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Abstract

Tissue vibrations in the larynx produce most sounds that comprise vocal communication in

mammals. Larynx morphology is thus predicted to be a key target for selection, particularly

in species with highly developed vocal communication systems. Here, we present a novel

database of digitally modeled scanned larynges from 55 different mammalian species, rep-

resenting a wide range of body sizes in the primate and carnivoran orders. Using phyloge-

netic comparative methods, we demonstrate that the primate larynx has evolved more

rapidly than the carnivoran larynx, resulting in a pattern of larger size and increased devia-

tion from expected allometry with body size. These results imply fundamental differences

between primates and carnivorans in the balance of selective forces that constrain larynx

size and highlight an evolutionary flexibility in primates that may help explain why we have

developed complex and diverse uses of the vocal organ for communication.

Introduction

Recent years have witnessed a renaissance in research into the evolutionary and mechanistic

basis of mammalian vocal communication. Two factors underlie this progress. The first is an

extension of fundamental theoretical principles, initially developed for human speech, to a

much broader range of vertebrate taxa, rendering it clear that source-filter theory and myoelas-

tic-aerodynamic theory apply to a wide range of terrestrial species [1–4]. The second is the

comparative application of these theories to large quantities of interspecific data, using phylo-

genetically controlled methods designed to address fundamental questions about trait evolu-

tion, including, e.g., the roles of sexual selection, “honest” indicators of caller characteristics,

ecological factors, and morphological and neural specializations for vocal signals [5–10].
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Much of this recent progress has focused on primates, in which acoustic investigations have

been intense and a broad range of species has been studied [5,6,9,11]. At the same time, analy-

ses of similar scope, but focused on brain size, have taught us that principles that apply gener-

ally within a clade like primates do not necessarily apply to other clades like carnivorans or

ungulates [12]. Carnivorans in particular are of interest for comparative analyses focused on

vocal communication because they are comparable to primates in terms of the range of habi-

tats they occupy (e.g., terrestrial to arboreal), the social systems they exhibit (e.g., solitary to

gregarious), and the body sizes they display (10-2x to 102x kg) [13,14]. Vocalizations in some

carnivoran species have been studied in detail [15,16], and some comparative work has been

done [17,18], but large-scale interspecific analyses applied across the carnivoran order have

not been initiated.

Here, we compare a key mechanistic determinant of vocalization across primates and carni-

vorans. Our sample includes 55 species, ranging in size over three orders of magnitude in both

clades: from pygmy marmoset (Cebuella pygmaea, mean body mass approximately 110 g) to

Western gorilla (Gorilla, approximately 120 kg) in primates (n = 26); and from dwarf mon-

goose (Helogale parvula, approximately 280 g) to tiger (Panthera tigris, approximately 180 kg)

in carnivorans (n = 29). We focus on the larynx (i.e., the main organ of vocal production),

combining three-dimensional computer models built from X-ray computed tomography (CT)

scans with detailed digital measurements, using a protocol designed to characterize gross fea-

tures of laryngeal morphology consistently across species. Phylogenetically controlled compar-

isons of these data with specimen-specific body lengths reveal marked differences in the

evolutionary trajectories of overall larynx size in the different clades. Parallel comparisons with

acoustic vocalization data provide initial evidence that these differences are relevant to vocal

communication.

Results

Each larynx was characterized by a set of 10 measurements (Table 1 and Fig 1). Across species,

the most variable measurements were associated with the ventral extent of the larynx, followed

by our proxy for vocal fold length, and the distance between dorsal cricoid and ventral thyroid

cartilages in the midsagittal plane. By contrast, the least-variable measurements were associ-

ated with the width of the thyroid cartilage in the coronal plane, followed by the diameter of

Table 1. Laryngeal measurements sorted from most to least variable by CVs calculated on raw values.

Measurement name Landmark numbers used CV Standardized loading on PC1 “larynx size” Correlation with “larynx size”

Ventral cricoid height 1 to 2 0.858 0.885 0.867

Larynx height 1 to 14 0.837 0.980 0.979

Ventral thyroid height 7 to 8 0.825 0.855 0.834

Vocal fold length [(9 to 12) + (9 to 13)]/2 0.717 0.960 0.944

Crico-thyroid distance 4 to 9 0.669 0.990 0.964

Dorsal cricoid height 3 to 4 0.648 0.940 0.887

Apical cricoid depth 2 to 4 0.587 0.990 0.973

Basal cricoid depth 1 to 3 0.585 0.975 0.943

Basal cricoid width 5 to 6 0.571 0.975 0.903

Dorsal thyroid width 10 to 11 0.559 0.975 0.920

Correlations are Pearson r values calculated between larynx size and the log-transformed measurements (all significant at P< 0.0001). Landmark numbers correspond

to those in Fig 1.

Abbreviations: CV, coefficient of variation; PC1, first principal component

https://doi.org/10.1371/journal.pbio.3000764.t001
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the cricoid cartilage in the horizontal plane. For allometric comparisons, the dimensionality of

the laryngeal measurement data was reduced by applying principal component analysis. The

first principal component accounted for 91% of the variation in measurements across species

and received high loadings from all 10 measurements (mean = 0.95, SD = 0.05). We refer to

this first principal component as “larynx size” hereafter.

