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Abstract 
 
In this work, the effect of perturbation on linear fractional differential system is studied. The analysis is done 
using Riemann-Liouville derivative and the conclusion extended to using Caputo derivative since the result is 
similar. Conditions for determining the stability and asymptotic stability of perturbed linear fractional 
differential system are given. 
 

 
Keywords: Asymptotic stability; riemann-liouville derivative; caputo derivative; perturbed fractional 

differential systems. 
 

1 Introduction 
 
Fractional calculus has attracted increasing interest in the last three decades due to the fact that many 
mathematical problems in sciences and engineering can be modeled as fractional differential equations. 
Fractional differential equations have found many applications in physics, control engineering and signal 
processing. In interdisciplinary fields, many systems can be elegantly described with the help of the fractional 
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derivatives. Stability analysis is basic in the study of fractional differential systems due to its importance. This 
analysis helps to overcome unnecessary destruction or destabilization in dealing with an unstabilized systems.  
 
Many studies have been made on the stability of linear fractional differential systems[1-11]. The need to extend 
the study of linear fractional differential systems to perturbed fractional differential systems has attracted the 
interest of researchers in recent times. [12-15] studied perturbed fractional differential systems and gave stability 
conditions for the stability and asymptotic stability of fractional differential systems. This work seeks to add to 
knowledge in the study of perturbed differential systems. Some results have been established which are used in 
determining the stability or otherwise of the systems. Section 2 of this work gives the preliminaries and 
definitions while the stability analysis is given in section 3. Conclusion is given in section 4. 
 

2 Preliminaries and Definitions 
 
In this section, the basic definitions and concepts are given. These results and definitions will be used in the 
analysis that follows. 
 
Definition 2.1 (Gamma Function): Gamma function is the generalization of the factorial function to non-
integral values, introduced by the Swiss mathematician Leonhard Euler in the 18th century. The gamma function 
represented by Γ (the capital letter gamma from the Greek alphabet) is one commonly used extension of the 
fractional function to complex numbers. The gamma function is defined for all complex numbers except the 
non-positive integer. For any positive integer n, �(�)= (� − 1)!. But this formula is meaningless if n is not an 
integer. To extend the factorial to any real number  � > 0 (whether or not x is a whole number), the gamma 
function is defined as  
 

          �(�)= � �������
∞

�

��                 (� > 0) 

 
Definition  2.2: The Riemann-Liouville derivative and the Caputo derivative will be used in the analysis.  
 
The Riemann-Liouville derivative is defined as  
 

��,�
�

�� �(�)=
1

�(� − �)
�
�

��
�
�

� (� − �)������(�)��
∞

�

,             (� − 1 ≤ � < �) 

 
And the Caputo derivative is defined as 
 

��,�
�

� �(�)=
1

�(� − �)
� (� − �)������(�)(�)��

∞

�

,             (� − 1 ≤ � < �) 

 

where �(.) �� �ℎ� �����′� ��������(����� ��������).   
 

The Laplace transform of the Riemann-Liouville fractional derivative  ��,�
�

�� �(�)   is given as  
 

� ���� ��,�
�

�� �(�)�� =  ���(�)− ���
���

���

[�������(�)]���

∞

�

             (� − 1 ≤ � < �) 

 

Similarly, the Laplace transform of the Caputo fractional differential derivative ��,�
�

� �(�)  is given as    
 

� ���� ��,�
�

� �(�)�� =  ���(�)− �������
���

���

�(�)(�)  ,
∞

�

             (� − 1 ≤ � < �) 

 

Definition 2.3: The Mittag-Leffler function is defined by 
 

��(�)= �
��

�(�� + 1)
   ,         �ℎ��� ��(�)> 0,   ��� 

∞

���
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   The two parameter Mittag-Leffler function is defined as 
 

��,�(�)= �
��

�(�� + �)
   ,         (� > 0,   � > 0) 

∞

���

 

   
The Laplace transform of the Mittag-Leffler function is given as 
 

� �������������,�
(�)(±���)�� =  

�!����

(�� ∓ �)���

∞

�

   ; (�(�)> |�|
�
� ) 

 

Proposition 2.1: If  � ∈ ��×� ��� 0 < � < 2 ,�  �� �� ��������� ������� ������ ��� � ��������� 
��

�
<

� < min(�,��),�ℎ�� ��� �� ��������� ������� � ≥ 1,�ℎ� ��������� ���������� ℎ���:  
 

��,�(�)=
1

�
���� �⁄ exp��� �⁄ � − �

���

�(� − ��)
+ �(|�|���� )   ,          

�

���

 

 
with |�| → ∞,|arg (�)| ≤ �  
 
and  

             

