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ABSTRACT 
 

Agricultural production, agro-industrial food processing, distribution and consumption generate 
high Amounts of varied food by-products and waste which place a heavy burden on the 
environment and cause losses to the food industry. The most common disposal methods of food 
wastes are the use of landfills and incineration, which lead to several environmental, social, and 
economic issues. However, many of these by-products and wastes have been reported to be 
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higher than the final product in terms of nutritional or functional properties, making them potential 
raw materials for application in the agro-food industry. Together with the recent sustainable 
development goals of food security, environmental protection, and energy efficiency, these are the 
key reasons why food waste valorization is necessary. Valorization of food waste within the bio-
economy approach offers an economical and environmental opportunity that can serve as a 
solution to the issues faced with the conventional disposal methods. Traditionally, in Africa, 
especially in Cameroon, food by-products and waste have been valorized into a range of products 
for application in food and food preparation, including food additives and spices, food emulsifiers 
and stabilizers, food salts and nutraceuticals. Traditional Waste valorization methods could achieve 
sustainable development in technologically underdeveloped countries by going beyond improving 
agro-food waste management to the production of useful biochemicals, food ingredients and food 
products, which can be referred to as value added products from waste. In addition, the processing 
and conversion of these agro-food by-products and waste generated in the poor regions of the 
world for the production and formulation of novel foods and biochemicals will directly benefit the 
local communities by reducing environmental pollution and increasing income in the food industry. 
This review aims at providing insight into current trends in food waste valorization using traditional 
methods in an African country such as Cameroon. This paper presents the variety and type of food 
waste within the food chain that can be valorized into various products using traditional methods. 
Furthermore, a series of examples of key food waste valorization schemes and value added 
products as case studies to demonstrate the advancement in traditional bioconversions are 
described, bringing out the opportunities and challenges for the Cameroon bioeconomy. 
 

 
Keywords: Food waste; pollution; feed-stock; valorization; Value-added products; Bioeconomy. 
 

1. INTRODUCTION 
 
The ever increasing demand for food coupled 
with higher environmental standards is re-
shaping agricultural activities toward ecologically 
sustainable and efficient systems [1]. While the 
existing literature has mainly focused on 
increasing food production, the magnitude of 
waste and by-products are too large to be 
ignored [2,3]. Agricultural production and agro-
industrial processing generate high amounts of 
food by-products and waste, which have been 
reported to be higher than the final product in 
terms of nutritional or functional properties [4]. It 
has been estimated that about one-third of the 
edible parts of food produced for human 
consumption worldwide is either lost or                  
wasted [5], and these losses have been valued 
at 1 trillion USD [6]. The transportation, storage, 
and processing stages of the food                 
production chain are also sources of fruit and 
food waste.  
 

Food wastes and byproducts are often rich in 
beneficial nutrients and bioactive compounds, 
making them a useful tool in meeting the need 
for more composite nutritional sources in 
present-day society [7]. Many waste valorization 
methods could achieve sustainable development 
by going beyond improving agro-food waste 
management to the production of useful 
biochemicals, food ingredients and food 

products, which can be referred to as value 
added products from waste. 
 
Food by products can be defined as secondary 
products derived from primary agro-food 
production processes, and they are an 
interesting and cheaper source of potential 
functional ingredients [8]. Food waste refers to 
“unwanted or unusable material, substances, or 
by-products” that are “eliminated or discarded as 
no longer useful or required after the completion 
of a process” [9]. The negative environmental, 
social, and economic problems caused by food 
by-products and waste remain a worldwide 
cause for concern [1]. According to FAO, [3], 
about one-third of all edible food (1.3 billion 
metric tonnes, MMT) is lost across the food chain 
each year. Most of these byproducts and wastes 
are dumped in municipal landfills where 
degradation by microbes and leachate 
production pose a variety of environmental 
issues. Economically, the handling of these 
waste products in land fills comes with great 
costs, and it is quite challenging to manage large 
amounts of different degradable materials with 
such differences in their properties [10, 11]. 
Social impacts may be attributed to an ethical 
and moral dimension within the general concept 
of global food security since 805 million people 
across the globe suffer from hunger [12]. Most of 
the studies on food waste and by-products in 
sub-Saharan Africa, particularly in Cameroon 
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have been concerned with estimating the extent 
of waste and by-product generation, without 
worries of the technological importance and 
potential on development of the bio-economy.  
 
The most common traditional methods of food 
waste disposal are incineration and disposal in 
landfills, which cause air and water pollution and 
eventually lead to food and soil contamination. 
The European Union (EU) is promoting the 
reduction of food wastes and the search for new 
end-uses for food by-products to help in 
resolving these challenges [13]. Following these 
recommendations, food waste from several agro-
food industries such as vegetables, fruits, 
beverages, sugar, meat, aquaculture, marine 
products and seafood represent an interesting 
and cheaper source of potentially functional or 
bioactive compounds. In this context, the 
biorefinery concept has emerged as the 
development of integrated and combined 
extraction or recovery processes for the 
conversion of biomass into many added-value 
products [14]. 
 
Food waste is abundant in sub-Saharan Africa, 
especially in Cameroon, and earlier research on 
waste management in the area has been 
focused on waste collection and disposal 
practices and their environmental implications 
[15, 16] with minimal attention given to the 
potential of transforming these waste materials 
into value added products and biochemicals. In 
Cameroon for example, foods such as maize 
(Zea mays), rice (Oryza sativa), cassava 
(Manihot esculenta Crantz), fruits like oranges, 
lemons and pineapple, and vegetables such as 
amaranth (Amaranthus cruentus) are widely 
cultivated for subsistence [17, 18].  Numerous 
reports [19, 20, 3,21] have underlined the 
significance of food by-products and waste and 
the need to reduce them to improve food security 
and sustainability of food systems. 

 
The available disposal options in under-
developed technologically poor countries like 
Cameroon still largely remain slash and burn or 
land fillings, producing large quantities of 
greenhouse gases (GHG). Greenhouse gases 
are generated during incineration and 
composting, while eutrophication and 
acidification of local ecosystems is the result of 
the wastewater generated during anaerobic 
digestion [22, 23]. The processing and 
conversion of agro-food by-products and waste 
generated in the poor regions of the world for the 
production and formulation of novel foods and 

biochemicals will directly benefit the local 
communities [24]. In Cameroon, for example, the 
use of plantain and banana byproducts has been 
suggested as the main raw material for the 
production of traditional food salts commonly 
called Nikkih, which are used in yellow achu-
soup preparation due to their emulsification 
properties [25]. 
 
The valorization of agro-food byproducts and 
waste into different high-value products has been 
reviewed by numerous studies, [26, 27, 28, 29] 
while others [30-33] investigated and described 
the chemical processes involved in the 
conversion. However, these reviews focused on 
valorization using advanced technology, 
affordable to developed and industrialized 
countries, with little focus on the contribution of 
agro-food waste valorization for food security in 
undeveloped African countries.  In this review 
paper we will therefore try to frame the key 
issues associated with traditional valorization of 
agro-food waste into value added food products 
and biochemicals within the context of the 
emerging bio-economy and circular-economy, 
suggesting that valorizing these agro-food 
wastes can significantly contribute to solving 
malnutrition and hunger in undeveloped African 
countries, especially in Cameroon. The following 
examples have been chosen as being a relevant 
set of materials for which there is sufficient 
information, and clear improvements and 
opportunities are envisaged.  
 

2. AGRICULTURAL BY-PRODUCTS AND 
WASTE GENERATION IN CAMEROON 

 
The country Cameroon is located in the Gulf of 
Guinea with Gabon, Guinea Republic and 
Nigeria as its neighbours, and it had a population 
of about 26.55 million as of 2020. The 
importance of agriculture, fishery and livestock 
and their contribution to the economy of 
Cameroon is significant as it is highly dependent 
on it, which provides 70 percent of its active 
population employment opportunity. Due to the 
high agricultural activities, both plantation and 
non-plantation waste biomass are abundant, 
which are highly under-utilized.  Cameroon is 
one of the prominent world producers of crops 
like cocoa, coffee, bananas, palm products, 
tobacco, rubber, and cotton, due to its richness in 
natural resources. Other important products 
include  cereals (maize, millet, sorghum and 
paddy), roots and tubers (cassava, cocoyam, 
taro, potato, yam), oilseeds (groundnut, 
cottonseed), fruits and vegetables (citrus, 
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pineapple, tropical fruits) legumes and pulses, 
spices and condiments, leafy vegetables and 
mushrooms, plants and ornamental flowers, just 
to name a few [34].  
 