Fig 2 shows larynx size plotted against log10 body length for all 55 species. Allometric scal-

ing was clear in both orders. Comparison of the primate and carnivoran regression lines, using

phylogenetic ANCOVA (pANCOVA [19,20]), revealed similar slopes (βprim = 4.71 versus βcarn
= 4.73, F3,54 = 2.162, P = 0.148) but significantly different intercepts (αprim = −8.04 versus αcarn
= −9.09, F3,54 = 8.177, P< 0.001). This indicates an evolutionary grade shift between primates

and carnivorans, with primates exhibiting larger larynges for the same body length across our

study sample. We estimated the magnitude of this difference by calculating the mean differ-

ence between our laryngeal measurements for eight primate-carnivoran species pairs with sim-

ilar body length (specimens differed by <1 cm on average; see Fig 2). The results suggest that,

for similar body lengths, the primate larynx is approximately 1.38× larger than the carnivoran

larynx on average (SD = 0.38, range = 0.92–1.98). Importantly, we also found that residual

Fig 1. Laryngeal landmarks. Three-dimensional digital larynx models from our data set showing a primate larynx (top row) and a carnivoran larynx

(bottom row), each from three perspectives. The cricoid cartilage is shown in yellow, the thyroid cartilage in blue, the arytenoid cartilages in purple, and the

hyoid bone in red (gray epiglottal and tracheal cartilages were not assessed). Midsagittal perspectives (right panels) show the left halves of each larynx, with

the ventral aspects pointing right. The 14 anatomical landmarks placed on each larynx model (see Methods) are depicted as black circles. Note that

landmark 12 is not depicted here, but located on the ventral tip of the right arytenoid vocal process in a location corresponding to landmark 13, but on the

right side. Table 1 describes the 10 measurements derived from these landmarks.

https://doi.org/10.1371/journal.pbio.3000764.g001
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variation of the primate allometry was significantly higher than residual variation of the carni-

voran allometry (i.e., carnivorans exhibited stronger allometric integration; factor = 2.17x, P =
0.03 obtained using a permutation analysis of primate-to-carnivoran rate ratios; see Methods),

suggesting that the relationship of larynx size to body length is more flexible in primates.

To ensure that these results are not confounded by systematic differences between primates

and carnivorans in the sex and age of our individual larynx specimens, or differences in the

prevalence of species’ sexual dimorphism between clades, we conducted additional phyloge-

netic generalized least squares (pGLS) regressions predicting larynx size as a function of body

Fig 2. Body length versus larynx size. Base 10 logarithm of body length plotted against the PC1 of the larynx

measurements for our sample of 26 primate (blue) and 29 carnivoran (red) specimens. Squares depict atelids and

diamonds depict papionines, clades that stand out for having exceptionally large or small larynges among primates,

respectively (see text). Specimens belonging to one of the eight pairs used to estimate the magnitude of the grade shift

between primates and carnivorans are outlined in black. Regression lines display a significant grade shift between

primates and carnivorans, as quantified by pANCOVA (see text). See Fig 3 for full species names corresponding to the

abbreviated names shown here. The data used to create this figure are located in S1 Data, sheet B, columns B and C.

pANCOVA, phylogenetic ANCOVA; PC1, first principal component.

https://doi.org/10.1371/journal.pbio.3000764.g002
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length and the following covariates, each computed across as many of our specimens as possi-

ble: specimen sex (SS; M or F, N = 52), relative age at death (RA; specimen age at death/species’

maximum life span, N = 50), and species’ sexual size dimorphism (SSD; log10 average male

mass/log10 average female mass; N = 55). Each model included one covariate as well as its

interaction with body length. No significant effects of the covariates or their interactions with

body length were observed (SS: t41,37 = 1.597, P = 0.1188; SSxbody length: t41,37 = −1.103,

P = 0.277; RA: t43,39 = 0.078, P = 0.938; RAxbody length: t43,39 = −0.108, P = 0.914; SSD: t43,39 =

−0.069, P = 0.945; SSDxbody length: t43,39 = 0.039, P = 0.969), indicating that the differences

between primates and carnivorans shown in Fig 2 are robust to differences in the age, sex, and

sexual dimorphism of the specimens and species we sampled. We also conducted a pGLS

regression predicting larynx size as a function of body length with SSxSSD as a covariate, to

assess a possible effect of SS dependent on species’ sexual dimorphism. The effect of the

SSxSSD covariate was not significant (t41,37 = 1.460, P = 0.153).

To further explore allometric patterns that may help explain the relative flexibility of the

primate larynx to body-size relationship, we used multiregime Ornstein-Uhlenbeck (OU) evo-

lutionary modeling to estimate whether additional grade shifts have occurred. These analyses

reveal two additional grade shifts in primates (in Atelidae and Papionini) but no additional

grade shifts in carnivorans. These results demonstrate that the allometric pattern between lar-

ynx size and body length that best fits our data includes a total of three grade shifts, with the

additional shifts occurring in primates. Fig 3A displays the three grade shifts, their estimated

phylogenetic locations, and the residual larynx size associated with each specimen. The signal-

to-noise ratio (
p
ηϕ) associated with this model was 7.29, demonstrating high effect size and

thus high statistical power. The significance of the model fit to the data was confirmed by

pANCOVA (F4,54 = 8.1769, P< 0.001). The first grade shift was toward larger residual larynx

size in primates, estimated to have occurred at the root of their divergence from carnivorans.

The second grade shift was toward even larger larynges in atelid primates (represented here by

Alouatta sara, Alouatta caraya, and Ateles fusciceps), estimated at the root of their divergence

from cebids. The third grade shift was toward smaller larynges in papionine primates (repre-

sented here by Macaca sylvanus, Macaca fuscata, Macaca silenus, Papio hamadryas, Mandrillus
sphinx, and Mandrillus leucophaeus) at the root of their divergence from cercopithecines. Fig

3B illustrates the difference in larynx size, indicated by the first grade shift in situ between a

similarly sized primate and carnivoran specimen.

Intuitive insight into the evolutionary diversification of the larynx in our sample can be

gained by working backwards from the residual larynx sizes observed at the branch tips of our

phylogenic tree to estimates of residual larynx size for its internal nodes. Accordingly, the

ancestral phenogram in Fig 4A shows the evolutionary diversification of residual larynx size

derived using a multiple-variance Brownian motion model that allows the rate of evolution

along different lineages in a phylogeny to vary [21,22]. This depiction of evolutionary trait

space shows that in order to achieve the variation observed in residual larynx size, the larynges

of multiple primate lineages underwent rapid diversification. Fig 4B visualizes this difference

in evolutionary rates using a standard Brownian motion Markov chain Monte Carlo proce-

dure to estimate distributions of evolutionary rate that match our residual larynx size results

and the associated phylogeny [23,24]. The resulting primate and carnivoran rate distributions

demonstrate a significant difference in the amount of trait variance accumulated per unit time

(rate ratio = 2.17x, P = 0.03).

