
Research Article
Creep Parameter Inversion and Long-Term Stability Analysis of
Tunnel Based on GP-DE Intelligent Algorithm

Fengrui Zhang , Annan Jiang , Xinping Guo, and Xiurong Yang

Highway and Bridge Institute, Dalian Maritime University, Dalian 116026, China

Correspondence should be addressed to Annan Jiang; jiangannan@163.com

Received 16 June 2021; Revised 18 August 2021; Accepted 5 September 2021; Published 21 September 2021

Academic Editor: Veronica Calado

Copyright © 2021 Fengrui Zhang et al.*is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Aiming at the creep problem of Banshi Tunnel in Jilin province, the creep laws of rock are analyzed by the creep test, and the Cvsic
model describing the creep characteristics of the tunnel is established. To obtain the creep parameters accurately, considering the
advantages of Gauss process and differential evolution algorithm, coupling the two methods, a Gauss process-differential
evolution intelligent inversion method is proposed. According to on-site monitoring data, the the creep parameters of the tunnel
are accurately inverted. On this basis, the stability analysis of the tunnel and the selection of a reasonable construction plan are
carried out. *e research results show that to ensure the stability of the tunnel, the construction scheme of initial lining + pipe
shed + advanced grouting anchor rod should be adopted.*e research results have guiding significance for the long-term stability
evaluation of the tunnel.

1. Introduction

*e aging stability of the tunnel is influenced by the creep
characteristics of surrounding rock, which attracts more and
more attention. *e practical application shows that the
deformation of surrounding rock increases with time, which
may lead to large deformation and even damage of tunnel
support structure [1]. If the influence of creep effect is ig-
nored, it will cause great difficulty in engineering con-
struction. *erefore, the study of rock creep characteristics
has guiding significance for the stability evaluation of the
tunnel.

*e primary work of studying creep characteristics of
the tunnel is how to determine the reasonable creep
constitutive model and creep parameters. Many scholars
have studied the rock creep characteristics through creep
tests [2–5]. Zhang et al. [6] studied the creep damage
characteristics of rocks under multilevel loads and ob-
tained the creep damage evolution equation. Rassouli and
Zoback [7] conducted creep tests on horizontal and
vertical shale samples. Hu et al. [8] carried out the creep
test on artificial layered specimens and obtained the creep
deformation law of the test.

According to the laboratory test results, a variety of rock
creep models have been proposed [9–13]. However, for
tunnel engineering, it is impossible to accurately obtain the
creep parameters restricted by sampling disturbance, size
effect, and test technology. Lin et al. [14] established a
nonlinear viscoplastic element, connecting the plastic ele-
ment and the viscous element in parallel. Zhang et al. [15]
used discrete element software to establish serrated speci-
mens and analyzed the creep characteristics of serrated
specimens.

*e back analysis of tunnel displacement by using field
monitoring data provides a new idea for the study of creep
parameters. *e numerical back analysis method and the
analytical back analysis method are the traditional methods
to study creep parameters [16, 17]. However, these methods
have many problems, such as large computational workload
and poor stability of solutions. In recent years, intelligent
methods including Gaussian process (GP) and differential
evolution (DE) algorithm have been widely used in geo-
technical parameter inversion. Guan et al. [18] proposed a
creep parameter inversion algorithm based on BN and GA.
*e author in [19] used the face mapping data to predict
ground properties in a tunnel back analysis by an artificial
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neural network. Li et al. [20] used the Gaussian process
model to predict tunnel water inrush. Liu and Liu [21]
introduced a GA-CCGPR intelligent algorithm for tunnel
construction.

*e GP algorithm can adaptively obtain parameters in
the process of model construction and can well establish
nonlinear mapping relationship, which is suitable for solving
complex problems [22, 23]. However, using the conjugate
gradient method to obtain the optimal hyperparameters of
GP, the conjugate gradient method is dependent on the
initial value, easily falling into local minimum and iterations
may not converge. To overcome these shortcomings, DE is
used to find the optimal hyperparameters of the GP. DE is a
multiobjective optimization algorithm to solve the overall
optimal solution in multidimensional space [24, 25].