In terms of waste and by-products generation, 
the agricultural sector ranks among the top 
sectors due to the large amounts generated 
which will cause problems to worldwide health 
and threaten food security when allowed to 
accumulate unchecked [35, 36]. In Cameroon for 
example, wastes such as corncob, rice husk and 
groundnut husk are generated from the 
cultivation of crops like maize (Zea mays), rice 
(Orita sativa) and cassava (Manihot esculenta 
Crantz) for subsistence alongside vegetables 
such as amaranth (Amaranthus cruentus) 
[17,18]. Reports have shown that the 
percentages of postharvest losses of amaranths 
and black nightshades are about 10% and 20% 
respectively [37]. Due to low heating value and 
high smoke production, these wastes are not 
used as fuel [38, 39]. Even though they contain 
large quantities of nutrients, bioactive 
compounds and phytochemicals which                        
can be beneficial to both nutrition and health, 
their use in agriculture is limited as a result of low 
bulk density and slow decomposition rate [40, 
41]. 
 
According to the World Food Program [42], 
Cameroon is currently facing one of its most 
serious food crises, with the approximate number 
of food-insecure households being 16% (about 
3.9 million people) of which 1% are in a state of 
severe food insecurity. This may be due to an 
increase in food unavailability and inaccessibility, 
with a corresponding increase in food wastage. 
About 40 to 50% of the world’s fresh products 
(30% for cereals and 20% for oilseeds, meat, 
and milk products) is estimated to be lost in the 
food supply chain yearly [43]. The Food and 
Agricultural Organisation [44] defines food losses 
and waste as a decrease in the quantity or 
quality of food along the food supply chain. In 
developing and developed countries, the 
quantities of fruits and vegetables lost after 
harvesting vary [45], and the figures can vary 
from 30% to even 50% in some African countries 
depending on the perishability of the foods 
concerned. According to Kughur et al. [46] the 
postharvest loss was reported to be 48.5% in 
Nigeria, while Zenebe et al. [47] reported a 
45.9% postharvest banana loss in Ethiopia. 
Bangladesh on the other hand had values 
between 20 and 40% [48]. These studies mainly 
focused on the extent of losses without 

considering the effects on the health of the 
population. 

 
Though Cameroon coffee production fluctuated 
substantially in recent years, the total production 
in 2020 was 36,207 tonnes [49]. By-product 
recovery is one of the main target areas as far as 
the sustainability of the coffee production chain is 
concerned [50, 51]. About 60% of the wet weight 
of the fresh coffee fruit is discarded as by-
products or waste, and this poses a significant 
threat to the environment [52, 53, 54]. Among the 
solid residues, the peel is the first to be 
generated and it represents 39% of fresh weight 
or 29% of fruit's dry matter, while the parchment 
represents around 12% of the fruit [55]. The 
production statistics from Cameroon clearly 
indicate availability of large amounts of coffee 
peels and parchment, which are highly 
underutilized.  
 
Plantain and banana are essential components 
in the diet of West and Central African 
populations [56] but the large volume of waste 
and by-products generated during their 
production is an environmental challenge. 
Cameroon is not excluded from this situation, as 
it is the fourth largest plantain and banana 
producer in West and Central Africa [56] with an 
estimated annual production quantity of about 
1.6 million tonnes [57]. The solid wastes from this 
production are mainly in the form of the peels, 
which make up about 40% of the fresh fruit 
weight. Bananas contain 60% pulp and 40% 
peel, 7.25 kg of peel produced from a banana 
box of 18.14 kg (Sharma et al., 2016). However, 
the shell contains carbon-rich organic 
compounds such as cellulose (7.6–9.6%), 
hemicellulose (6.4–9.4%), pectin (10–21%), 
lignin (6–12%), chlorophyll pigments and some 
other low molecular weight compounds. If not 
treated properly, these wastes create an 
annoying odor due to the natural decomposition 
and produce gases that contribute to the 
greenhouse effect [58]. 
 

3. CURRENT USES AND VALORIZATION 
OF AGRO-FOOD WASTE AND FOOD 
BY-PRODUCTS IN FOOD 
PREPARATION IN AFRICA AND 
CAMEROON 

 
Most of the studies on waste in Cameroon are 
concerned with estimating the extent of food 
waste, by-products and losses and their disposal 
without, however, worries of sustainable 
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valorization of these wastes into value added 
products. Identifying and properly valorizing 
these wastes will reduce losses of valuable 
nutrients and potential raw materials, and protect 
both the population and environment since waste 
is directly linked to human development [59]. 
 

3.1 Value Added Food Products from 
Plantain and Banana Wastes and By-
products 

 
Plantain (Musa paradisiaca) is a large 
herbaceous perennial crop which is a member of 
the family Musaceae together with bananas 
(Musa sapientum and Musa cavandish). Plantain 
(Musa spp) is an important global fruit that is 
widely cultivated in tropical countries for various 
food industry applications. Bananas and 
plantains have been said to be the 2

nd
 largest 

fruit crops of the world [12]. The peel of banana 
represents about 30-40% of the total weight of 
fresh banana and has been underutilized. The 
world production is estimated to be 139 million 
tons, in which tropical Africa alone produces 
about 17 million tons of bananas annually. It has 
become a basic food crop for over 70 million 
people in Africa. Over 50 species of Musa are in 
existence, in which the main groups of edible 
bananas or plantains are derived from Musa 
acuminata and Musa balbisiana [60]. Even 
though plantains and bananas have similar 
methods of growth and development, they can 
be differentiated from one another by form of 
stem, colour and size, leaf colour, fruit shape and 
size, nutrient content, and plantains consist 
mostly of carbohydrates while bananas mainly 
contain sugar [61]. The parts of the banana and 
plantain plants which are generated as 
byproducts after cultivation and processing 
include the peels, leaves, sheaths, peudostem, 
pith and male bud [62]. 
 

3.1.1 Traditional food salts (Nikkih) from 
Banana and plantain peel  

 

Plantain and banana peels are valorized using 
traditional technology for the production of a 
traditional food salt or potash, commonly called 
“nikkih” in many regions of Cameroon, especially 
the West and North West Regions. This 
traditional food salt (nikkih) is the crude brownish 
or blackish extract produced traditionally by 
leaching the ashes of combusted agro-food 
waste with water to obtain a potassium-
carbonate-rich crude bio-extract [60, 63]. Nikkih 
can either be obtained from peels boiled at 90

o
C 

before drying, or directly dried raw peels which 

are combusted to produce ash that is leached 
with water to obtain the crude blackish or 
brownish extract [25]. Their chemical 
composition shows that they are a mixture of 
salts and thus, made of cations and anions, the 
major cation being generally sodium or 
potassium whereas the major anions are 
generally carbonates, bicarbonates, sulfates, and 
chlorides [64, 65]. These bio-based functional 
plant extracts are fast replacing the common lake 
salt called ‘kangwa’, as they are regarded as 
cheaper, safer, less-toxic and readily available 
from food waste biomass and their production 
from waste biomass contributes to environmental 
protection.   
 
Due to its potential for use in emulsification, 
tenderization, thickening, seasoning, and as a 
potentiating adjunct and preservative, Nikkih is 
being used in the preparation of a variety of 
foods [66]. Its functional properties can be linked 
to the alkalinity of the aqueous solution as shown 
in studies by Onwuka et al. [67]. Bergeson et al. 
[68] and Doumta et al. [69] also carried out 
studies on the ability of nikkih to reduce cooking 
time. It is an important household ingredient 
which is traditionally used in many food 
preparation processes in Cameroon, and also in 
food industries. It is used in the preparation of 
yellow “achu” soup, and gives vegetables a good 
texture and appearance during their preparation. 
In the dairy industry, when cream is separated 
from whole milk during the production of butter, 
lime water is often added to the cream to reduce 
acidity prior to pasteurization. 
 
