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Abstract 
Accurate perception of lane line information is one of the basic requirements 
of unmanned driving technology, which is related to the localization of the 
vehicle and the determination of the forward direction. In this paper, mul-
ti-level constraints are added to the lane line detection model PINet, which is 
used to improve the perception of lane lines. Predicted lane lines in the net-
work are predicted to have real and imaginary attributes, which are used to 
enhance the perception of features around the lane lines, with pixel-level 
constraints on the lane lines; images are converted to bird’s-eye views, where 
the parallelism between lane lines is reconstructed, with lane line-level con-
straints on the predicted lane lines; and vanishing points are used to focus on 
the image hierarchy, with image-level constraints on the lane lines. The mod-
el proposed in this paper meets both accuracy (96.44%) and real-time (30 + 
FPS) requirements, has been tested on the highway on the ground, and has 
performed stably. 
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1. Introduction 

Lane lines are road signals that restrict vehicles from following a prescribed 
route. Lane line detection is mainly to discriminate between lane lines and road 
background and to determine the position relationship between the current ve-
hicle and the lane lines. The elongated shape of the lane lines requires a model 
with strong high and low level feature fusion capability to obtain both global 
spatial structure and local location information; in the actual highway scenario, 
although there are specific standards for lane markings, the different curvature 
of the road makes the shape of the lane lines vary, and there are both solid and 
dashed lane lines, and there are often joined and separated lane lines in the 
highway scene, making the number of lane lines uncertain, which requires the 
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model to have strong robustness to complex high-speed scenes; vehicle deviation 
or lane change will also cause the lane where the vehicle is located to change, and 
the relative position between lane lines will also switch; in addition, the accuracy 
of lane line detection is also affected by weather (rain, snow, fog, etc.), lighting 
conditions (daytime, nighttime) or other conditions. In addition, the accuracy of 
lane line detection is also affected by weather (rain, snow, fog, etc.), lighting 
conditions (day and night) or other conditions (vehicle shading, broken lane 
lines, etc.). 

For the special shape of the lane lines, a stacked hourglass network is selected 
as the backbone network to extract features in this experiment. In a conventional 
Convolutional Neural Network (CNN), the convolutional layer receives the in-
put from the previous layer, uses convolutional operations and nonlinear activa-
tion, and sends the output to the next layer, and the whole process is performed 
sequentially. Because the lane lines have a coherent elongated structure with a 
strong shape prior but a weak appearance, it is difficult to combine the overall 
information using CNN neural networks. The stacked hourglass network can 
capture feature information at different scales, and the output feature map in-
corporates semantic features of different levels of hourglass networks and scales, 
which can better capture the spatial information between lane lines. 

For complex highway scenes, in previous work, most of the lane line virtual 
and real attributes, potential parallel structures, and extinction point informa-
tion in road scenes have been ignored, which are used in this experiment to im-
prove the perception of lane lines and enhance the accuracy of detection. The 
dashed lines can be crossed to represent the possibility of lane change opera-
tions, while the solid lines cannot be crossed to limit the drivable area of the ve-
hicle, and the real and imaginary lane lines are related to the planning problem 
of the vehicle’s forward direction. The lane lines have a parallel relationship in 
the real world, and the camera’s perspective makes it lose this structure, which 
can be reconstructed in the overhead view to better cluster the lane line in-
stances. The extinction point is the distant intersection of lane lines, which can 
guide the detection of distant lane lines in the case of blurred or obscured distal 
ends, and is important reference information for the adjustment of camera pa-
rameters for a shooting. 

2. Related Work 

Many methods are related to the task of lane line detection, and the traditional 
methods mainly extract features manually to identify and segment out the lane 
line region, and color [1] [2] [3] and shape [4] [5] [6] [7] are the most common 
features of lane lines. Bingjie Bai et al. [8] used double thresholding to extract 
white and yellow lane line information in the image, detected lane line pixels, 
and used Hough transform to complete the Ping Liu et al. [9] used inverse pers-
pective transformation to get the top view and used a clustering algorithm to 
discriminate the line shape. However, the traditional methods have a high 
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workload, poor robustness of hand-made models, limited processing scenes, dif-
ficulty in coping with complex road conditions with diverse scenes in the real 
world, and the light intensity and special weather (rain, snow, fog, etc.) can have 
a large impact on their accuracy. 