To test whether these results are confounded by using body length as our proxy of body size

—e.g., perhaps carnivorans are simply longer-bodied than primates—we repeated the analyses

described above using body mass, rather than body length, as our proxy for body size. The

results were very similar: primate larynges remained larger and more variable than carnivoran

PLOS BIOLOGY Rapid evolution of the primate larynx?
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larynges, covariate effects and their interactions with body mass were not significant, and the

average rate of primate laryngeal evolution was significantly greater than the rate of carnivoran

laryngeal evolution. The only substantive difference was that in the mass analyses, only one

grade shift beyond that between primates and carnivorans was observed, toward larger laryn-

ges in Alouatta at the root of their divergence from Ateles. Together, the mass analyses indicate

that our findings are not an artifact of using body length as a proxy for body size. See S1 Text

for full reporting of the body mass results.

Fig 3. Ornstein-Uhlenbeck model results. (A) Phylogenetic tree and residuals from a pGLS regression of larynx size to log body-length. Carnivorans (red) exhibited

smaller larynges than expected based on body size, whereas primates (blue) exhibited larger larynges. Among primates, atelids exhibited exceptionally large larynges

(upper set of dashed lines), and papionines exhibited exceptionally small larynges (lower dashed lines). Arrows indicate where grade shifts in mean larynx size are

estimated to have arisen; percentages indicate support for these estimations from a bootstrap analysis (see Methods). (B) Computer larynx models derived from CT

scans depicted in situ for two species with comparable body lengths (71.4 cm for the red fox and 68.5 cm for the siamang), showing the larger relative size of the

primate larynx. The data used to create this figure are located in S1 Data, sheet B, columns B and C. CT, computed tomography; pGLS, phylogenetic generalized least

squares.

https://doi.org/10.1371/journal.pbio.3000764.g003
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Lastly, we compared larynx size with an acoustic feature measured directly from species-

typical vocalizations across our sample to assess the potential link between our morphological

results and vocal communication (Fig 4C). Fundamental frequency (F0) was selected as the

most relevant acoustic feature here because of its important role in vocal communication and

its close association with vocal fold length [1,25], which is strongly correlated with larynx size

Fig 4. Evolutionary rate analyses. (A) Ancestral phenogram depicting divergence times plotted against residual larynx size from a pGLS regression of larynx size to log

body length. Primate lineages (blue) are characterized by larger and more variable values than those of carnivoran lineages (red), as well as faster rates of change. (B)

Probability density plots indicating the distributions of evolutionary rates required to produce the variance in residual larynx size observed in primates (blue) and

carnivorans (red). The P value is the result of a permutation analysis of primate-to-carnivoran rate ratios (see Methods) and affirms the hypothesis that the two

distributions are significantly different. (C) A comparison of larynx size and log mean-F0 in species-typical vocalizations (data from [9]). See S1 Fig for a labeled version of

C. The data used to create Fig 4A and 4B are located in S1 Data, sheet B, columns B and C. The data used to create Fig 4C are located in S1 Data, sheet B, columns C and

K. F0, fundamental frequency; PC1, first principal component; pGLS, phylogenetic generalized least squares.

https://doi.org/10.1371/journal.pbio.3000764.g004
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in our sample (r = 0.94; Table 1). Mean F0 data were obtained for 53 of our 55 species from

[9]; Lemur catta and Otocyon megalotis were excluded because of insufficient data (see Meth-

ods). PGLS regressions between larynx size and mean F0 showed a significant negative rela-

tionship for primates (t25,23 = −7.135, P< 0.001) and for carnivorans (t28,26 = −4.891,

P< 0.001). The slope of the primate regression was marginally steeper than that of the carni-

voran regression (βprim = −0.476 versus βcarn = −0.296, pANCOVA F4,3 = 4.020, P = 0.05), sug-

gesting that a given change in larynx size is associated with a relatively larger change in mean

F0 among primates. These results provide preliminary evidence that the phylogenetic patterns

we observe in vocal morphology are related to the acoustics of vocal communication. The data

used in all analyses described above are included in S1 Data.

Discussion

The results described above highlight a clear pattern: relative to carnivoran larynges, primate

larynges are significantly larger with respect to body size, more variable in size, and have

evolved faster. Furthermore, this pattern is related to acoustic variation in the mean F0 of spe-

cies-typical vocalizations, suggesting its relevance to vocal communication.

With respect to evolution, an important first point is that the phylogenetic variation in rela-

tive larynx size that we observe does not necessarily reflect variation in selective forces acting

directly on larynx size. Logically, our results are consistent with variation in selection on larynx

size, but also body size, or some combination of both. A parallel example comes from studies

of relative brain size, where interspecific differences are commonly interpreted as reflecting

selection for structural/functional enhancements of the brain, but large-scale comparisons

akin to those performed here suggest a primary role for selection on body size [26]. Here, how-

ever, the evidence supports evolutionary change in larynx size rather than body size as the pri-

mary driver of the differences we observe: independent analyses of evolutionary rate applied to

body length and “crico-thyroid distance”—a proxy for larynx size (see Table 1) measured in

the same units as body length (mm) and thus suitable for direct comparison—indicate that lar-

ynx size has changed significantly faster than body size over time (by 2.15× for primates, 1.67×
for carnivorans, and 1.79× overall; P< 0.01 for all tests). This makes it unlikely that the differ-

ences in relative larynx size that we observe have been driven only by evolutionary changes in

body size. Notably, a reversal of this general pattern was found for papionine primates, such

that the rate of body-length evolution outpaced that of crico-thyroid distance by 1.19× (sample

size [n = 6] too small to appropriately test significance). Papionines also stand out here for hav-

ing some of the smallest larynges relative to body length that we observed among primates,

suggesting that understanding the constraints on laryngeal evolution in this clade may be par-

ticularly informative.