3.1.2 Flour from banana and plantain 

pseudostem 
 
The main nutritional components of banana 
pseudostem are cellulose, hemicellulose, protein, 
fat and dietary fibres along with other nutritive 
elements. One of the most popular ways of 
exploiting the underutilized plant resources has 
been through the preparation of composite flours, 
such as Banana and plantain pseudostem flour. 
Banana and plantain pseudostem flour is a 
product obtained by peeling the epidermis of the 
stem, after which the peeled pseudostem is 
washed, cut, boiled (for 10 minutes), sliced, dried 
(at 60°C for 24 h), ground in a blender and 
sieved to obtain a fine powder [70]. Flour made 
from banana pseudostem is rich in fiber, macro 
minerals like potassium, sodium, calcium, 
magnesium and phosphorus, and it can be used 
in the enrichment of food products such as dairy 
and bakery products [71].  
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Studies showed that by the partial substitution of 
wheat flour with banana pseudostem flour in 
bakery products, the dietary fiber content was 
increased [72]. Composite flours refer to mixtures 
of several flours gotten from either cereals, 
legumes or other plant products with or without 
the presence of wheat flour. Due to their 
enriched nutritional profile, better digestibility and 
potential for use in overcoming the wheat 
production deficit in some areas of the world, 
they have gained a lot of attention in the food 
industry.  
 
3.1.3 Banana and plantain leaf extract 
 
Banana and plantain leaves have been 
traditionally used for packaging of certain foods, 
but new techniques for the valorization of these 
byproducts are being studied [73], such as 
making use of the leaf extracts. Banana leaf 
extract is produced by passing the washed 
leaves three times through a mill called 
“trapiche”, after which the juice is collected and 
stored at low temperatures for further use [73].  It 
has been shown to be potent in the prevention of 
enzymatic browning and quality deterioration of 
freshly cut guava slices during storage [74]. This 
implies that banana leaf extract can potentially 
be used in the prevention of enzymatic browning 
in other food products as well. Studies have also 
shown that banana leaves present anti-diabetic 
properties such as a decrease in glucose levels 
and increase in glycogen and plasma insulin 
levels when administered to hyperglycemic rats 
[75], and can therefore serve as a good raw 
material in the development of functional foods 
for diabetes patients. Rutin, a pharmacologically 
active phytochemical that decreases glycemia, 
increases insulin secretion and inhibits α-
glucosidase is the major component responsible 
for the antidiabetic activity of banana leaves [75]. 

 
3.1.4 Banana and plantain inflorescences 

 
Banana inflorescences have been used in some 
parts of the world to make pie fillings, salads, 
increase the yield of meat-based meals, and 
when converted into flour via drying and grinding, 
these inflorescences can be used in food 
enrichment and functional food development due 
to their low caloric content, high fiber, and high 
potassium content [76]. They have also been 
shown to have antioxidant, antidiabetic, 
antimicrobial, anti-inflammatory, anti-cancer and 
cardio-protective properties [77]. Extracts of 
banana inflorescences have been used in the 
production of both a beverage and flour which 

were rich in alkaloids, saponins, glycosides, 
tannins, flavonoids, and steroids, showed 
antioxidant activity, and helped to increase 
breast milk production in lactating mothers [78]. 
 

3.2 Value Added Products from Pineapple 
Waste and By-products 

 
Pineapple (Ananas comosus) is one of the most 
produced fruits worldwide, with primary 
producers being Costa Rica, Philippines, Brazil, 
Thailand and India [79]. It is a uniquely shaped 
plant that belongs to the Bromeliaceae family 
and is cultivated in tropical and subtropical zones 
[80]. Due to its richness in vitamin C and 
Calcium, there has been a growing demand for 
its fruits and products over the years. It has 
attractive sensorial (mechanical properties, 
flavor, acidity/sweetness ratio, color) and 
nutritional (vitamin A, B and C, minerals, fibers, 
and antioxidants) properties. During pineapple 
processing, transportation and storage, about 
80% of the parts such as the crown, peels, 
leaves, core and stems, are discarded and end 
up as waste [81]. About 30% to 35% of the fruit is 
discarded in the form of by-products such as 
peels and pomace during the processing stage 
[82].  Apart from processing, pineapple wastes 
are also generated from poor handling and 
storage of fresh fruit, or lack of good and reliable 
transportation systems [83].  The presence of 
sugars, trace elements (potassium, calcium and 
magnesium) and polyphenolic compounds in 
pineapple has caused increased interest in 
pineapple waste and by-product valorization. 
Several high-value products can be obtained 
from pineapple processing such as nanocrystals, 
bromelain enzyme, bioactive compounds, wine, 
vinegar, biopolymers, bio-packaging, organic 
acids, adsorbents, biofuel and biogas. Pineapple 
waste has been used in the production of 
phenolic antioxidants, anti-dyeing agents and 
animal feed [84, 85]. Vinegar can also be 
produced from pineapple peels via fermentation 
with acetic acid bacteria [86]. The addition of 
pineapple peel flour to wheat flour in the 
production of biscuits led to an increase in the 
proximate composition and the calcium, 
potassium, sodium and copper contents of the 
biscuits [87], indicating that pineapple peel flour 
can be used to enrich food products. 
 
The increased demand for pineapple has led to a 
corresponding increase in its production, leading 
to even more waste generation in the form of the 
crown, peels, leaves, core and stems , which 
amount to about 80% of pineapple parts [88, 89]. 
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Characterising these wastes is essential for their 
transformation into valuable products. The major 
polyphenolic compounds from pineapple waste 
include 31.76 mg of gallic acid, 58.51 mg of 
catechin, 50 mg of epicatechin and 19.5 mg of 
ferulic acid per 100 g of dry extracts [90]. Recent 
research by Dahunsi et al. [91] showed that 
pineapple waste contains 19.4% lignin, 32.4% 
cellulose and 23.2% hemicellulose. 
 
3.2.1 Wine and Vinegar from pineapple peels 
 
 Pineapple wastes (particularly the peels) have 
great potential for wine and vinegar production 
due to their high sugar content [88]. Production 
of vinegar from pineapple peel using three 
different acetic acid bacteria strains showed that 
optimum acetic acid yield (6.15 g/L) was found at 
72 h fermentation time using propionic acid 
bacterium and acetic acid bacterial strains [92]. 
The juice from pineapple waste was used 
together with Saccharomyces cerevisiae for the 
production of wine with 10.8% alcohol content 
[92]. A lower alcohol content of 7% was observed 
from wine prepared using pineapple peels and 
core [93], the difference was due to the different 
fermentation methods used in both studies. 
However, 5% acetic acid was obtained despite 
the low alcohol content, which is higher than in 
the previous study. Correspondingly, work done 
by Ekechukwu et al. [94] shows a lower alcohol 
content in wine produced from pineapples using 
Saccharomyces cerevisiae (6.60%) and 
Saccharomyces bayanus (6.75%) compared to 
the alcohol content in that of Umaru et al. [92]. 
Other studies carried out by Roda et al. [93] 
reported that physical and enzymatic 
combination before alcohol fermentation were 
necessary for the production of good quality 
wines. By varying the Saccharomyces cerevisiae 
strain and temperature, a substantial difference 
in the wine’s fruity character was detected. Other 
than that, the sensory evaluation of pineapple 
organic side-stream syrup revealed its potential 
when combined in bakery products [95]. 
Although these studies proved that pineapple 
residues could be utilized as food enhancers and 
beverages, further studies should explore more 
the pineapple residue’s utilisation potential in the 
food and beverage industries, in terms of its 
production by focusing on the quality and purity. 
 