The proposed deep learning method provides a new research idea for the 
above problem and becomes the mainstream approach nowadays. Although 
CNN shows strong performance learning ability in scene understanding, it still 
performs poorly for lane line instances with slender constructions and perhaps 
obscured incoherent lanes, so SCNN [10] treats lane line detection as a semantic 
segmentation task to obtain an accurate classification of whether each pixel in an 
image belongs to a lane, achieves information transfer across rows and columns, 
and publishes a large dataset of lane line CULane, but the network is computa-
tionally intensive; SAD [11] proposes a self-attentive distillation module based 
on it to obtain a more lightweight backbone network and improve the computa-
tional speed. These two methods have a relatively large bias in the detection re-
sults for distant lane lines and can only detect a predefined number of lane lines. 
Line-CNN [12] proposes a new anchor-based method inspired by Faster R-CNN 
[13], which introduces a set of rays to capture lane lines; SGNet [14] rethinks the 
current difficulties in the field of lane line detection and proposes an anchor al-
gorithm guided by extinction points. However, it is difficult to handle lane lines 
with large curvature due to the poor flexibility of anchor shape fixation. Inspired 
by human visual perception, the detection of incoherent lane lines relies mainly 
on the contextual information of the scene as well as global information in the 
case of severe occlusion by oncoming vehicles or extremely dark or bright illu-
mination effects, based on this observation, for the detection speed as well as 
complex and diverse road scenes, UFSD [15] proposes the method of row detec-
tion to predict the cells that may belong to lane lines in each row, which effec-
tively reduces the computational effort and greatly improves the detection speed, 
and the lightweight version can reach 300 + FPS, but the accuracy decreases a bit 
compared to the segmentation approach and requires a post-processing process 
to cluster the lane lines. Traditional methods usually perform curve fitting with 
least squares after extracting the lane line features, and to achieve end-to-end 
lane line detection and improve the detection efficiency, PolyLaneNet [16] was 
first proposed to estimate lane lines using a deep neural network approach to 
regress the curve equation by inputting images taken by the front camera 
mounted on the vehicle and outputting a polynomial representing each lane line 
in the image parameters, however, the prediction bias is relatively large for 
straight lanes. 

Most previous work has focused on the powerful learning capability of neural 
networks to learn and fit the shape of lane lines, while ignoring the structural 
information associated with lane lines in images. In this paper information 
closely related to lane lines, such as the virtual and real properties of lane lines, 
the parallel structure of lane lines, and the distant intersections of lane lines, is 
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utilized to constrain the perception of lane lines in multiple layers of structure. 

3. Method 
3.1. Image Annotation 

In this paper, the image label data are stored in a JSON file, as shown in Figure 
1. An image corresponds to a row of annotation information objects in the JSON 
file, and the annotation information consists of five key-value pairs to represent 
the information of lane line points (lanes, h_samples), the information of virtual 
and real attributes of lane lines (types), the information of extinction points of 
lane lines (vp_point), and the relative position information of the corresponding 
image (raw_file). The following describes the labeling method and the meaning 
of each piece of information. 
• Lane Labeling 

In this experiment, the lane lines are manually labeled as points, and each lane 
line is labeled with more than three points, and the lane lines are a collection of 
coordinates of a sequence of points, and the dashed lines are treated as a kind of 
solid lines. The manually annotated image information is shown in Figure 2 as 
xml information, an image corresponds to an “image” element containing image 
information, and the “id attribute in the “image” element is used to identify the 
different image tags, the “name” attribute is the name of the image, and the 
“height” and “width” attributes indicate the height and width of the image, re-
spectively. Each “image” element contains several “polyline” sub-elements that  

 

 
Figure 1. Image and annotation information. 
 

 
Figure 2. XML annotation information. 
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represent the point information of each lane. The “point” attribute of the “poly-
line” element is a series of semicolon-separated point coordinates, which are 
used to represent the shape of the lane lines. 

The coordinates of the points used to represent the lane lines in the XML file 
are relatively few, and a lot of detailed information about the shape of the lane 
lines will be lost. To further refine the lane line point labels, in this experiment, 
the lower half of the image is cut horizontally every 10 pixels from 220 to 710 as 
shown in Figure 3, and the lane line point is the intersection of the red labeled 
line in the horizontal direction of the image and the center line of the lane line 
represented by the coordinate points in XML so that all the lane lines in the im-
age have the same vertical coordinates as the subscript points. The transformed 
lane information is saved in the JSON file, where “lanes” is the information of 
the horizontal coordinates of each lane, “lanes” is a two-dimensional array, and 
the number of lanes containing a one-dimensional array is the number of lanes 
in this image. “lanes” includes 6 one-dimensional arrays, which means that there 
are 6 lanes in the image pointed to by this annotation, and the data in each 
one-dimensional array that is greater than zero is the horizontal coordinate of 
the pixel point in this lane. “h_samples” is the vertical coordinate of the lane 
lines, “h_samples” is one-dimensional, and the length of each one-dimensional 
array of “lanes” is the same as The length of each one-dimensional array of 
“lanes” is the same as the length of “h_samples”, and the combination of any 
one-dimensional array of “lanes” and “h_samples” can obtain the horizontal 
coordinates of all points of the For example, the coordinates of the first point of 
the first lane in the figure are (721, 220). 