In this paper, considering the advantages of the two
algorithms, a Gaussian process-differential evolution (GP-
DE) intelligent inversion method for creep parameters is
established. Based on the creep problem during the con-
struction of Banshi Tunnel in Jilin Province, the creep
constitutive model and parameter range are determined by
the triaxial creep test. According to the field monitoring
data, the creep parameters are inversed intelligently, and the
reasonable creep parameters are obtained. On this basis, the
stability of the tunnel is studied, and a reasonable con-
struction scheme is selected.

2. The Creep Parameter Inversion Method
Based on GP-DE

2.1.!eProblemofCreepParameter Inversion. *e inversion
of creep parameters of tunnel surrounding rock is essential
to optimize the parameters and find the optimal solution.
*e upper and lower limits of model parameters are de-
termined by the actual physical meaning. Assuming that
there are m observations, the inversion optimization
equation is as follows:

minE x1, x2, . . . , xn( 􏼁 � min
1
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(1)

where m is the number of observations, Yk
0 is the measured

displacement, Yk is the calculated displacement, xk is the
creep parameter, and N represents the number of
parameters.

*e creep parameters of the tunnel are selected, and
FLAC3D is used to numerically simulate the tunnel engi-
neering and compare the calculated value with the field
monitoring displacement value. If the difference is large, the
creep parameters are reselected until the difference is small
enough.

When FLAC3D is used for numerical simulation, the
selection of creep parameters requires a lot of forward
calculation. *erefore, this paper uses the GP model to
construct the response surface of creep parameters and
tunnel displacement.

2.2. Gaussian Process. In Gaussian process, the joint prob-
ability distribution of random variable X and its corre-
sponding process state f(X) obey n-dimensional Gaussian
distribution. Statistical characteristics are determined by
means of mean and covariance, and the expression is as
follows:

f(t) ∼ GP μ(t), C t, t′( 􏼁􏼈 􏼉. (2)

D� (X, y) is taken as the training set of the Gaussian
model, and learning the training set, the nonlinear mapping
relationship between input variables and output vectors is
established:

y � f(x) + ε, (3)

where ε is an independent random variable, ε ∼ N(0, σ2n),
and σ2n is the variance.

*e prior distribution of the output value of the training
sample is

y ∼ N 0, K + σ2nI􏼐 􏼑, (4)

where K is the n-order symmetric positive definite covari-
ance matrix; Kij of K�K (X, X) measures the correlation
between xi and xj.

Gaussian process (GP) is used to compute the predictive
distribution of the function values y∗ at test points x∗. *e
joint distribution of target value and function value can be
written as follows:

y
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where K (X∗, X∗) is the covariance matrix of X∗ and K (X,
x∗) is the order n× 1 covariance matrix of X and x∗.

When the input value x∗ of the test sample and the
training set D are known, the output value y∗ of the test
sample can be calculated through the Gaussian process:

y
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(6)

where μy∗ and σy∗ are the expectation and variance of y∗;
α � (K + σn

2I)− 1y; and I is the identity matrix.
*e covariance function can represent the kernel

function in the GP model. *is article uses the squared
exponential covariance function (SE):

kse xp, xq􏼐 􏼑 � σ2f exp −
1
2l

2 xp − xq

�����

�����
2

􏼠 􏼡 + σ2nδpq, (7)

where xp and xq are the learning samples or prediction
samples, l is the distance between xp and xq, σn is the
standard deviation of the noise, σf is the local correlation,
and δpq is a sign function.

Hyperparameters σf and σn affect the GP training effect,
which is expressed as follows:
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(8)

where GPh(θ) is the estimated output data, Yh is the actual
output of the test sample, and θ � (σf, σn) represents the
hyperparametric vector.

2.3. Differential Evolutionary Algorithm. *e traditional
method uses the conjugate gradient method to solve the
optimal hyperparameters of GP, and then the conjugate
gradient method depends on the initial value, which is easy
to fall into the local minimum. To overcome these short-
comings, DE is used to search the optimal hyperparameters
of GP.

*e DE algorithm was proposed by Storm and Price in
1995. *e algorithm has excellent performance in dealing
with nonlinear and complex problems. *e specific opti-
mization steps of DE are as follows.