3.2.2 Cellulose Nanocrystals from pineapple 

leaf waste 
 
The composition of pineapple leaf waste has 
been shown to be 13.05% lignin, 21.02% 

hemicellulose and 41.15% cellulose [81]. As a 
result, pineapple leaves have been used in the 
development of nanofibers with desirable 
properties which can be applied in the food 
packaging sector [96], and being plant fibers they 
can serve as a good potential alternative to 
synthetic fibers from petroleum-based non-
renewable resources [97]. Pineapple leaves have 
also been used for the extraction of ethanol, 
which is rich in phytochemicals such as p-
coumaric acid, 1-o-p-coumaroylglycerol, caffeic 
acid and 1-o-caffeoylglycerol, and when 
administered to diabetic rats it inhibited the 
increase in blood glucose and postprandial 
triglycerides [98]. Pineapple leaf waste was 
shown by dos Santos et al. [99] to be a suitable 
raw material for the production of cellulose 
nanocrystals, which can be used as a source of 
dietary fiber in functional foods, and for the 
production of food thickeners, stabilizers and 
flavor carriers [100]. Cellulose nanocrystals 
(CNC) derived from the abundance of cellulose 
in the biomass are one of the most favourable 
materials for nanocomposites, and they currently 
serve as a reinforcing agent in the 
nanocomposites field. CNC have a large surface 
area, high mechanical strength, are non-toxic, 
hydrophilic, biocompatible and biodegradable 
[101, 99]. 
 
3.2.3 Bromelain Enzyme from pineapple peel 

waste 
 
Pineapple peels are used to process fruit juices 
both locally and industrially, acting as flavor 
enhancers in juice making. Pineapple peel drying 
has been adopted in Cameroon as a strategy to 
extend the shelf life for the pineapples peels. 
Waste from pineapple processing could provide 
a range of value added ingredients for the food 
industry, including the proteolytic enzyme 
bromelain which is usually extracted from the 
stems or juice of pineapple. The main protease 
that exists in the bromelain enzyme is identified 
as stem bromelain (EC 3.4.22.32) and fruit 
bromelain (EC3.4.22.33) (Nor et al., 2015).  
Bromelain helps the digestion process and it has 
been used commercially in the food industry 
where it is known for meat tenderizing, brewing, 
baking and the production of protein 
hydrolysates, among other things [102].  
 

Pineapple peels have also been used in the 
alkali extraction of ferulic acid, which is a widely 
used phenolic antioxidant in the food and 
cosmetic industries [98]. These peels which 
account for 35 to 50% of total pineapple fresh 
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weight [103] have been shown to be a potential 
raw material for the production of biofuels such 
as ethanol and hydrogen [104]. Work done by 
Cornelia and Kristyanti [105] showed that 
pineapple peels can be used in the production of 
cider, which is rich in phenolic compounds and 
has potential antioxidant activity. Gallic acid, 
catechin, epicatechin and ferulic acid were 
identified as the main polyphenolics in pineapple 
peels [90].  
 
3.2.4 Bioactive compounds  
 
Pineapples and their wastes serve as a good 
source of antioxidants, which aid in preventing 
the formation of free radicals caused by the 
oxidation of biological molecules [106]. Studies 
done by Sepúlveda et al. [107] showed that the 
application of autohydrolysis to pineapple waste 
produced polyphenols with high antioxidant 
activity. The study also revealed that pineapple 
waste is a good source of antioxidants compared 
to readily available antioxidants in the market, 
and all pineapple waste extracts showed higher 
antioxidant activity.  
 

3.3 Value Added Products from Cereal 
Waste and Byproducts 

 
The term “cereals” refers to members of the 
Gramineae family and it includes nine species 
which are wheat (Triticum spp.), rye (Secale 
spp.), barley (Hordeum spp.), oat (Avena spp.), 
rice (Oryza spp.), millet (Pennisetum spp.), corn 
(Zea spp.), sorghum (Sorghum spp.), and triticale 
(x Triticosecale Wittmack which is a hybrid of 
wheat and rye). Cereals are cultivated for the 
edible components of their grain or the kernel. A 
cereal is a caryopsis which is composed of the 
fruit coat (pericarp) that adheres tightly to the 
seed coat and a seed consisting of germ and 
endosperm. The aleurone layer lies next to the 
pericarp, and it is rich in protein and minerals. 
The endosperm is the large central portion of the 
kernel made up mostly of starch, and the 
germ/embryo is the small structure at the lower 
end of the kernel [108]. Cereal grains are usually 
milled to remove the fibrous bran, which is one of 
the major by-products of cereal processing. 
 
Although the outer part of the cereal grain is 
usually richer in micronutrients, it is often 
undervalued and used as animal feed [109].  
Cereal bran is the nutritional storehouse of the 
grains and it contains nutrients like proteins, 
vitamins, minerals, fats, and functional food 
ingredients in the form of bioactive compounds 

such as dietary fiber, phytosterols, polyphenols 
and phenolic acids which may provide a wide 
spectrum of biological activities and other health 
benefits as seen among populations consuming 
diets based on cereal grains [110]. Its multiple 
beneficial effects could be exploited by 
incorporating it into the daily diet.  

 
3.3.1 Products obtained from rice bran 

 
Rice bran is the most attractive byproduct 
generated during rice processing because even 
though it accounts for only 9% of the rice weight, 
it contains about 65% of the nutrients of the 
whole rice grain and is rich in proteins, oil, fiber, 
micronutrients such as vitamins, and minerals, 
such as aluminum, calcium, chlorine, iron, 
magnesium, and manganese [111]. It can be 
used in the production of rice bran oil and as a 
dietary fiber source in bakery products since it 
has anti-oxidant and anti-inflammatory properties 
[112, 113]. The production of rice bran oil is one 
of the most common uses of rice bran due to the 
fact that rice bran oil is very rich in γ-oryzanol, 
tocopherols, tocotrienols, and phytosterols, a 
powerful antioxidant mixture of bioactive 
molecules [111, 114]. Rice bran oil can be used 
as an alternative to bakery shortening, and has 
shown improvement in the baking quality when 
added to baked products [115]. The presence of 
Gamma-oryzanol in rice bran makes it a very 
attractive potential food ingredient because this 
compound has been shown to decrease animal 
serum-cholesterol levels and anti-inflammatory 
activities while inhibiting cholesterol oxidation in 
vitro [115]. Due to its high fiber content, rice bran 
can give texture, gelling, thickening, emulsifying 
and stabilizing properties to certain foods [115], 
which is very useful in the food industry. Rice 
bran wax has been used in the formation of corn 
germ oil oleogels, and this formulation showed 
potential to act as a replacer of commercial 
shortening in the baking industry [117]. 
 
Other than oil, rice bran also has a 10-15% 
protein content, and these proteins have been 
found to be of high quality and application in food 
and pharmaceutical industries due to their unique 
hypoallergenicity and anticancer effects [116]. 
The partial replacement of gelatinized corn flour 
with rice bran flour in the production of corn 
flakes and tortilla chips led to an increase in the 
protein content of these products [118], making 
rice bran a potential beneficial ingredient for the 
enrichment of bakery products. A protein 
formulation based on rice bran can be used to 
target and overcome protein related nourishment 
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disorders [115] in some of the underdeveloped 
countries of the world.  
 
3.3.2 Products obtained from corn bran 
 
Corn bran is mainly made of insoluble fiber, 
cellulose, hemicellulose, and 
xylooligosaccharides making it indigestible by 
enzymes in humans and monogastric animals, 
but it can be degraded by colon bacterial 
communities [119]. It can be used as a natural 
food additive in cellulosic fiber gel (commercially 
available as Z-Trim), cellulose fiber gum and in 
corn fiber oil. Submerged fermentation of corn 
bran with Monascus purpureus led to the 
production of pigments belonging to a group 
known as azafilones which can be used as 
colour additives in the food industry [119]. Purple 
corn bran can be used for the recovery of 
anthocyanins, which are water-soluble pigments 
that can provide attractive colors to foods and 
have potential beneficial health effects such as 
antioxidant, anti-inflammatory, anticancer, 
antiobesity, and anti-diabetic properties [120]. 
Corn bran hydrolysates have been used in the 
production of pullulan, which can be used in food 
stabilization, coating and the production of 
packaging materials [121]. It can be concentrated 
and dried to produce crude bio-based fiber gums 
which can serve as emulsifiers in the food 
industry [122]. Corn bran has also been used in 
the production of ferulic acid which has many 
beneficial functions such as antioxidant, 
antimicrobial, anti-inflammatory, anticancer and 
free radical scavenging activities [123]. 
 