The comparison between XML annotation information and JSON annotation 
information is shown in Figure 4. It can be seen that the lane line points in the 
JSON file are denser, and the curvature information can be retained relatively 
more accurately in places where the curvature of the lane line is relatively large. 
• Lane Line Attributes Labeling 

In the process of manual labeling, there is no labeling classification of the lane  
 

 
Figure 3. Horizontal cutting line. 
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Figure 4. XML annotation and JSON annotation visualization comparison. 

 

 
Figure 5. Lane line attributes dataset acquisition. 

 
line’s real and imaginary attributes, but the imaginary line can be crossed to 
represent the ability to change lanes, and the solid line cannot be crossed to limit 
the vehicle’s drivable area, and the imaginary and real lane lines are related to 
the planning of the vehicle’s forward direction. 

In this experiment, we use a dummy real attribute classification network to 
accomplish the prediction and labeling. The data set acquisition process of the 
imaginary and real attribute classification network is shown in Figure 5. For 
each lane line, the length is no more than 500 pixels (labeled from 220 - 710 
height), the lane lines are labeled by connecting the lane line points with lines of 
different color widths of 2 pixels, and the labeled image is converted into a 
grayscale map. In the grayscale map, the lane line pixel values are specified ac-
cording to the labeling order, such as the background pixel value is 0, the first In 
the grayscale map, the pixel values of the lane lines are specified according to the 
order of labeling, such as the background pixel value is 0, the first labeled lane 
line pixel value is 1, the second labeled lane line pixel value is 2, and so on, until all 
lane lines in the labeled image are completed. The location information of each 
lane line point is obtained according to the different grayscale image pixel values, 
and all the pixel points of each lane line are extracted in the original input image 
by the location information index, and the lane lines are folded and stitched into a 
32 * 32 pixel size image. These stitched images have certain features and can be 
recognized and classified by the neural network. The 3 lane lines in the figure can 
be extracted from 3 attribute images. The lane lines are solid lines with a label 
noted as 0, and the lane lines are dashed lines with a label noted as 1. 

By the above lane line extraction method, the lane line attribute image data 
with the size of 32 * 32 is collected as shown in Table 1. 

In the process of attribute classification training, two network structures were 
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designed. The first network structure is shown in Figure 6, where the input 32 * 
32 lane line attribute image, the backbone network consists of three layers of 
convolution plus pooling, two layers of linear regression, and the output predicts 
the confidence that the input image is a solid line (0) or a dashed line (1). In this 
paper the network is defined as lane line attribute classification network A. In 
this network was trained for 50 iterations, 100 iterations, and 150 iterations, re-
spectively, and the training process is shown in Figure 7. 

The second network structure is shown in Figure 8, where a 32 * 32 lane line 
attribute image is input and two layers of convolution are performed before the 
pooling operation. The network also consists of three layers of convolution plus 

 
Table 1. Image dataset of lane line attributes. 

 0 (Full Line) 1 (Broken Line) 

Training set 8871 8103 

Test set 300 350 

 

 
Figure 6. Lane line attribute classification network A. 

 

 
Figure 7. Network A training 50, 100 and 150 times. 
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pooling and two layers of linear regression, and the final output predicts the 
confidence level of whether the image is a dashed (1) or a solid (0) line. In this 
paper, the network is defined as the lane line attribute classification network B. 
In this network also 50 iterations, 100 iterations, and 150 iterations of training 
experiments are conducted, and the training process is shown in Figure 9. 

There are three evaluations of the lane line attribute classification network re-
sult model, which are the solid line prediction accuracy (Full_line_acc), the 
dashed line prediction accuracy (Broken_line_acc), and the total accuracy 
(Full_acc), which are calculated as shown below. 
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pred full
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Full line acc

N
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um

T
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=                    (2) 
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Figure 8. Lane line attribute classification network B. 