2.3.1. Generating the Initial Population. NP individuals are
randomly generated in D-dimensional space, and the for-
mula is as follows:

xi,j,0 � x
L
i,j + rand x

U
i,j − x

L
i,j􏼐 􏼑,

i � 1, 2, . . . , NP; j � 1, 2, . . . , D,
(9)

where rand ∈ [0, 1] and xij
U and xij

L are the upper and lower
limits of a single variable.

2.3.2. Mutation Operation. *ree individuals xr1,G, xr2,G,
and xr3,G are randomly selected from the population for
mutation operation, as shown in Figure 1. *e variation
vector is as follows:

Vi,G+1 � Xr1 ,G + F Xr2 ,G − Xr3,G􏼐 􏼑, (10)

where r1, r2, and r3 are unequal integers between [1,NP] and
F∈[0,1] is the variation factor.

2.3.3. Crossover Operation. A new vector ui,G+1 is generated
by crossing the target vector xi,G with the variation vector
vi,G+1 as follows:

ui,G+1 �
Vi,G+1, rj ≤CR‖j � ni,

Xi,G, rj >CR&j ≠ ni,

⎧⎨

⎩ (11)

where rj∈[0,1], CR∈[0,1], and ni is a random integer.

2.3.4. Select Operation. *e new generation of the pop-
ulation obtained by the selection operation is expressed as
follows:

xi,G+1 �
ui,G+1, if f ui,G+1􏼐 􏼑≤f xi,G􏼐 􏼑􏼐 􏼑,

xi,G, f f ui,G+1􏼐 􏼑>f xi,G􏼐 􏼑􏼐 􏼑,

⎧⎪⎨

⎪⎩
(12)

where f (·) represents the fitness function that corresponds to
equation (8).

2.4. Creep Parameters Inversion Process. According to
equation (1), Yk can be calculated using the GPmodel, which
can be expressed by the following equation:
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where m is the number of measuring points, YJ is the
monitoring value of the j-th measuring point, and Yj is the
monitoring value of the j-th measuring point.

Firstly, DE is used to search the optimal hyperparameters
of GP to improve the nonlinear regression ability of

Gaussian process. *en, the mapping relationship between
creep parameters and displacement is established through
Gaussian training process. Finally, the creep parameters are
obtained by searching the global space of the solution by the
differential evolution algorithm. *e creep parameter
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Figure 1: Schematic diagram of variation operation.
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inversion process is shown in Figure 2, and the inversion
steps are as follows:

(1) Based on the field data and laboratory tests, the
creep characteristics of rock are analyzed, and
the reasonable creep constitutive model and the
range of creep parameters to be retrieved are
determined.

(2) *e inverse creep parameters are designed according
to the orthogonal design principle.

(3) *e numerical calculation model is established. *e
combination of creep parameters is calculated by
FLAC3D software, obtaining the displacement and
establishing the learning sample.

(4) Firstly, the kernel function of GP is determined,
then the parameters of DE algorithm are set, and
finally the super parameters of the kernel function
are optimized.

(5) Mutation, crossover, and selection are carried out by
DE to find the optimal super parameters of GP,
improving the prediction ability.

(6) *e mapping relationship between creep parameters
and displacement is established through Gaussian
training process.

(7) *en, the DE algorithm is used to inverse the creep
parameters. *e creep parameter to be randomly
generated is the initial population, taking fitness
function as evaluation index. When the fitness meets
the requirements, creep parameters are considered to
be found. If the fitness does not meet the require-
ments, mutation, crossover, selection, and other
operations will be carried out until the maximum
population iteration or fitness reaches the preset
value.

3. Study Area

Banshi Tunnel, located in Jilin Province, is divided into left
and right sides, with a left side of 1711m and a right side of
1717m. *e terrain inclines from southeast to northwest
with an elevation of 700–1000m. It is a low mountain
landform. *e slope angle of the mountain body is 10–30°,
the entrance and exit slope of the south side is 12–16°, and
the entrance and exit slope of the north side is 20–25°. *e
surrounding rocks of the tunnel are mainly mixed gneiss
with locally developed faults. Rock mass is broken, and its
overall stability is poor, as shown in Figure 3.

*e LK49+ 885-LK49 + 915 area at the left entrance of
the tunnel is characterized by weak rock belts, developed
joints and fissures, poor joint planes, and loose and fractured
rock mass. *e tunnel is excavated by the CRD method, and
the supporting method is advanced bolt + steel arch
truss + shotcrete. After excavation and support, the creep
characteristics of surrounding rocks are obvious, resulting in
local collapse, support failure, lining cracking, and other
phenomena, in Figure 4.