As demonstrated by the greater size variance and faster evolutionary rates observed in pri-

mates, larynx size is less tightly coupled to body size in this order than it is in carnivorans. This

pattern of weaker allometric integration suggests that the primate larynx has been relatively

more likely to respond to fluctuations in evolutionary pressure. That is, alterations in the bal-

ance of selective forces that maintain relative larynx size can be expected to have driven greater

diversity in primates than carnivorans, which, as indicated by our comparisons with F0, would

be expected to have had consequences for vocalization. In the following paragraphs we con-

sider the hypothetical selective forces that act on larynx size and discuss whether or not differ-

ences in these forces between primates and carnivorans can plausibly account for our results.

Major adaptive hypotheses can be assigned to each major function of the larynx: protecting

the airway during feeding, regulating the supply of air to the lungs, and vocal communication.

A further relevant distinction is whether the proposed evolutionary trajectories are based on
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directional selective pressure or a relaxation of selective pressure(s). Either can increase pheno-

typic variability, and multiple pressures can interact to determine phylogenetic trends.

A first possibility is that differences in relative larynx size between primates and carnivorans

reflect the role of the larynx in protecting the respiratory system during feeding [27]. Although

the trachea is mainly occluded by the epiglottis (not examined here) during swallowing, the

larynx protects against aspiration of food or liquid via reflex closure and coughing when the

epiglottis is bypassed [28]. Accordingly, increased variation in primate larynx size may be par-

tially explained by a relaxation of selective forces related to diet and associated feeding behav-

iors relative to carnivorans. For example, it may be that the threat of choking on large pieces of

minimally-chewed meat leads to selection pressure for smaller larynges in carnivorans, and

that this pressure is somewhat relaxed in primates, which eat more plant material and spend

more time chewing as a group [29]. It should be noted, however, that even though relaxed

selection against choking provides a logical explanation for the overall differences in larynx

size we observe between primates and carnivorans, it is not clear how this could explain the

greater variance in larynx size observed among primates. Although carnivoran diets are cer-

tainly more based on animal matter than primate diets on average, there is considerable varia-

tion within both clades, from obligate herbivory among carnivorans (giant pandas) to obligate

carnivory among primates (tarsiers).

A second possibility is that differences in relative larynx size between primates and carni-

vorans reflect the role of the larynx in respiration, e.g., in regulating the amount of oxygen that

can enter the lungs and intrapulmonary pressure [30]. For example, differences in locomotor

behavior between primates and carnivorans may place different demands on oxygen metabo-

lism [31] and the capacity to stiffen the thorax by increasing intrapulmonary pressure [28].

Both factors are closely related to substrate use, which although variable in both orders, is

more often terrestrial for carnivorans and arboreal for primates [32,33]. Notable exceptions

among the carnivorans studied here include Potos flavus, Nasua nasua, and Arctictis binturong,
all of which are relatively arboreal [34]. If the larger larynges of primates observed here were

hypothesized to reflect selection (directional or relaxed) related to respiratory function, no

support is found among these comparatively arboreal carnivorans, which all possess the rela-

tively small larynges determined to be typical of carnivorans here. At the same time, some sup-

port is found among the papionine primates, which are relatively terrestrial compared to other

primates and fit the pattern of having relatively small larynges. Even so, it is not clear how a

relatively small/large larynx would benefit the muscular and locomotor requirements of a ter-

restrial/arboreal lifestyle, respectively. A related alternative hypothesis is that increased oxygen

supply supported by the larger primate larynx serves brain function.

A third possibility Is that differences in relative larynx size between primates and carnivor-

ans reflect the role of the larynx in vocal communication. Here, multiple hypotheses have been

proposed to explain interspecific differences, and we consider the relevance of our data to each

in turn. The acoustic adaption hypothesis suggests that vocalizations are optimized to maxi-

mize their transmission in different habitats [35,36]. The majority of primate species are found

in tropical forest environments, whereas carnivorans occupy a greater diversity of habitats.

Forest environments diminish the value of visual signals, while providing relatively constant

physical conditions for acoustic signal transmission [35]. Together with the fact that primates

are relatively microsmatic, this difference in habitat may increase selective pressure to produce

vocalizations with frequency content suited to propagation in a forest habitat, i.e., the lower

frequencies made possible by larger larynges [35]. This hypothesis appears compatible with the

larger relative size of the primate larynx, but not its increased size variation. If variation in lar-

ynx size is contingent upon variation in habitat, carnivorans would be predicted to exhibit

greater larynx size variation, not less, as observed here.
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The sexual selection hypothesis proposes that larger larynges and the lower-frequency

vocalizations they afford have been selected for acoustic size exaggeration in deterring oppo-

nents during intrasexual competition and/or attracting mates during intersexual choice—as

appears to be the case in howler monkeys [7]. More broadly, sexual dimorphism in larynx size

(and voice F0) appears to be strongly influenced by mating system in anthropoid primates

(including humans), with polygyny favoring increased dimorphism [37]. This suggests that

sexual selection may be important to understanding the kind of systematic differences in lar-

ynx size we observe here. This would be particularly true if the average strength of sexual selec-

tion differed between our samples of primates and carnivorans and/or if these samples were

discrepant in terms of the sexes of specimens included (they were not; see Methods). However,

using SSD as a proxy for the strength of sexual selection, we failed to find a significant differ-

ence between our primates and carnivorans. Additionally, when added as a covariate, SSD did

not account for significant variation in the allometries between larynx and body size. A final

point here is that although there is no carnivoran analogue for the enlarged larynges of howler

monkeys (that we are aware of), the next most-supported OU model showed a shift toward rel-

atively larger larynges in the roaring cats (Panthera) compared to the purring cats. Intrigu-

ingly, pantherines also possess enlarged vocal pads and an extremely elastic stylohyoid

ligament [38,39], which may serve to further exaggerate body size in vocalizations (often per-

formed in the darkness of night). Thus, although sexual selection and acoustic size exaggera-

tion may play roles in accounting for some of the within-order variation we observed, it

appears unlikely to account for overall differences between primates and carnivorans.