 

 
Figure 9. Network B training 50, 100 and 150 times. 
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where _pred fullT  is the number of correctly predicted solid images, 
fullumN  is the 

number of total solid images, and _pred brokenT  is the number of correctly pre-
dicted dashed images, 

brokenumN  is the number of total dashed images. 
In each training process, the model with the smallest difference between the 

true value and the predicted value is retained as the resultant model, and the re-
sults of the resultant model evaluated on the test set are shown in Table 2. 

In the In the above table, it can be found that after training network A itera-
tions 100 and iterations 150 have the same result, which is better than the result 
of iteration 50, indicating that the model training has converged, and the best 
result of network A training is 99.22% of the total accuracy of the test set predic-
tion. Network B is trained, and the same results are the same for 100 iterations 
and 150 iterations, and the best result of network B training is 99.38% correct 
prediction rate of the test set. Therefore, the model trained by network B can be 
used to predict and calibrate the attributes of the original image lane line dataset 
as the true value, and the labeling results are shown as “types” in the JSON file in 
Figure 1, with solid lines marked as 0 and solid lines marked as 1. 
• Lane Line Vanishing Point Labeling 

The lane line image is a 1280 * 720 size perspective image taken by the cam-
era. The lane lines no longer remain parallel to each other in the figure but con-
verge on the far side due to the perspective principle of small and large, and the 
lane lines or the extensions of the lane lines intersect at a point on the far side, 
which is the extinction point of the lane lines. In this experiment, the informa-
tion of the lane line extinction point is labeled by two methods, and the results 
obtained by the two labeling methods are compared to select the more reasona-
ble and accurate way to label the lane line training data set. 

The first method is shown in the figure, predefining the vanishing point coor-
dinates and mapping the captured image to an aerial view by performing an in-
verse perspective transformation (IPM) through the vanishing point coordi-
nates, if the lane lines in the aerial view are parallel to each other, that is, the va-
nishing point position is correctly defined. Before explaining the implementa-
tion principle, it is necessary to understand the two coordinate systems involved 
in image processing. 

 
Table 2. Comparison of experimental results. 

Name of 
network 

Epoch 
Accuracy of full  
line prediction 

Accuracy of broken  
line prediction 

Total  
Accuracy 

A 

50 1.0000 0.9826 0.9906 

100 1.0000 0.9855 0.9922 

150 1.0000 0.9855 0.9922 

B 

50 1.0000 0.9854 0.9922 

100 1.0000 0.9884 0.9938 

150 1.0000 0.9884 0.9938 
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World coordinate system: represents the 3-D space of the real world, describ-
ing the camera position, with the origin in m depending on the situation. 

Pixel coordinate system: represents the 2-D image space of the projected 3-D 
scene, the origin is the upper left corner of the image, unit pixel. 

A schematic diagram of the relationship between the world coordinate system 
and the pixel coordinate system is shown in Figure 10. 

The camera acquires an image point q with pixel coordinates ( ),u v , corres-
ponding to the world coordinate point ( ), ,Q x y z . The process of shooting im-
age mapping is to project it onto the z = 0 plane of the 3D world space. 

The mounting position of the camera of the shooting car is shown in Figure 
11, and its world coordinates are ( ), ,l w h , and the angle between the projection  

 

 
Figure 10. Diagram of the relationship between the world coordinate system and the pix-
el coordinate system. 

 

 
Figure 11. The left is the xy_plane view in world coordinates; the right is the z-plane view in world coordinates. 
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of the camera optical axis ô on the z = 0 plane and the x-axis is the translation angle 
β, as shown in the diagram on the right side of Figure 11, and the angle between 
the vertical line of the optical axis ô and the z-axis is the tilt angle θ, in this paper β 
and θ can be calculated by predefined extinction point positions, the aperture angle 
of the camera is 2α, and the resolution of the camera is m × n, then for the coordi-
nate points ( ),u v  of the pixel coordinate system mapped to the coordinate points 
( ), ,x y z  of the world coordinate system the conversion relation [17] is: 

( ) ( ) ( )2 2, cot cos
1 1

x u v h u v l
m n
α αθ α β α   = × − + × − + +   − −   

      (4) 

( ) ( ) ( )2 2, cot sin
1 1

y u v h u v w
m n
α αθ α β α   = × − + × − + +   − −   

      (5) 

where 0,1, , 1u m= −  and 0,1, , 1v n= − , any point ( ),u v  of the pixel coor-
dinate system returns a coordinate point ( ), ,0x y  of the world coordinate system. 