4. Creep Model of Tunnel

*e sample is taken from the left portal area of Banshi
Tunnel. It is mixed gneiss, mainly composed of feldspar,
quartz, and various dark minerals. Intact rock from the same
tunnel face in the tunnel is selected and transported back to
the laboratory and then processed into the cylindrical
standard specimen with a diameter of 50mm and a height of
100mm, as shown in Figure 5.

According to the in situ stress measurement of the
tunnel, the confining pressure of the creep test is determined
to be 1MPa. Firstly, the confining pressure is loaded to
1MPa; then, the axial pressure is loaded in stages, the
loading rate is 0.5MPa/min, and the initial value is 10MPa.
When the creep deformation rate is less than 0.001mm/d,
the next loading is carried out, Δσ � 20MPa, until the
specimen is damaged. Figure 6 shows the results of creep
tests.

*e specimen produces instantaneous elastic deforma-
tion under stress loading, and then the deformation slowly

Creep tests of surrounding rock
in situ and Laboratory

Determination of creep
constitutive model and parameter

range of surrounding rock

Construction of creep parameter
combination by orthogonal design

�e optimal nonlinear mapping between creep
parameters and displacement is obtained.

Randomly generating creep parameters as
initia population

Obtaining on-site measuring displacement

Creep parameter inversion

Obtaining creep parameter

Mutational operation

Mutational operation

Randomly generating
GP super parameters
as initia population

Crossover operation

Crossover operation

Selection operation

Selection operation

Meetting
iteration

termination

Numerical calculation by Flac3D,
establishing learning samples

Network training by GP

Test of training
results

Yes

Yes

No

No

Figure 2: Flow chart of creep parameter inversion.
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Figure 3: Tunnel and surrounding rock.

(a) (b)

(c) (d)

Figure 4: Tunnel accident. (a) Collapse. (b) Varch failure. (c) Support damage. (d) Lining rupture.

Figure 5: Gneiss specimen.
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increases with time under the constant stress, but the creep
rate gradually decreases and tends to be stable, showing the
characteristics of decay creep and stable creep. With the
increase in axial stress, the deformation of sample increases
gradually. Loading to the last load, the deformation of the
specimen increases rapidly, the rock will be suddenly
destroyed, and the failure process is extremely short, and
there is no obvious accelerated creep stage.

*e whole creep process of gneiss presents four stages:
instantaneous elastic deformation, attenuation creep, decay
creep, and sudden failure. *erefore, the Cvsic model is
selected to describe the creep characteristics of gneiss, as
shown in Figure 7. In the Cvsic model, viscoelastic con-
stitutive relation corresponds to the Burger model and
plastic constitutive relation corresponds to the
Mohr–Coulomb model.

For the Cvsic model, the strain tensor can be written as

_eij � _e
K
ij + _e

M
ij + _e

P
ij, (14)

where eK
ij is the Kelvin body strain, eM

ij is the Maxwell body
strain, and eP

ij is the Mohr–Coulomb body strain.
For the viscoelastic unit, the constitutive laws for the

Kelvin and Maxwell units are formulated by

Sij � 2ηK
_e
K
ij + 2G

K
_e
K
ij , (15)

_e
M
ij �

_Sij

2G
M

+
Sij

2ηM
, (16)

where Sij is the stress tensors, GK and ηK are the shear
modulus and the viscosity of Kelvin, and GM and ηM are the
shear modulus and the viscosity of Maxwell.

According to the Boltzmann superposition principle, the
creep curves of gneiss under step load are transformed and
the creep curves under different loading conditions are
obtained. Table 1 shows the creep parameters of the Cvsic
model that are identified by Istopt software.

To verify the accuracy of the model and its parameters,
the test curve is compared with the model curve, as shown in

Figure 8. *e model curve of the Cvsic model is in good
agreement with the test curve, which shows that the Cvsic
model can accurately describe the creep characteristics of
gneiss. In addition, on the basis of the creep parameters
identified by laboratory tests, combined with the field in-
vestigation and the reference of similar engineering expe-
rience, the range of creep parameters of the tunnel can be
determined.