Finally, the social complexity hypothesis proposes that the larger and more varied larynges

of primates reflect selection for enhanced vocal communication, as might be required to maxi-

mize the benefits and minimize the costs of social living. Primates and carnivorans exhibit fun-

damental differences in social behavior [40], with primates being more likely to form larger,

more stable groups characterized by strong bonds and more close-contact time. In our sample,

median group size was 13.8 for primates and 2.6 for carnivorans (Mann-Whitney U = 121,

P< 0.0001; see Methods). Primate group size also tends to be more variable [41]. In our sam-

ple, median absolute deviation in group size was 51.9 for primates and 32.6 for carnivorans.

Our results may be consistent with this hypothesis insofar as the more “complex” social lives

of primates can be expected to result in pressure for larger larynges, which could potentially

provide a more robust framework matched to the increased mechanical forces expected from

more frequent use [42]. However, preliminary comparisons of larynx size and social group

size data failed to show any significant correlation between these variables in our sample, for

primates (Spearman r = 0.11, P = 0.6094), carnivorans (r = 0.02, P = 0.9374), or all species con-

sidered together (r = 0.15, P = 0.2762). As a stark example, consider that howler monkeys have

some of the largest larynges relative to body size of any known species and yet live in relatively

small social groups compared to many other primates [6]; conversely, papionines have rela-

tively small larynges but live in relatively large social groups. These data suggest that social

complexity, at least as far as it can be approximated by simple measures of social group size

(see [43] for discussion), is unlikely to explain the clade-wise differences in larynx size that we

observe.

A central obstacle in choosing among these hypotheses is that our data only allow us to

assess primates and carnivorans with respect to one another. As a result, we cannot be certain

whether the primate larynx is relatively large and variable or the carnivoran larynx relatively

small and constrained. One reason to expect the former is that only primates appear to include

additional grade shifts, as evidenced, e.g., by laryngeal hypertrophy in howler monkeys. But

settling this issue will ultimately require more context from additional comparisons, e.g., with

Artiodactyla, Rodentia, and/or Chiroptera, in which hammer-headed bats provide another
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known example of laryngeal hypertrophy [44]. Only such comparisons can tell us how the var-

iability observed here ranks among other mammalian orders. In addition to taking several

years to source and analyze often rare specimens, such comparisons will be complicated by

considerable differences in life history and body size, largely circumvented here by selecting

clades with significant overlap in both domains.

Future studies will also benefit from the inclusion of multiple specimens per species, as

error from within species variation in larynx size was not controlled here [45]. However, with

regard to the magnitude of this error and its potential to bias our results, we note that our sam-

ples cover over three orders of magnitude in body length. This means that interspecific varia-

tion was much larger than the intraspecific variation, a fact that can be expected to mitigate the

influence of intraspecific error on our main results. Importantly, we also controlled for the age

and sex of our individual specimens, as well as sexual dimorphism at the species level, buffer-

ing against error variance arising from associated individual and intraspecific differences. A

final important limitation to consider here is our focus on cartilage and bone only. This was a

consequence of using CT with unfixed and unstained specimens, which remain viable for

functional phonation studies. Although the cartilaginous structure of the larynx clearly corre-

lates with its acoustic capabilities (see Fig 4C), it is ultimately the soft tissues of the larynx that

are responsible for vocal production. Accordingly, studying evolutionary patterns of soft tissue

variation will be important, particularly if this work continues to explore the vocal conse-

quences of evolved laryngeal morphology.

In conclusion, the work described here demonstrates clear differences in larynx size and

larynx-size variation between primates and carnivorans, reflecting fundamental differences in

underlying rates of evolutionary change. These differences are consistent with multiple selec-

tive hypotheses, including directional selection resulting from cladistic differences in ecology

and social structure that impact vocal communication, as well as relaxed selection on the feed-

ing and respiratory functions of the larynx in primates relative to carnivorans. Our results

open an exciting new avenue of study focused on laryngeal variation among further mamma-

lian clades, which will provide the context required to determine how particular the differences

we observe here are to the evolution of the primate larynx. If the relative flexibility of the pri-

mate larynx is robust to future analyses with more clades, it would indicate an increased capac-

ity to explore trait space in our lineage, which may in turn explain why primates have

developed such diverse and complex uses of the vocal organ.

Methods

Ethics statement

This research was conducted in accordance with European Union Directive 2010/63/EU.

Approval by a specific IACUC committee was not required. Cadavers were donated to

National Museums Scotland by the zoos of origin, and our use of their laryngeal specimens

here was approved by the museum on a case-by-case basis.

Specimens

The specimens used in this study lived and died in zoos throughout northern Europe. Death

was followed by a postmortem examination performed by local veterinary staff at the zoo of

origin after death, and the cadavers (excluding the digestive system) were frozen at −20˚C. The

cadavers were then shipped on ice to National Museums Scotland for processing and preserva-

tion. Larynges, from the tongue to below the larynx, were excised during specimen preserva-

tion and refrozen for shipment on ice to Vienna, Austria. Upon arrival in Vienna, specimens

were unpacked, thawed, and cleaned with saline before being mounted and refrozen in
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preparation for X-ray CT scanning. Any specimens judged to be in poor condition at this stage

(e.g., because of desiccation, decomposition, or insult) were excluded from further consider-

ation. Selected specimens were mounted on polystyrene foam plates with ventral aspects facing

upwards, and toothpicks were inserted into the foam on either side to prevent lateral rolling.