3.4 Value Added Products from Palm 
Kernel Waste and Byproducts 

 
The oil palm (Elaeis guineensis Jacq) is a native 
plant of the humid tropics of West Africa. 
Cultivation originated where oil palm trees were 
inter-planted in traditional agricultural production 
systems along with other annual and perennial 
crops. After the extraction of oil from the palm 
kernel, several by-products are generated such 
as the empty fruit bunches, palm pressed fibers 
and shells which are mainly composed of lignin, 
cellulose, hemicellulose and other carbonaceous 
materials [124]. 
 
3.4.1 Products from palm kernel cake 
 
Palm kernel oil is obtained from the seed (the 
kernel or endosperm) which contains about 50 
per cent oil. When the oil has been extracted, the 
residue known as “palm kernel cake” (PKC) is 

rich in carbohydrates (48%) and proteins (19%), 
and the ash contains large amounts of 
potassium. A portion of these wastes is used as 
feed supplements for livestock [125]. 
 
According to Sahin and Elhussein [126], palm 
kernel cake is rich in various phytochemicals 
such as caffeic acid, vanillic acid, d glucuronic 
acid, ferulic acid, glutaric acid, protocetechuic 
acid, quinic acid p-coumaric acid, p 
hydroxybenzoic acid, salicylic acid, shikimic acid, 
sinapic acid and syringic acid, which have a 
great role to play in extending the shelf life of 
several products as well as providing added-
value properties with their antioxidant and 
antimicrobial properties.  
 
Phenolic extracts of palm kernel cake can be 
used as antioxidants in the food industry, due to 
the fact that their experimental addition to 
sunflower oil showed an increase in its induction 
time by more than 50% [127]. Hydrolysis of palm 
kernel cake protein using different proteases led 
to the production of useful protein hydrolysates 
or bioactive peptides which showed radical 
scavenging activity, with the protein hydrolyzed 
by papain resulting in the production of the 
hydrolysate with the highest antioxidant activity 
[128]. This further supports the potential of palm 
kernel cake in the production of antioxidants for 
use in the food industry.  
 
In a study carried out by Belo et al. (2018) to 
evaluate the potential of polysaccharides 
extracted from palm kernel cake for use as 
prebiotics, it was found that these soluble 
polysaccharides showed high resistance to 
hydrolysis when subjected to artificial human 
gastric juice and promoted the proliferation of Lb. 
plantarum and Lb. rhamnosus with a decrease in 
the pH of the medium and the production of 
organic acids. This implies that palm kernel cake 
polysaccharides can be exploited as probiotics. 
 
Through solid-state lacto-fermentation, low 
molecular weight peptides were generated from 
palm kernel cake and when added to bread, 
these peptides increased its shelf life by 
inhibiting fungal growth since they showed strong 
antifungal activity against Aspergillus flavus, 
Aspergillus niger, Fusarium sp., and Penicillium 
sp. [129]. This shows that peptides extracted 
from palm kernel cake have potential to be used 
in the food industry to extend the shelf life of 
bakery products and other food products thereby 
promoting food safety, security, and 
sustainability.  Via solid state fermentation, palm 
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kernel cake has also been used in the production 
of tannase, the enzyme which catalyzes the 
hydrolysis of tannic acid by breaking its ester and 
depside bonds releasing glucose and gallic acid. 
This enzyme has various uses in the food 
industry such as the processing of tea, 
production of gallic acid, treatment of tannery 
effluents, stabilization of malt polyphenols, 
clarification of beer and fruit juices, and for the 
prevention of phenol-induced madeirization in 
wine and fruit juices [130]. 
 
3.4.2 Products from palm pressed fibre 
 
Palm pressed fiber is a form of recovered fiber 
from pressed palm fruits which is rich in 
carotenoids, vitamin E (tocopherol and 
tocotrienols), and sterols, and has been used for 
the recovery of palm pressed fiber oil which 
contains significant quantities of carotenoids 
(4000–6000 ppm), vitamin E (2400 3500 ppm), 
sterols (4500–8500 ppm), and coenzyme Q10 
quantities greater than those found in crude palm 
oil [131]. As a result, palm pressed fiber oil has 
antioxidant and anti-inflammatory properties 
[132] which can be applied in the development of 
functional foods. The presence of phosphorus in 
palm pressed fiber oil further enhances its 
antioxidant properties, and this phosphorus can 
be extracted for use as a food additive [133]. 
 
3.4.3 Products from palm kernel shells 
 
Palm kernel shell is a natural fiber which is rich in 
lignin, cellulose and hemicellulose, and can be 
used in the production of fiber-reinforced plastics, 
thereby contributing to the food packaging sector 
[134]. It can also be used as an adsorbent for the 
treatment of heavy metal contaminated water 
[135], making it a useful material for food 
wastewater treatment processes. 
 
3.4.4 Products from empty palm kernel fruit 

bunches 
 
Palm kernel empty fruit bunches are rich in 
cellulose and nanocellulose. and they have the 
lowest phenolic content among all the side 
streams derived from the palm oil production 
process [127]. However, their phenolic extracts 
still showed antioxidant activity. Cellulose and 
nanocellulose have been extracted from empty 
fruit bunches [136], and these compounds can 
be used as food additives or in the development 
of food packaging materials. Xylan can also be 
extracted from these fruit bunches and used as a 
thickening agent, or converted to xylo-

oligosaccharides which are prebiotics [136]. 
These empty fruit bunches can also be converted 
into valuable compounds such as ethanol, 
biovanillin, p-hydroxybenzoate and lignin-
containing cellulosic nano fibrils [137, 138]. 
 

3.5 Value Added Products from Mango 
Wastes and Byproducts 

 
Mango is one of the most important tropical fruits 
in the world and currently ranked 5th in total 
world production among the major fruit crops 
[139, 140, 141]. In 2009, global mango 
production was around 35 million tonnes while 
for Africa it was 13.6 million tonnes [142]. 
Majority of mango fruit produced is consumed 
fresh, while 1-2% is transformed into products 
such as jelly powders, nectars, jams, juices, fruit 
bars, flakes concentrates, and mango chips [143, 
141,142]. As a result of this processing, the 
seeds, peels and fruits unsuitable for human 
consumption are discarded as by-products and 
waste. 
 
The waste generated from the mango processing 
industry, derived mainly from the epicarp and 
endocarp has been estimated at 75000 MT [144], 
and it is increasing due to a corresponding 
increase in mango fruit production and 
processing. However, there is virtually no 
commercial utilization of mango seed kernel 
which in most cases is discarded as waste in the 
fruit processing industry.  
 

Mango seed is a good source of carbohydrates 
(58-80%), protein (6-13%) with good profiles of 
essential amino acids and lipids (6-16%) rich in 
oleic and stearic acids [145]. The seed has a 
high protein content with the presence of all 
essential amino acids at higher levels than those 
referenced by the FAO as good quality protein. 
The seed also has high lipid content, and these 
lipids have typical characteristics of a vegetable 
butter [146]. The carotenoid content was found to 
be 4–8 times higher in ripe mango peels 
compared to raw fruit peels. Carotenoids play a 
potentially important role in human health by 
acting as biological antioxidants, protecting cells 
and tissues from the damaging effects of free 
radicals and singlet oxygen, and they are used 
as natural colorants in the food industry [147].   
 

Dietary fiber content in mango peels was 
estimated according to the different varieties of 
mangoes. In dry peel, the total dietary fiber 
content varied between 45 to 78% [148]. For 
soluble dietary fiber content, both raw and ripe 
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mango peels possessed more than 35% of total 
dietary fiber. Soluble dietary fiber associates with 
cholesterol in blood and diminishes its intestinal 
absorption meanwhile insoluble dietary fiber 
relates to both water absorption and intestinal 
regulation.  
 