5. Back Analysis Using GP-DE Algorithm

5.1. Numerical Simulation Model. According to the geo-
logical characteristics of tunnel LK49 + 885∼LK49 + 915, a
numerical model is established. *e tunnel section is
horseshoe shaped with a width of 10.5m and a height of
7.8m. X, Y, and Z direction constraints are applied to the
bottom of the model, and normal displacement constraints
are applied to the side. *e model has a total of 40541 cells
and 28230 nodes, as shown in Figure 9.

To monitor the tunnel displacement, one monitoring
section is arranged every 15m, and three sections
(LK49 + 885, LK49 + 900, and LK49 + 915) are installed in
total. *ree displacement monitoring points are arranged at
arch foot, arch waist, and arch crown of each section, as
shown in Figure 9.

According to the test analysis results, the Cvsic model
can be used to study tunnel creep. *e creep parameters GK,
GM, ηK, and ηM of the Cvsic model are inversed intelligently.
Table 2 shows the range of creep parameters to be inversed.

*e orthogonal parameter scheme and uniform design
parameters are shown in Tables 3 and 4. Table 3 is the
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Figure 6: Creep test curve of gneiss.
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Figure 7: *e creep model of Cvsic.
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training data, and Table 4 is the verification data. Using
FLAC3D software to solve the data, the displacement of the
tunnel monitoring section is calculated. Among them, the
monitoring data of section LK49+ 885 are used for the
inversion of creep parameters. *e monitoring data of
section LK49+ 900 are compared with the inversion results.

5.2. Back Analysis Results. *e creep parameters of tunnel
surrounding rock are inversed by the GP-DE algorithm.
Setting relevant parameters as follows: the population size
NP� 100, the variation factor F� 0.6, the cross factor
CR� 0.9, the maximum evolution algebra itermax� 100, and
the kernel function is square exponential covariance func-
tion. Table 5 shows the engineering monitoring data. Based
on the calculation results of the orthogonal parameters
schemes, the nonlinear implicit relation between creep
parameters and displacement is established. *e results of
the uniformly parameters schemes are used for verification.

Table 1: Creep parameters of the Cvsic model.

Sample Axial stress (MPa) Gk (GPa) GM (GPa) ηK (GPa·d) ηM (GPa·d)

Gneiss

5 0.74 3.90 0.92 66.5
10 0.53 3.56 2.71 192.61
15 0.39 8.58 4.33 284.15
20 0.28 9.72 7.06 442.98
25 0.26 7.47 8.80 232.15
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Figure 8: Comparison of test curve and fitting curve of the Cvsic model.

No.3 monitoring point
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point

No.1 monitoring
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Figure 9: (a) Tunnel numerical model. (b) Layout of monitoring section.

Table 2: Range of parameters to be back analyzed.

GK (GPa) GM (GPa) ηK (GPa·d) ηM (GPa·d)
0.1∼2.5 1∼5 0.5∼4.5 10∼50
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Table 6 shows the creep parameters that are obtained by
inversion.

According to the inversion results, FLAC3D software is
used again for forwarding analysis, and the calculated dis-
placement of section LK49 + 900 is compared with the
measured displacement, in Figure 10. *e calculated curves
are in good agreement with the monitoring curves, and the
values are basically the same, indicating that the creep
constitutive model and the creep parameters obtained by
inversion are basically reasonable.

To verify the accuracy of the GP-DE model, the GP-DE
model is compared with GP and ANN models, and the
results are shown in Table 7.

As shown in Table 7, the GP-DE model has the highest
inversion accuracy of creep parameters, while the inversion
ability of the GP algorithm and ANN algorithm is general,
and the inversion accuracy of the GP-DE model is signifi-
cantly improved.

*e fitness value of the GP-DE algorithm group under
different iteration times is shown in Figure 11. It can be seen

Table 3: *e orthogonal parameter sample.