During mounting, care was taken to avoid distortion and to approximate in vivo posture to

the degree possible under the circumstances. The selection of which specific specimens/species

to include in our analysis was based on balancing six factors: (1) availability; (2) including a

wide range of body sizes in both orders; (3) maximizing phylogenetic variation; (4) maximiz-

ing tissue quality; (5) balancing sex across specimens; and (6) body length representativeness.

If multiple specimens were available for a species, the one closest to estimated species’ mean

was selected (see S2 Fig for a comparison of specimen body length and estimates of species-

typical ranges).

CT scanning

The majority of the selected larynx specimens (n = 49) were large enough to be scanned using

a clinical CT scanner (Siemens Emotion 16, Munich, DE). Plate-mounted specimens were

placed directly on the scanner gurney, rolled into the scanner bore, and scanned frozen.

Depending on specimen size, source voltage was either 110 or 130 kV and beam intensity was

either 80 or 90 mA (70 or 130 mAs). Each reconstructed slice (maximum of 1,215) measured

512 × 512 pixels. Depending on sample size, resolution of reconstructed volumes was between

238 and 369 μm2 in the XY direction with slice thickness either 200 or 500 μm. Scan time was

approximately 1 minute per specimen. Owing to their size, the six smallest specimens

(Cebuella pygmaea, Saguinus oedipus, Leontopithecus chrysomelas, Saguinus bicolor, Helogale
parvula, and Suricata suricatta, see S2 Fig) were scanned with an Xradia microXCT-400 scan-

ner (Carl Zeiss X-ray Microscopy, Pleasanton, CA) equipped with the 0.4× lens. Because of the

longer scan times associated with this technique (approximately 3 hours per specimen), these

specimens were thawed, remounted upright inside sealed 50-ml Falcon tubes packed with

plastic drinking straws for support and filled to 5 ml with phosphate-buffered saline to prevent

dehydration (no contact with specimen). During this remounting process, care was taken to

avoid distortion and approximate in vivo posture to the degree possible. Immediately after

remounting, these specimens were placed in a tube rack that held them upright in the scanner

bore and scanned with source voltage = 40 keV and beam intensity = 200 μA. Projections were

recorded with 1-second exposure time (camera binning = 4) and an angular increment of

0.25˚. Reconstructed slices measured 512 × 512 pixels. Depending on sample size, isotropic

voxel resolution of reconstructed volumes varied between 29 and 72 μm3.

Larynx models and measurement

Computer models of each larynx were created from the CT data to facilitate detailed measure-

ments of the laryngeal cartilages in a nondestructive and consistent manner across species.

Models were constructed, using Amira 3D data visualization software (version 5.6.0; FEI,

Hillsboro, OR), and a detailed step-by-step protocol divided into four parts. The first part

described model construction: (1) importing the CT data into Amira; (2) gradually adjusting

the lower limit of the X-ray absorption window to visualize only smooth surfaces of the laryn-

geal cartilages and hyoid bone; and (3) using this lower limit to threshold Amira’s “isosurface”

function, which creates three-dimensional surface models of visualized data. The second part

described the establishment of a framework for landmark placement: (4) defining a midsagittal

plane by manually rotating and translating an Amira “ObliqueSlice” object to divide the cri-

coid cartilage in half along its dorsal-ventral axis; and (5) defining a midcoronal plane by
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extracting the parameters of the midsagittal plane (using Amira’s “getPlane” function), enter-

ing them into a custom Matlab script (version 2016a; MathWorks, Nantik, MA) that generated

new Amira parameters for a perpendicular coronal plane, using these new parameters to

define a second ObliqueSlice (using Amira’s “setPlane” function), and manually translating

this second ObliqueSlice to divide the cricoid cartilage in half along its medial-lateral axis. The

third part described the placement of anatomically defined landmarks using Amira’s “Land-

mark editor” (see Fig 1): (6) at the intersection of the cricoid cartilage and the midsagittal

plane, the cricoid’s ventral basal extent (#1), ventral apical extent (#2), dorsal basal extent (#3),

and dorsal apical extent (#4); (7) at the intersection of the cricoid and the midcoronal plane,

the cricoid’s basal right and left lateral extents (#5 and 6); (8) at the intersection of the thyroid

cartilage and the midsagittal plane, the thyroid’s ventral basal extent (#7), ventral apical extent

(#8), and the midpoint between these (#9); (9) on the thyroid cartilage at the level of landmark

#4, the thyroid’s dorsal right and left lateral extents (#10 and 11); (10) on the arytenoid carti-

lages at the ventral extent of the right and left vocal processes (#12 and 13); and (11) at the

intersection of the hyoid bone with the midsagittal plane, the hyoid’s apical extent (#14). The

fourth part of the protocol described measurement: (12) exporting the coordinates of land-

marks #1 to #14 as a text file; and (13) using a second custom Matlab script to read this text file

and calculate the 10 Euclidean distances between specific pairs of points used to characterize

laryngeal morphology. These measurements are named and defined in Table 1. Importantly,

the anatomical locations of the 14 landmarks were not determined until after an initial inspec-

tion of all 55 of the digital larynx models included here (i.e., steps 1 to 5 were completed for all

specimens before steps 6 to 13 were initiated). This allowed us to select anatomical locations

where landmarks could be reliably placed across all specimens.

Specimen body length was defined as the distance between the ischium of the pelvis and the

tip of the snout in carnivorans, or the top of the skull in primates. Body lengths were obtained

from the same individual from which the larynx was excised for all but Nasalis larvatus and

Herpailurus yagouaroundi. Average body lengths from [46,47] were substituted for these speci-

mens. Body length was preferred over body mass, because the latter was only available for a

small subset of our specimens, owing to postmortem procedures at the zoos of origin, and

because we considered length to be less affected by zoo diet than mass (analyses based on aver-

age body mass are provided in S1 Text nonetheless). Laryngeal and body length measures were

log-transformed (base-10), because these variables change on a proportional scale, whereas

our linear models quantify variation on a linear scale.