Reports state that mango seed kernel oil is a 
good source of polyunsaturated fatty acids which 
have health benefits like oleic and linoleic acids 
[149]. The mango kernel extracts demonstrates a 
level of antimicrobial activity which could be 
attributed to the presence of specific 
phytochemicals such as coumarins, terpenes, 
flavonoids, and tannins. The kernel powder of 
South African mango variety potrays high 
antimicrobial and antifungal activity against 
Staphylococcus aureus, Bacillus subtilis, 
Pseudomonas aeruginosa, Escherichia coli, and 
Candida albicans (Ahmed et al., 2005).  
 

3.5.1 Starch extraction 
 

In most plant materials, their principal 
carbohydrate constituent is starch which needsto 
undergo a detailed investigation so as to 
understand its variations, biochemical and 
functional characteristics. A good amount of 
research has been carried out on the functional 
and structural properties of the common starches 
in the market like, corn, potato, wheat and rice 
because of their availability and extensive usage 
in both food and non-food applications. This 
resulted in a theory that mango by-products 
could be a good source of starch given their high 
starch content (more than 50%). This starch can 
be extracted from these sources with the use of 
the aqueous extraction technique [150, 151]. 
This starch gotten could then be used for paint, 
paper, yarn sizing in textile industries, 
pharmaceuticals, and leather industries.  
 
3.5.2 Enzymes production 
 
Results from studies carried out on the 
physicochemical properties of the by-products of 
mango shows that its waste can be used in the 
production of cellulose, carboxymethyl cellulose, 
and pectinases enzymes. These enzymes, 
cellulose and carboxymethyl cellulose can play 
different roles in the food industry such as 
modification of viscosity (thickener), stabilise 
emulsions in various products including ice 
cream, as toothpaste, laxatives, diet pills, water-, 
lubricants, based paints, detergents, textile 
sizing, and many other paper products. Mango 
by-products are a good source of pectin [152, 
153]. Pectinase enzymes which can be produced 

by degrading pectin with the use of 
microorganisms through fermentative production 
could be used to produce wine in a process 
which involves degradation of plant materials. 
 
3.5.3 Lactic acid production 
 
In the food industy, lactic acid has a number of 
roles such as food preservative, curing agent in 
the processing of meats, a food ingredient in 
processed foods and flavouring agent. It is also 
used in the production of polylactic acid polymer 
as a starting material. Commercially, lactic acid is 
produced when carbohydrates such as glucose, 
lactose or sucrose are fermentated. Chemical 
synthesis could also be used in its production but 
this method is very expensive [143].  Using agro-
industrial wastes provides an alternative in the 
production of lactic acid from low cost raw 
materials after noticing that mango by-products 
have a chemical composition which could be 
used to produce lactic acid [120]. Lactic acid 
production is a two step process; waste 
pretreatment followed by acid hydrolysis of the 
by-product which is followed by microbial 
fermentation. Using mango by-products in the 
production of lactic acid has a very practical 
advantage because of the low cost of raw 
materials.   
 

3.6 Value Added Products from Citrus 
Fruit Wastes and Byproducts 

 
A very wide family of fruits consumed worldwide 
is the citrus fruits (CF). Citrus plants belong to 
the family of Rutaceae, and they include fruits 
like Mandarin, grape, lime, orange, and   lemon. 
They are well known for their promising source of 
multiple beneficial nutrients to humans.  
 
Unlike other types of fruits, citrus fruits have a 
small edible portion hence a larger quantity of 
waste materials like the peels and seeds, which 
are thrown away during processing. The principal 
residues of citrus fruit juice are water, fiber, 
soluble sugars, organic acids, amino acids and 
proteins, minerals, oils and lipids, and they also 
contain flavonoids and vitamins.  
 
One of the most diversed and underutilized 
biowaste globally is the citrus peel. The peel 
residue still accounts for about 50% wt of the fruit 
after juice extraction, and this posse as an 
environmental problem [154]. With about 15.6 
million metric tonnes of waste produced from 
31.2 million metric tonnes of processed citrus 
fruit annually, utilizing this resource is a real 
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challenge [155]. Orange peel waste is made up 
of 20% dry matter which includes sugars, 
cellulose, pectin, hemicellulose, and d-limonene 
and 80% water [156].  So far, research carried 
out on citrus waste valorization has mostly been 
focused on transforming specific components like 
n-pectin or bioethanol [157], d-limonene, [158].  
 
Seeds, exhausted peel, pressed pulp, secondary 
juice (obtained by pressing the residual pulp after 
the primary juice extraction) and leaves, are a 
good source of sugars (glucose, fructose and 
sucrose), dietary fibers (pectin and cellulose), 
polyphenols (flavonoids and phenolic acids), 
proteins, lipids (linolenic, oleic, palmitic and 
stearic acids), organic acids (i.e., citric, malic and 
oxalic acids) carotenoids (caroteneandlutein), 
vitamins (vitamin C and vitamin B complex) and 
monoterpenes (i.e., limonene and linalool) [159]. 
The method in which these fruits are cultivated 
results in the variations in the molecular 
composition of each by-product. It could also be 
affected by harvesting time and the degree of 
ripeness of the fruit. 
 
About 50% the wet mass of citrus fruits is the 
peel after juice extraction [160]. It is high in 
dietary fibers, natural pigments, pectin, fragrant 
compounds as well as polyphenols [161]. The 
citrus fruit peels contain oil sacs of peels and 
cuticles and they can also be found in seeds and 
leaves in very limited amounts so they are used 
in the extraction of essential oils. Monoterpenes 
and sesquiterpenes compounds (i.e., 
hydrocarbons with two or three isoprene units in 
their structure) and oxygenated derivatives (i.e., 
alcohols, ketones, aldehydes and esters) make 
up the chemical compostion of essential oils, 
while the main constituent of essential oil gotten 
from Citrus by-product is Limonene. β-pinene, 
sabinene and β-ocimene are characteristic of the 
essentialoils from Citrus leaves [162]. Some of 
the uses of essential oils from citrus fruit by-
products include being used as flavorings in the 
food industry, pharmaceutical and cosmetic 
products. Recently, they are being evaluated for 
their beneficial health properties [163, 164].         

 
Pectin, a complex polysaccharide made up of D-
galacturonic acid units linked together by α-1,4 
glycosidic bonds, and esterified partially either 
with methanol or acetic acid, mostly exists in 
complex insoluble forms, usually from white to 
light brown color and, act as a natural gelling 
agent. It can be found in citrus fruit juice and 
pulp. It is also presented in exhausted citrus 
peels [165] Some domestic and industrial uses of 

pectin include being used as a thickener, partial 
texturizer and a stabilizer in the preparation of 
confectionery, jams and jellies, as well as 
biodegradable products.  
 
Carotenoids are pigments biosynthesized in 
different fruits and vegetables. They are 
subdivided into two groups: xanthophylls 
(oxygenated carotenoids), for example lutein and 
violaxanthin, and carotenes (hydrocarbon 
carotenoids), for example β-carotene and 
lycopene [166, 167]. These are vitamin A 
precursors, involved in the growth of epithelial 
tissues, strengthening of the immune system and 
improving vision [168].  
 
Secondary citrus fruit juices are a good source of 
flavonoids and carotenoids. These compounds 
can also be found in the peels in small amouts. 
Flavonoids represent a wide class of secondary 
metabolites, produced by plants to protect them 
against ultraviolet radiation or pathogenic 
injuries. They have six subgroups, flavonoids, 
flavones, flavanols, flavanones, isoflavones, and 
anthocyanidins [169, 170, 171, 172]. An 
extensive study has been conducted on citrus 
flavonoids to study their neuroprotective activities 
[173], anti-inflammatory [174] and anti-cancer 
[173]. The main flavanones in “satsuma 
mandarin” juice processing waste includes 
naringin, hesperidin, hesperetin, neohesperedin, 
narirutin and rutin [175]. 
 