GK (GPa) GM (GPa) ηK (GPa·d) ηM (GPa·d)
Displacement

value of 1 (mm)
Displacement

value of 2 (mm)
Displacement

value of 3 (mm)
3 d 12 d 24 d 48 d 3 d 12 d 24 d 48 d 3 d 12 d 24 d 48 d

1 0.1 1 0.5 10 4.26 9.62 15.36 21.63 6.58 15.14 19.47 23.78 9.41 17.48 23.31 29.52
2 0.1 2 1.5 20 3.97 9.23 14.84 20.84 6.19 14.77 18.75 23.33 8.95 17.03 22.78 29.25
3 0.1 3 2.5 30 3.79 8.91 14.61 20.52 5.74 13.9 17.36 21.99 8.48 16.67 22.21 28.82
4 0.1 4 3.5 40 3.53 8.84 14.26 20.06 5.37 13.48 16.84 21.64 8.01 16.28 21.82 28.02
5 0.1 5 4.5 50 3.23 8.51 13.74 19.63 5.08 13.04 16.21 21.03 7.45 15.47 21.09 27.26
6 0.7 1 1.5 30 3.58 9.31 14.43 20.78 5.94 14.21 17.63 21.77 8.46 19.7 21.92 28.49
7 0.7 2 2.5 40 3.37 8.66 14.03 20.09 5.31 13.54 16.40 21.46 7.76 15.78 21.55 27.51
8 0.7 3 3.5 50 3.11 8.32 13.48 19.37 4.74 12.72 15.94 20.78 7.21 15.05 20.98 26.79
9 0.7 4 4.5 10 3.17 8.47 13.61 19.49 4.93 12.85 16.15 20.97 7.3 15.23 21.32 26.96
10 0.7 5 0.5 20 3.24 8.62 13.85 19.80 5.13 13 16.30 21.05 7.72 15.44 22.53 27.52
11 1.3 1 2.5 50 2.76 7.98 13.23 19.31 4.63 12.64 15.70 20.66 7.13 14.99 20.63 26.45
12 1.3 2 3.5 10 2.82 8.22 13.53 19.47 4.81 12.95 15.31 20.96 7.37 15.51 22.05 26.69
13 1.3 3 4.5 20 2.67 7.62 13.03 18.50 4.25 12.03 14.94 19.77 6.93 14.9 20.64 25.13
14 1.3 4 0.5 30 2.54 7.20 12.72 18.19 3.74 11.23 14.71 18.12 6.62 15.61 19.62 24.87
15 1.3 5 1.5 40 2.23 6.85 12.45 17.77 3.40 10.87 14.03 17.72 6.27 14.39 23.31 23.01
16 1.9 1 3.5 20 1.71 6.64 11.49 17.08 3.12 10.29 13.65 17.30 5.80 13.86 18.64 22.78
17 1.9 2 4.5 30 1.59 6.36 10.95 16.74 2.90 9.48 12.83 17.01 5.62 13.43 17.80 21.76
18 1.9 3 0.5 40 1.53 6.19 10.64 16.37 2.84 9.39 12.39 15.74 5.51 12.82 17.28 21.32
19 1.9 4 1.5 50 1.44 5.73 10.02 15.79 2.61 9.04 11.78 14.77 5.28 11.73 16.43 20.20
20 1.9 5 2.5 10 1.51 5.89 10.40 16.15 2.71 9.26 12.29 15.25 5.32 12.31 16.82 20.62
21 2.5 1 4.5 40 1.36 5.43 10.14 14.45 2.41 8.75 12.70 14.32 4.38 11.57 14.58 19.17
22 2.5 2 0.5 50 1.25 5.24 9.87 13.97 2.05 8.53 12.12 13.78 4.09 10.73 13.94 18.65
23 2.5 3 1.5 10 1.19 5.16 9.66 13.45 1.98 8.18 11.94 13.11 4.02 10.12 13.29 18.13
24 2.5 4 2.5 20 1.10 5.04 9.28 12.78 1.81 7.93 11.35 12.68 3.78 9.61 12.31 17.10
25 2.5 5 3.5 30 1.02 4.67 8.81 12.12 1.93 7.09 10.53 12.01 3.25 9.13 11.48 16.43

Table 4: *e uniform design parameter sample.