Principal component analysis

After log-transformation, the laryngeal measurements (see S1 Data) were subjected to princi-

pal component analysis in R (version 3.2.3; The R Foundation, Vienna, Austria), using the

“psych” package function “principal” [48] to determine the factors underlying laryngeal varia-

tion across species. Initial analyses, configured to extract 10 components (without rotation),

revealed only a single component with an eigenvalue >1 for both orders. Following Kaiser’s

criterion [49], we thus reconfigured the principal component analyses to extract a single com-

ponent (rotation = varimax). The results indicated that this single component—which we refer

to as “larynx size”—accounted for the vast majority of variation in laryngeal measurements,

receiving high loadings from all 10 measurements (see Table 1).

Phylogenetic comparative methods

A measure of relative larynx size for use in the statistical analyses was derived by calculating

residuals from a pGLS regression of larynx size to body length across all species. A lambda

PLOS BIOLOGY Rapid evolution of the primate larynx?

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000764 August 11, 2020 13 / 21

https://doi.org/10.1371/journal.pbio.3000764


model showed that phylogenetic signal was high for this measure (λ = 0.956), which thus val-

idly represents larynx size after controlling for body size and phylogenetic nonindependence

due to shared ancestry. PGLS regressions were also used to model the effects of covariates on

the relationship between larynx size and body length. The trees used for all phylogenetic analy-

ses were obtained from [50] for primates and [51] for carnivorans.

To estimate the phylogenetic location of evolutionary grade shifts in mean relative larynx

size in our sample, we used multiregime OU evolutionary modeling. This approach estimates

where shifts in trait values occur along the branches of a phylogeny directly from the data. OU

models differ from more widely used Brownian-motion models in that OU models incorpo-

rate additional parameters to account for changes in mean trait value (θ) and the strength at

which the population moves from one mean to another (α). Several such OU methods have

been proposed using different parameter maximization algorithms. Here, we checked estima-

tions between the two most recent methods, “l1ou” and “phylogenetic expectation-maximiza-

tion” [52,53], and confirmed that both yielded the same results for the model presented in Fig

3. The effect size associated with this OU model was quantified using the signal-to-noise ratio

(
p
ηϕ) and by running a bootstrap analysis. The signal-to-noise ratio demonstrates high power

when >1 [54]. Bootstrap analysis was run using the “l1ou” method [53] and further confirmed

strong support for the estimated grade shifts.

To test whether the estimated OU model provided significant results, we used pANCOVA

[19,20] as a least-squares approach. PANCOVA provides a confirmatory test, indicating

whether the clade-wise differences in mean relative larynx size, estimated by the OU model,

are statistically significant by comparing the intercepts of the associated larynx size to body

length allometries. We also used pANCOVA to test for differences in fit between alternative

OU models, extending it to ask, e.g., whether a 2-grade or a 3-grade OU model provided a bet-

ter fit to the data. The results of the OU model presented in Fig 3 were thus validated using

pANCOVA. Although OU modeling approaches provide a powerful way to estimate patterns

of evolutionary diversification, they necessarily entail more uncertainty than confirmatory

least-squares hypothesis-testing approaches. Whereas OU modeling approaches assume more

statistical parameters in order to estimate changes along individual branches of a phylogeny,

pANCOVA is focused on observed tips only and does not infer changes along individual

branches of a phylogeny, providing greater statistical power for confirmatory testing. It is

clear, however, that shifts in trait value among clades observed at tips are expected to be the

result of evolutionary changes that arose deeper in the phylogeny. The results of pANCOVA

using only observed tips are thus expected to align with the estimations based on OU modeling

approaches.

To estimate trait values for the internal nodes of our phylogeny, we used an ancestral esti-

mation approach. Although not appropriate for hypothesis testing, such approaches provide

an intuitive visual depiction of the evolutionary diversification of a trait. Traditionally, a stan-

dard Brownian-motion model has been used for these purposes. Here, however, we use a mul-

tiple-variance Brownian-motion approach, because this better accommodates possible

changes in the rate of evolution that occur along different lineages in a phylogeny [21,22].

Considering that relative larynx size was found to entail both shifts in mean and rate among

clades, a multiple-variance Brownian-motion model is more appropriate here than a standard

Brownian-motion model in which rate is fixed. The results of these analyses are displayed in

Fig 4A.

To test for differences in rate of change in relative larynx size in primates versus carnivor-

ans, as well as rate of change in larynx size versus body size, we tested whether the ratio of the

Brownian-motion rate in primates relative to the rate in carnivorans is significantly higher

than unity, using a permutation analysis [24,55,56]. If this rate ratio is indeed higher than

PLOS BIOLOGY Rapid evolution of the primate larynx?

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000764 August 11, 2020 14 / 21

https://doi.org/10.1371/journal.pbio.3000764


unity, the rate in primates can be considered to be significantly higher than in carnivorans.

The Brownian-motion rate parameter is the most appropriate measure to perform this test,

because the Brownian motion model is a pure rate model (i.e., it quantifies rate, not direction).

The interpretation of rate of evolution (quantified as σ2 in the standard Brownian-motion

model) corresponds to the amount of variance accumulated per unit time. Clades with a higher

rate accumulate more trait variance per unit time, resulting in more observable trait variance

and weaker allometric integration. To visualize the rate difference between primates and carni-

vorans in residual larynx size, we depict the posterior distributions of Markov chain Monte

Carlo estimates of the respective Brownian-motion rate parameters (results of the rate analysis

are displayed in Fig 4B).

Specimen age, sex, sexual dimorphism, and species social group size

The potentially confounding effects of specimen age at death, SS, and species sexual

dimorphism were addressed by modeling these factors as covariates in pGLS regressions

predicting larynx size as a function of body length (and mass; see S1 Text). A separate

regression was considered for each covariate and its interaction with body length. Descrip-

tions of how the data for each covariate were sourced follow below. All data are provided

in S1 Data.