��,�(�)= − �
���

�(� − ��)
+ �(|�|���� )   ,          

�

���

 

 
with |�| → ∞ ��� � < |arg (�)| ≤ �  
 
Proposition 2.2: Suppose � > 0 ,�(�) is a nonnegative locally integrable function on 0 ≤ � < �(���� � ≤
∞��� �� is a nonnegative and nondecreasing continuous function defined on 0≤�<� , ��≤���������, ��� 
������� �(�)�� ����������� ��� ������� ���������� �� 0 ≤ � < �  ���ℎ  
        

�(�)≤ �(�)+ �(�)� (� − �)����(�)
�

�

��                  

 
on this interval, then 
 

�(�)≤ �(�)+ � [�
(�(�)�(�))�

�(��)
 

∞

���

(� − �)�����(�)
�

�

]��                  

 
Also, if a(t)  is a nondecreasing function on [0,T), then  
 

 �(�)≤ �(�)��(�(�)�(�)�
�). 

 

3 Stability Analysis              
 
Consider the perturbed system given by  
 

 ��,�
�

�� �(�)= ��(�)+ ���,�(�)� ,        � > �                                                                                      (3.1) 

 
with the initial condition 
 

 ��,�
���

�� �(�)= ����                                                                                                                            (3.2) 
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Or 
 

��,�
�

� �(�)= ��(�)+ ���,�(�)� ,        � > �                                                                                        (3.3) 

 
with the initial condition 
 

              ��,�
���

� �(�)= ����                                                                                                                               (3.4) 
 
where � ∈ �� ,������ � ∈ ��×�    ���    1 < � < 2.  
 
�(�,�): [�,∞)× �� → ��        is a continuous function and �(�,�)  satisfies the Lipschitz condition with respect 
to x. 
 
It is pertinent to mention that the solutions analysis gives the same result. In this work, (3.1) with (3.2) is used 
for the analysis and the conclusion is extended to (3.3) with (3.4). 
 
The solution of(3.1) with (3.2) is given by  
 

�(�)= (� − �)�����,�(�(� − �)�)�� + (� − �)�����,���(�(� − �)�)�� 

                              +� (� − �)���
�

�

��,�(�(� − �)�)�(�,�(�))�(�)�� 

   
Applying the norm, we have 
 

‖�(�)‖ ≤ �(� − �)�����,�(�(� − �)�)�‖��‖ + �(� − �)�����,���(�(� − �)�)�‖��‖ 

+� (� − �)���
�

�

���,�(�(� − �)�)� × ‖�(�,�(�))‖‖�(�)‖�� 

      
 We estimate as follows: 
 

                �(� − �)�����,�(�(� − �)�)� ≤ ��  ,  �(� − �)�����,���(�(� − �)�)� ≤ �� 
                                                                                   

                 ���,�(�(� − �)�)� ≤ �  ,       ‖�(�,�(�))‖ ≤ �  
 
Using the above estimates, we have 

    

‖�(�)‖ ≤ ��‖��‖ + ��‖��‖ + ��� (� − �)���
�

�

‖�(�)‖�� 

 
From Proposition 2.1 and Proposition 2.2 , we have the following 
 

‖�(�)‖ ≤ (��‖��‖ + ��‖��‖)��(���(�)(� − �)�)  
                     

‖�(�)‖ = (��‖��‖ + ��‖��‖)× �− �
(���(�)(� − �)�)��

�(1 − ��)
+ �(���(�)(�)�)����

�

���

� 

 

when � → ∞  ,‖�(�)‖ → 0. Therefore, if the eigenvalues of P satisfy |arg (⋋ (�))| >
��

�
  ,  then  the solution of 

(3.1) with (3.2) is asymptotically stable. 
 
To examine the situation where the solution is stable but not asymptotically stable, the following theorem is 
stated. 
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Theorem: If the matrix P such that |����(�)| ≠ 0  ,    �arg�����(�)�� ≥ 
��

�
  , the critical eigenvalues which 

satisfy �arg�����(�)�� =  
��

�
   have the same algebraic and geometric multiplicities. Suppose that there exists a 

positive function �(�) such that   ∫ �(�)��
∞

�
  is bounded and �(�,�) 

satisfies Lipschitz condition. 
 

4 Conclusion 
 
The need to ensure or maintain stability of systems has been of immense interest to scientists and engineers. 
Perturbation is known to cause changes in systems. In this work, the analysis of perturbed system is done using 
Riemann-Liouville derivative and Caputo derivative. The result of the analysis using both derivatives is the 
same. The conditions for the determination of the stability and asymptotic stability of the perturbed systems 
have been provided using classical results and concepts.             
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