GK (GPa) GM (GPa) ηK (GPa·d) ηM (GPa·d)
Displacement value of 1

(mm)
Displacement value of 2

(mm)
Displacement value of 3

(mm)
3 d 12 d 24 d 48 d 3 d 12 d 24 d 48 d 3 d 12 d 24 d 48 d

1 0.1 2 1.5 30 3.85 9.01 14.73 20.61 5.92 14.35 18.04 22.83 8.65 16.90 22.54 29.01
2 0.7 3 3.5 20 3.24 8.52 13.88 19.87 5.14 13.12 16.24 21.18 7.52 15.45 18.88 22.19
3 1.3 1 0.5 50 2.30 6.27 11.25 17.39 3.53 11.62 15.58 19.04 6.24 14.07 21.41 27.23
4 1.9 5 2.5 10 1.51 5.89 10.40 16.15 2.71 9.26 12.29 15.25 5.32 12.31 16.82 20.62
5 2.5 4 4.5 40 1.06 4.82 9.03 12.45 1.87 7.65 10.80 12.32 3.48 9.37 11.88 16.80

Table 5: *e tunnel monitoring data.

Displacement value of 1 (mm) Displacement value of 2 (mm) Displacement value of 3 (mm)
3 d 12 d 24 d 48 d 3 d 12 d 24 d 48 d 3 d 12 d 24 d 48 d
1.51 6.03 10.35 16.17 2.82 9.47 13.18 17.73 5.47 12.70 17.05 20.41
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from the figure that the fitness value tends to converge as the
number of iterations increases, and the distribution in the
space gradually decreases.

5.3. Reasonable Support Scheme of Tunnel. To ensure the
stability of the tunnel, a reasonable support scheme is selected
and the plastic zone of surrounding rock is compared under
different support schemes, as shown in Figure 12. It can be
seen from the figure that the prestressed anchor rod plays a
small role, while the grouting reinforcement plays an obvious
role. *erefore, it is recommended to adopt the scheme of
initial lining +pipe shed+ advanced grouting anchor rod.

Figure 13 shows the creep deformation curve at the
tunnel crown. *e numerical calculation value is close to the
measured monitoring value, and the deformation trend is
basically the same, which can reflect the creep characteristics
of the surrounding rock of the tunnel. In the early stage of
creep, the creep deformation of the tunnel vault increases
rapidly.With the increase in time, the deformation gradually
decreases and tends to be stable, which is basically consistent
with the conclusion of the indoor test.

According to JTG F60-2009, the reasonable supporting
time of the tunnel secondary lining is taken as the time when
the deformation value of the tunnel reaches 80% of the final
deformation. When t⟶∞, the vault settlement is
24.15mm, so the time 24 d corresponding to 80% of the final
deformation is the reasonable time of secondary lining
support. In the actual construction of the tunnel, the time of
the second lining support is longer than this value, which

shows that the support of the second lining is relatively
lagging behind and the design of the primary lining of the
tunnel is conservative. *erefore, it is necessary to speed up
the construction of secondary lining or reduce the thickness
of primary lining.

6. Discussion

6.1. !e Prediction Accuracy of GP Model. Figure 14 shows
the influence of super parameters on the inversion accuracy
of the GPmodel. It can be seen from the figure that σf and σn

play a key role in the inversion accuracy. When ln σf �

5 · 42 and ln σn � 4 · 83, the inversion accuracy error is the
lowest. *is shows that it is very necessary to select rea-
sonable super parameters to ensure the inversion accuracy of
the GP model.

6.2. Influence of Differential Evolution Parameters on Opti-
mizationResults. When the GP-DE algorithm is used for the
inversion of tunnel creep parameters, the DE algorithm
plays a key role. *is paper analyzes the influence of mu-
tation factor F, crossover factor CR, population size NP, and
different difference strategies on the DE algorithm and se-
lects reasonable parameters.

6.2.1. Influence of F and CR on Inversion Accuracy.
Figure 15 shows the effects of different F and CR on the
iterative curve. It can be seen from the figure that the
variation factor F and cross factor CR has an important
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Figure 10: Comparison between the calculated value and the measured value.

Table 6: Inversion of creep parameters.

GK (GPa) GM (GPa) ηK (GPa·d) ηM (GPa·d)
2.17 2.10 4.50 16.65
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impact on the convergence speed. When F� 0.6 and
CR� 0.5∼0.9, the iterative process converges well and CR 0.9
converges fastest; when CR� 0.9 and F� 0.5∼0.9, F� 0.6

converges faster. *e results show that the convergence
performance of the DE algorithm is better when CR� 0.9
and F� 0.6 are selected.

Table 7: Comparison results of different algorithms.