Previous research in humans and nonhuman mammals has reported age effects on laryn-

geal geometry [57,58], indicating that the ages of the animals whose larynges were studied here

may be a determining factor in their morphology. This could confound our results if there

were a systematic age bias between our primates and carnivoran samples. To assess this possi-

bility, we obtained age at death data for 50 of our specimens from National Museums Scot-

land’s research records (missing: Vulpes lagopus, Lynx canadensis, Potos flavus, Puma concolor,
and Vulpes vulpes). To account for differences in longevity across species (e.g., a chimpanzee

might live 50 years in captivity, whereas a bush dog might only live 15), we normalized these

data by dividing each specimen’s age at death by maximum recorded longevity for its species

(as recorded in [59]) to calculate “relative age.” Maximum longevity was preferred over mean

for normalization, because the latter was often distorted by exceptionally early deaths in [59],

especially when sample size was small. A further way in which the age at death of our speci-

mens could have confounded our results is through interaction with sexual maturity. For

example, if the primate specimens studied here tended to be sexually mature at death and the

carnivorans not, this could explain their systematically larger larynges. To assess this possibil-

ity, estimates of age at sexual maturity were obtained for as many of our study species as possi-

ble from a published compilation of zoo records (N = 32) [60] and compared with our data for

age-at-death. For all but one of these 32 cases, the specimen we selected to represent its species

came from an animal that was sexually mature at death (exception: Vulpes corsac; age at

death = 6 months, estimated age at sexual maturity = 10 months). Although we could not

determine age at death and sexual maturity for the remaining 23 of our specimens, taking

these data as representative suggests that the majority are likely to have been sexually mature at

death.

The sex of our specimens represents another potential confounding factor for our results.

For example, if males tend to have larger larynges than females, and more males were included

in our sample of primates than of carnivorans, then the differences we observed between these

clades could be due to SS rather than a true difference between primates and carnivorans.

However, sex data for our specimens from National Museums Scotland’s research records

indicate that our sample was closely matched, including 15 females, 10 males, and 1 unknown

(Chlorocebus pygerythrus) for primates and 16 females, 11 males, and 2 unknowns
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(Herpailurus yagouaroundi and Tremarctos ornatus) for carnivorans. SS (male or female) was

nonetheless included as a covariate in a pGLS model predicting larynx size as a function of

body length as a further point of caution. Another way in which sex could have impacted our

results is through potential differences in sexual dimorphism between primates and carnivor-

ans—for example, if we happened to select male specimens from highly dimorphic species for

primates but females from highly dimorphic species for carnivorans. In this way, SS could

have impacted our results even though male/female ratios were approximately the same in our

sample of primates and carnivorans. To examine this possibility, we calculated an index of

SSD for each species (log10 average male mass/log10 average female mass). Comparison of the

SSD index between primates and carnivorans did not indicate a significant difference in SSD

strength between orders. Nevertheless, we also included SSD as a covariate in a pGLS model

predicting larynx size as a function of body length. Finally, we tested whether there was an

effect of SS that was dependent on SSD by including the interaction between SSD and SS as a

covariate in a pGLS model predicting larynx size as a function of body length.

Data describing social group size were obtained for all 55 of the species considered here.

Social-group-size data for primates were mostly obtained from a single source [46], which typ-

ically reported minima and maxima for each species, allowing us to calculate an average repre-

sented by the midpoint of these ranges. For Gorilla gorilla and Pan troglodytes, mean group

size was explicitly stated in [46] and used here instead of the midpoint. Social-group-size data

for Ateles fusciceps, Mandrillus sphinx, and Papio hamadryas were not included in [46] and

were instead obtained from [61] (A. fusciceps), [62] (M. sphinx), and [63] (P. hamadryas).
Social-group-size data for carnivorans were mostly obtained from a single source [47]. When

minima and maxima were offered, the average was calculated as the midpoint unless mean

group size was explicitly stated, in which case it was used instead (as for primates). Species

explicitly described as “solitary” were assigned a mean group size of 1; species for which the

“basic social unit” was described as a breeding pair were assigned a mean group size of 2. A

mother and her litter were not considered a social group for this analysis, although doing so

did not affect the significance of the calculated difference between our primates versus carni-

vorans. Data for Zalophus californianus were not included in [47] and were instead obtained

from Table 2 in [64].

Vocalization data

Vocalization data for all 55 of the species examined here were obtained from [9]. In that study,

a mean F0 value for each species was derived from a set of six vocalizations systematically

selected to cover the range of spectral variability present in a larger set of vocalizations. This

procedure ensured that the vocalization data chosen to represent each species were derived in

the same manner across species, promoting valid interspecific assessments. The resulting

“F06” value was only available for 80% (n = 44) of the species examined here. However, using

the same data set and reducing the number of vocalizations required to calculate mean values

from six to three, a comparable “F03” value was derived for 96% (n = 53) of our species. For

species with both F03 and F06 values, these variables were highly correlated (Spearman

r = 0.97 for primates [n = 20] and 0.98 for carnivorans [n = 24], Ps< 0.0001), justifying the use

of F03 values here. For the two species without F03 values (Lemur catta and Otocyon megalo-
tis), the data in [9] included less than three vocalizations with measurable F0 values. These spe-

cies were thus excluded from analyses involving F0. It should also be noted that, although

several previous studies have preferred using acoustic measures other than mean F0 in their

comparisons with body size (e.g., minimum F0, maximum F0, or F0 range; [65,66]), attempt-

ing such comparisons across all 53 species included in the present acoustic analysis invariably
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resulted in weaker relationships with larynx size than that observed for mean F0: the R2 values

for linear models of larynx-size versus log10-transformed F0 mean, maximum, minimum, and

range were 0.583, 0.513, 0.506, and 0.361 respectively. Finally, we note that the acoustic allome-

tries reported using F0 mean in [9] are among the strongest in the literature (in the sense of

highest R2; cf. [65–67]), providing further support for the systematic approach taken to deriv-

ing F0 mean in [9] and, by extension, here.
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