2 + y2)
α2
2 + ( 1

λ1
− 1

λ2
)rα2

0

)
in Ω2,

with α1 = 5, α2 = 7, in the domain Ω = (−1, 1) × (−1, 1), where Ω1 = {(x, y) : x2 + y2 ≥ r20} and
Ω2 = {(x, y) : x2 + y2 < r20}.

We vary the Lamé parameters λ1, µ1 and λ2, µ2, so that we can test problems with different
discontinuities in Lamé parameters. From Tables 7-9, we can observe the same convergence holds
as Example 1, which is consistent with our theoretical analysis.
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Table 7. The finite element errors with µ1 = 40, µ2 = 4, λ1 = 80, λ2 = 8

n |u− uh|H1 order ∥u− uh∥L2 order ∥p− ph∥L2 order

8 9.5374e-01 7.7226e-02 1.6847e+00
16 4.9385e-01 0.9495 2.0001e-02 1.9490 6.5002e-01 1.3740
32 2.4657e-01 1.0020 4.7555e-03 2.0724 2.2391e-01 1.5376
64 1.2338e-01 0.9988 1.1841e-03 2.0058 8.1079e-02 1.4655

Table 8. The finite element errors with µ1 = 400, µ2 = 4, λ1 = 800, λ2 = 8

n |u− uh|H1 order ∥u− uh∥L2 order ∥p− ph∥L2 order

8 9.5356e-01 7.7166e-02 1.7114e+00
16 4.9030e-01 0.9597 1.8937e-02 2.0268 6.5731e-01 1.3805
32 2.4653e-01 0.9919 4.7613e-03 1.9918 2.2555e-01 1.5432
64 1.2338e-01 0.9987 1.1762e-03 2.0172 8.1107e-02 1.4755

Table 9. The finite element errors with µ1 = 4000, µ2 = 4, λ1 = 8000, λ2 = 8

n |u− uh|H1 order ∥u− uh∥L2 order ∥p− ph∥L2 order

8 9.5401e-01 7.7154e-02 1.9592e+00
16 4.9004e-01 0.9611 1.8955e-02 2.0251 6.3211e-01 1.6320
32 2.4653e-01 0.9911 4.7383e-03 2.0002 3.2082e-01 0.9784
64 1.2338e-01 0.9986 1.1677e-03 2.0207 8.3995e-02 1.9334

6 Conclusions

In this paper, we introduce the extended mixed finite element method for the elasticity interface
problem. The stabilization terms defined on edges of interface elements guarantee that the discrete
inf-sup condition holds and the optimal a priori error estimates are obtained. By adding the ghost
penalty term, we ensure that the system matrix of the method is well-conditioned. Numerical
experiments are also given to demonstrate our theoretical results.

As far as we know, there are mainly two ways to solve the “locking” of the elasticity problem: the
nonconforming finite element method and the mixed finite element method. As we have tried to
solve the problem with the mixed finite element method, we shall try to use the nonconforming
finite element method to solve the elasticity interface problem in the future.
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