Monitoring point Time (d) Monitoring
displacement (mm) GP-DE (mm) Relative

error (%) GP (mm) Relative
error (%) ANN (mm) Relative

error (%)

1

3 1.51 1.46 3.4 1.45 4.2 1.45 5.6
12 6.03 5.86 2.8 5.81 3.7 5.96 6.4
24 10.35 10.15 1.9 9.99 3.5 10.64 5.8
48 16.17 15.77 2.5 15.77 2.9 15.75 6.1

2

3 2.82 2.75 2.6 2.71 3.8 2.99 5.9
12 9.47 9.18 3.1 8.99 5.1 10.02 5.8
24 13.18 12.96 1.7 12.36 6.2 14.02 6.4
48 17.73 17.34 2.2 17.07 3.7 18.32 6.7

3

3 5.47 5.37 1.8 5.18 5.3 5.81 6.1
12 12.70 12.37 2.6 12.27 3.4 13.51 6.4
24 17.05 16.56 2.9 16.18 5.1 18.06 5.9
48 20.41 19.70 3.5 18.44 6.4 21.75 6.6
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Figure 11: Fitness values with different evolution. (a) 1stevolution. (b) 2th evolution. (c) 10th evolution. (d) 20th evolution.
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6.2.2. Influence of NP on Inversion Accuracy. Figure 16
shows the influence of different population sizes on the
iterative convergence curve. When NP� 1∼100, the opti-
mization accuracy of the model increases gradually with the
increase in population size, but the iteration rate decreases;
whenNP� 100∼200, the optimization accuracy of the model

does not change significantly with the increase in population
size, so the population size NP� 100 is comprehensively
considered.

6.2.3. Influence of Differentiation Strategy on Inversion
Accuracy. In the DE algorithm, the different differential
strategies are as follows:

Block State
None
shear-n shear-p
shear-n shear-p tension-p
shear-p
shear-p tension-p
tension-n tension-p
tension-p

(a)

Block State
None
shear-n shear-p
shear-n shear-p tension-p
shear-p
shear-p tension-p
tension-p

(b)

Block State
None
shear-n shear-p
shear-n shear-p tension-p
shear-p
shear-p tension-p
tension-p

(c)

Block State
None
shear-n shear-p
shear-n shear-p tension-p
shear-p
shear-p tension-p
tension-p

(d)

Figure 12: Plastic zone of the tunnel with different support modes. (a) Initial lining. (b) Initial lining + pipe shed. (c) Initial lining + pipe
shed + prestressed anchor rod. (d) Initial lining + pipe shed + advanced grouting anchor rod.
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Figure 15: Iteration curve with change of CR and F: (a) F� 0.6. (b) CR� 0.9.
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where xbest,g is the best individual and
xr1, xr2, xr3, xr4, andxr5 are random individuals.

*e iterative curves of different difference strategies are
shown in Figure 17. It can be seen from the figure that the
difference strategy has an important impact on the con-
vergence speed and optimization accuracy. Compared with
other difference strategies, DE/Best/1 has faster convergence
speed and higher optimization accuracy.

7. Conclusions

(1) According to the creep test of gneiss, the creep model
and parameter range of the tunnel are determined.
*e results show that the whole creep process of
gneiss presents four stages: instantaneous elastic
deformation, attenuation creep, stable creep, and
sudden failure. *e Cvsic model can reflect the creep
characteristics of the tunnel.

(2) Taking full advantage of Gauss process and differ-
ential evolution algorithm and coupling the two
methods, a Gauss process-differential evolution in-
telligent inversion method is proposed. *e algo-
rithm performance test and parameter analysis are
carried out. Selecting CR� 0.9, F� 0.6, and NP� 100
can improve the convergence speed of the algorithm,
save the calculation time, and avoid falling into the
local optimal solution.

(3) *e stability analysis of the tunnel and the selection
of a reasonable construction plan are carried out.*e
prestressed anchor rod plays a small role, while the
grouting reinforcement plays an obvious role. It is
recommended to adopt the scheme of initial
lining + pipe shed + advanced grouting anchor rod.
In addition, the reasonable support time for the
secondary lining of the tunnel is 24 days. In the
actual construction of the tunnel, the secondary

lining support is relatively lagging, which can speed
up the construction of the secondary lining.
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