Citrus fruit by-products could also be applied in 
the manufacture of animal feed, especially 
ruminants. The by-products that can be used in 
the production are pulp (fresh or dried), citrus 
molasses, citrus silage, citrus activated sludge, 
citrus meal and fines, and citrus peel liquor. The 
physical and nutritional composition, digestibility, 
fermentation and effects of these feeds on 
ruminants (weight and lactating production) were 
characterized by Bampidis and Robinson, [156]. 
These authors stated that these wastes could be 
effectively used as feedstuff in rations that 
support growth and lactation in ruminants. 
  

3.7 Value Added Products from Potato 
Peels 

 

Increase in urban populations and subsequent 
increase in cost of living has led to the drastic 
increase in demand of processed foods [176]. 
The main product from potato processing is 
potato chips which give an excessive amount of 
potato peels as waste (by-product) which is 
considered to have zero value. It could range 
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from 15 to 40% of the first product mass 
depending on the method used in peeling. The 
most common cause of environmental pollution 
in food processing industries is the 
decomposition of organic waste caused when 
bacteria and other biological molecules use the 
compound as a food source. The need to avoid 
such issues led to the exploration of potato waste 
and how its high phenolic content could cause it 
to be used as an antioxidant in food systems 
[177].  
 
After maize, wheat and rice, potato is the world’s 
fourth-largest food crop. 10% of cultivated area 
produces 225 to 285 million tons of potato [178]. 
It is grown in over 130 countries around the 
world, with Cameroon accounting for 0.1% of the 
world’s total production and 0.8% of Africa’s total 
production (220,000tons of 29 million tons) [179]. 
These days, the type potato processed products 
has increased to meet the massive demand of 
the ever growing consumer population. Food 
processing industries produce a large volume of 
wastes as byproduct [180, 181]. Potato 
production has a steady increase rate of 5% per 
year in developing countries. according to FAO 
2008, the share of developing countries to global 
pototo production rose from 20% to 52%. It was 
a remarkable achievement when compared to 
the last two decades [182]. Potato waste 
contains phenols which are applied as 
preservatives in the food and pharmaceutical 
industries [183]. Food processing industries 
generate phenolic- rich vegetable by- products, 
and this has been an area of research 
investigations as a sources of antioxidants and 
antimicrobial for food preservation [184]. The 
entire tissue of fruits and vegetables is rich in 
bioactive compounds or phenols but the by- 
products have higher contents of antioxidant 
[185]. Potato peel is one of the most important 
waste products with sufficient amount of phenolic 
compound so this could be used as a 
replacement for the current synthetic antioxidant 
and antimicrobial compounds. The dominant 
phenolic compounds of potato peel extracts are 
chlorogenic and gallic acids, which are natural 
antioxidants that prevent oxidation of vegetable 
oil, and they have been shown to inhibit soybean 
oil oxidation reactions by minimizing peroxide, 
totox, and p-anisidine indices [186, 187]. 
 
In the food industry, we can either use synthetic 
food preservatives alone or combine them with 
natural preservatives; however, the use of 
synthetics preservatives has carcinogenic effects 
while using natural preservatives alone has an 

advantage for human health with low side 
effects.  This has led attention to be paid on 
vegetable waste products with high phenlic 
content [185, 188]. Phenolic compounds are 
always present in plants and their antioxidant 
and antimicrobial properties is of noticeable 
interest [184]. 
 

3.8 Value Added Products from Coffee 
Wastes and Byproducts 

 
Coffee is cultivated in over 70 countries globally. 
They are gotten from two species: Coffea 
canephora (Robusta), which happens to be the 
most widely cultivated variety, especially in 
Central Africa, Southeast Asia and Brazil and 
Coffea arabica (Arabica), cultivated in Latin 
America, Eastern Africa and Asia. Arabica coffe 
makes up about 60% of coffee beans worldwide 
production is arabica and the rest of 40% is 
Robusta [189].   
 
To get coffe beans, the berries are picked when 
ripe, processed and then dried. One of the most 
important stages in the process of coffee 
production is roasting of the coffee 
beans.roasted influences the physical and 
chemical properties of the beans and is important 
in determining their sensory quality, especially 
flavour and colour. After roasting, the beans are 
ground and brewed with near-boiling water to 
obtain the coffee beverage. After petroleum, 
coffee is one of the most sold commodities 
worldwide,. It also doubles as the second most 
popular beverage, after water [190, 191]. This 
gives it a global interest for its production and 
commercialization.   
 

The increase in organic waste from the coffee 
industry as a result of incease in coffee 
consumption posses a difficult problem; after 
coffee beans are roasted and brewed, the 
resulting solid residue is called spent coffee 
grounds. It represents the greater half of coffer 
by-products worldwide (45%) [192]. 
   
Spent coffee grounds contain large amounts of 
organic compounds (proteins, phenolics, 
cellulose, lipids, lignin, hemicellulose and other 
polysaccharides), which showcases its value as 
a by-product [193]. Polysaccharides fraction 
covers about 50% the total mass of spent coffee 
grounds, of which about 50% are 
galactomannans, 25% arabinogalactans and 
25% cellulose [194]. Presence of mannose, 
galactose, glucose and arabinose, polymerized 
into hemicellulose and cellulose (Ballesteros et 
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al., 2014) [195] and high content of 
galactomannans are highlighted in spent coffee 
grounds, lignin being also present in a significant 
amount [196]. About 43% of total spent coffee 
grounds is made up of dietary fiber which 
represents coffee spent grounds dry weight (42% 
insoluble,  1% soluble fibre respectively), which 
are approved to be used as raw material to 
develop functional foods. Some of the types of 
fibre from spent coffee grounds are, among 
others, resistant starch, oligosaccharides and 
manno-oligosaccharides [197, 198, 199]. Some 
secondary bioactive metabolites are also 
present, such as caffeine, sterols, flavonoids and 
diterpenes [200]. The major bioactive compound 
in spent coffee grounds is caffeine [201]. Over 
the years, many experiments have been carried 
out on spent coffee grounds valorization 
including the use as composts and animal feed, 
biofuels, bio-composite materials, a functional 
ingredient for food products with real health 
benefits, decontaminants of waste waters.   

 
Aside these applications, studies are being 
carried on its usage as a functional ingredient 
(additive) or in nutraceuticals in improving both 
health and nutrition [202]. Spent coffee grounds 
make up a valuable source of phenolic 
compounds and melanoidins, which can also be 
included as a functional ingredients in human 
diet [203, 204, 205, 206]. This led to the 
discovery that spent coffee grounds exhibited an 
important role in preventing diseases related to 
free radicals [207] and also portrays antioxidant, 
antihypertensive and antimicrobial activities in 
intestine microbiota [197]. Phytochemicals from 
spent coffee grounds can be digested, absorbed 
and fermented in colon, exerting healthy effects 
by influencing the metabolic activity of the 
microbiota [208].  Spent coffee grounds phenolic 
extracts can also be used as anti-inflammatory 
additives [208] and dermatological 
antimelanogenesis agents [209]. Regarding 
extracting of natural antioxidants and caffeine 
from spent coffee grounds, there were proposed 
different methods, such as solid-liquid extraction 
using aqueous alcohol solution (methanol, 
ethanol and isopropanol) [210] or by pressurized 
liquid extraction (PLE) method with water and 
ethanol [211]. 

 
Other potential use of SCG is obtaining of 
valuable bio-sugars, such as oligosaccharides, 
manno-oligosaccharides and mannose, after its 
delignification and defatting, process which 
proved large-scale feasibility [212].  Peshev et al. 
[213] revealed utilization of SCG for obtaining 

water extracts with sufficiently high caffeine 
concentration. Appliance of nano filtration to 
these extracts, by using a suitable membrane, 
conducted to valuable products, as permeate 
and retentate fractions. Permeate can be further 
used for soft and energy drinks, while retentate 
for coffee drink or as functional food ingredient. 
 

3.9 Value Added Products from 
Aframomum meleguta (alligator 
pepper) Wastes and Byproducts 

 
Aframomum meleguta (Alligator pepper) 
otherwise called ‘grains of paradise’ is a 
perennial herb from the family of Zingiberaceae 
which are a plant specie commonto the swampy 
regions on the West African coasts. Some 
common examples in that family incude A. 
exscapum, A. danielli, and  A. citratum.  It is 
popularly recognized for its hot, spicy, and 
aromatic seeds. Some parts of Africa call it 
mbongo spice, Afrika kakulesi, or Guinea pepper.  
 

For ages, many parts of Africa and Asia used 
these seeds of alligator pepper among other 
ingredients and spices for many different 
applications whether tradomedicinal or 
sociocultural [214]. It has been used widely as 
treatment for ailments like diarrhoe, body pains, 
rheumatism, sore throat and catarrh.  Current 
research shows that the plant possesses 
secondary metabolites like flavonoids, phenolic 
compounds, alkaloids, tannins, terpenoids, 
saponins, and cardiac glycosides which have 
been considered to have healing/medicinal and 
therapeutic purposes. Aside that, when the 
seeds are used to extract alcohol, they exhibit 
antibacterial and antiseptic properties and could 
act as an antidote for some infections [215]. 
Alligator pepper has active compounds which fall 
under natural occurring preservatives.  Apart 
from is medicinal applications, it is often used as 
a snack together with bitter kola and kola nuts in 
some African customary rites like marriage and 
naming ceremonies (Sunil et al., 2018). It is 
reported that the seeds of alligator pepper are 
made up of calories of energy and substantial 
amount of iron, magnesium, and calcium [216]. 
Okunade et al. [217], documented that it 
contains, 13.01, 7.5, 4.78, and 2.84 g/100 g 
protein, dry matter of fat, crude fibre, and ash 
respectively.  The fact that alligator pepper is 
used as an ingridient for culinary purposes like 
barbecue and peppersoup is no surprise. It can 
also be used to produce essential oils which are 
used for their flavor and perfumery in 
pharmaceutical and industrial applications. The 
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pulp and peels of this wild fruit can be used to 
produce pectin which can be used in the food 
industry as a gelling agent. 
 

4. CHALLENGES IN AGRO-FOOD WASTE 
AND BY-PRODUCT VALORIZATION IN 
CAMEROON 

 
The quest to recover the valuable compounds of 
food by-products industrially began a few years 
ago. Over the years, companies around the 
world adopted this technology and today, at least 
50 companies recover valuable compounds from 
food waste. They transform them to food 
ingredients for processed food products (for 
example, functional compounds, natural 
preservatives in order to maintain shelf-life 
requirements), and these compounds work 
without having any impact on the flavor or texture 
of the original product [218]. This advancement 
caused the scientific community to multiply its 
efforts towards valorization of all sorts of by-
products from food for the purpose of              
recovery. 
 
Unfortunately, the process of industrialization 
and implementation of the “Universal Recovery 
Strategy” is not a day’s job as it involves lots of 
scientific research, need to protect intellectual 
rights, application to pilot plan and mass 
production full-scale, development of standard 
application techniques and the numerous 
problems which come with commercialization. 
For instance, most food wastes are seasonal and 
thus often available in large quantities; 
meanwhile they are prone to microbial spoilage. 
But if the collection process is managed properly, 
the waste can be treated by cooling and addition 
of preservatives. 
 
Waste by-products often have broad contents 
and these possess as a serious problem, but 
these wastes can be modified by introducing a 
pretreatment step. Moreover, when changing 
from a batch to continuous processes, the issue 
of extending the time needed for heating and 
mixing, more stuff to handle, higher level of 
scrutiny and air incorporation arises. This causes 
an increase in cost of production because food 
ingredients recovered industrially are needed in 
higher concentrations. Subsequently, process 
cost is increased, as industrially recovered 
compounds are used in food formulations in 
higher concentrations compared to laboratory-
recovered compounds [219-224]. Therefore, 
solving these issues are necessary in order to 
ensure the sustainability of the process, the 

economic benefit and the perpetual 
establishment of the derived products in the 
market [218]. 

 
For a product which is commercially feasible to 
be generated, it must have a level of flexibility 
and other solutions can be applied in developing 
its methodology for example finding cheaper and 
faster methods in production. Though these 
methos often result in cruder products with small 
amounts of the target compounds, it it advisable 
to go with nonthermal methods, safer materials 
and green solvents to improve the efficiency of 
the final product. It is also important to come up 
with products that have presice applications to 
easily target a particular market. [225], e.g, 
producing natural antioxidants such as  
polyphenols preferably used fresh for lactating 
mothers and young children with distinct 
ingredients and a minimum rshelflife under 
refrigeration of atmost 3months. Besides, 
modern new products should aim at the 
fulfillment of consumer needs and the realization 
of consumer value rather than at the 
development of products or enabling 
technologies per se. This means that the 
developed products should meet the high 
expectations of the consumers in an increasingly 
competitive market, e.g., development of “green” 
“organic” and “Protected Designation of Origin” 
products. Unlike the needs to delight the 
consumer and minimize environmental impact, 
developers should also ensure that the final 
product and process meet particular 
specifications, e.g., provide clean-label 
ingredients without impacting flavor or texture. 
Currently, the manufacturer’s label typically 
provides only limited information about the origin 
and composition of the used extract in the final 
product formulation. A clearer label of the 
products containing recovered compounds would 
enable nutritionists and/or pharmacists to be 
more confident when recommending these 
products [226-237]. 
 
Also, it is important for legal authorities to 
regulate the manner in which companies 
advertise health benefits associated with their 
products. This is done by bringing out regulations 
which are going to have positive impact on the 
food industry and at the same time protecting 
consumers from doubtful claims [238-247]. 
Because proving health benefits in food is costly 
especially to small (startup) industries, there’s 
risk for the rejection of these claims especially 
those not properly done. At the moment, just a 
handful of compounds and products have been 
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cleared meanwhile a great number of health 
claims have been rejected by the regulatory 
bodies [248]. The legislation challenges 
regulating health beneficial dietary products are 
lying to the nature of the products, which have 
the characteristics of both food and biologically 
active ingredients. For instance, EFSA of EU has 
approved health claims for only a small number 
of compounds (e.g., hydroxytyrosol in olive oil) 
[218]. This means that if you recover 
hydroxytyrosol from OMW in order to fortify foods 
(e.g., bakery, meat products or even oils), it is 
not allowed to add the health claim on the label 
[249-259]. 
 

After taking all these challenges into 
consideration, we can conclude that food waste 
valorization is very interesting yet difficult to 
implement in many food industries when 
compared to valorization of non food waste [260-
268]. Decision upon recovery or valorization 
strategy should always be taken account in 
relation to the substrate and industry’s goals. 
 

5. CONCLUSION 
 

Large amounts of diverse agricultural-food 
wastes and their by-products are produced 
generally in Africa and in Cameroon in particular, 
which couses enourmous environmental and 
economic problems. Biorefineries have the 
capacity of reducing the environmental and 
economic burdens of agro-food waste and by-
products, at the same time, permit the production 
of value added biochemicals and products 
through application of appropriate process 
technologies. This work reviews agro-food waste 
and by-product production and provides inside 
on the quantity and quality of the waste as a 
renewable bioresources for the agro-food sector. 
It further highlights the current traditional 
methods of agro-food waste valourisation for the 
manufacture of environmentally friendly products 
with added value within the bioeconomy concept. 
In addition, the paper presents the exciting 
impending and challenges of bioeconomy and 
circular technology development in Cameroon, 
which largely relay on developing the current 
traditional process technologies for agro-food 
waste valouristion to ensure more sustainable 
production of quality value added products. To 
address such challenges, proposals on 
implementing bioeconomy concepts in the agro-
food industry to ensure valorization of food waste 
as a route to innovation and wealth creation are 
indicated. More reseach and development should 
be carried out on traditional process technology 
for agro-food waste valourisation, which will 

create the pathway to scale-ups and 
industrialisation. 
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