The coordinate transformation relationship of the inverse mapping process is 
shown below. 

( )

( ) ( )sin , ,0
arccot

, ,0
2

1

h x y
y w

u x y

m

θ α

α

 
− − − =

−

             (6) 

( )
( )arccot

, ,0
2

1

y w
x lv x y

n

β α

α

−  − − − =

−

                (7) 

The inverse mapping process defined above removes perspective effects by 
correlating hypothetical real-world coordinate points ( ), ,0x y  with pixel points 

( ) ( )( ), ,0 , , ,0u x y x yν  of the inverse mapped image in the form of a scan. 
In this experiment, the coordinates of the predefined vanishing point are 

( ),vptx vpty , and the camera translation angle β and tilt angle θ are defined as 
follows, respectively. 

( )vptx m
m

α
β

− ×
= −                       (8) 

( )vpty n
n

α
θ

− ×
= −                        (9) 

As shown in Figure 12, the original image and the image generated after in-
verse mapping by calculating the camera translation angle β and tilt angle θ 
based on the predefined vanishing point positions are shown. The diagram on 
the left side of Figure 12 shows the perspective image taken by the camera, and 
the diagram on the right side of Figure 12 shows the bird’s-eye view of the road 
area in front of the vehicle observed from a significant height generated by the 
inverse mapping transformation. If the lane lines in the aerial view are trans-
formed into equally spaced parallel lines with the same structure as the lane lines 
in the real world, it is proved that the selected vanishing point position is correct 
and the vanishing point information is retained. 
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The second method is labeled by a computational method. As shown in Fig-
ure 13, the minimum adjacency matrix of each lane line is calculated to obtain 
the centerline perpendicular to the short edge, and each lane line is represented 
by the calculated centerline, and the average coordinates of the intersection of all 
centerlines are calculated as the coordinates of the vanishing point. 

The above method for the normal high-speed scene calculation process is shown 
in Figure 14. Figure 14 (a1) is the originally captured image, Figure 14 (a2) is the 
minimum adjacency matrix for each lane line point, and Figure 14 (a3) calculates 
the centerline of each adjacency matrix, all centerlines do not necessarily intersect 
at one point, in this experiment, the average coordinates of all intersection points 
of all centerlines are calculated, as shown in Figure 14, there are three lane lines in 
the image, the lane lines intersect two by two, there can be at most three intersec-
tion points, the average coordinates of these three intersection points are calcu-
lated as the vanishing point coordinates of this image, Figure 14 (a4) visualizes the 
calculated vanishing point coordinates. 

However, this calculated method does not perform well for other complex 
scenes. In order to improve the robustness of the method and to adapt more to 
real-world high-speed scenes, the scenes that do not perform well are targeted in 

 

 
Figure 12. Left is the original image; right is the transformed bird’s eye view. 

 

 
Figure 13. Lane line representation. 

 

 
Figure 14. Normal high-speed scene. 
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this paper. 
For a scene with only one lane, there is no intersection between the lane lines, 

as shown in Figure 15. Find out the width w, length h, the center point of the 
matrix ( _ , _upper x upper y ) and the angle γ between the center line of the matrix 
and the positive direction of the image x-axis, then the center point of the short 
side of the distal end of the minimum adjacency matrix of the lane lines 
( _ , _upper x upper y ) can be obtained according to the following formula 

_ _ cos
2
hupper x center x γ= − ×                  (10) 

_ _ sin
2
hupper y center y γ= − ×                  (11) 

For a scene with only one lane line in the image, the vanishing point is visua-
lized in the image as shown in Figure 15 (a4). 

For the ramp scene, the distal end of the lane line curved arc, the calculation 
method of the vanishing point does not meet the reality, to adapt to this scene, 
as shown in Figure 16, in this paper to intercept the proximal two-thirds of the 
lane line area, discard the distal end of the curved obvious one-third area, the 
location of the calculated vanishing point in the image visualization as shown in 
Figure 16 (a4). 

For the lane line convergence intersection vanishing point calculation error is 
relatively large, the convergence intersection at the lane line and other lane lines 
distal end will overlap, as shown in Figure 17, lane line l_2 convergence lane line 
l_1, two-lane lines intersect at point c, in Figure 17 (a3) can be seen lane line l_2 
and other lane lines intersection point will have significantly deviated from the 
other lane lines between the intersection point, this case to seek the average 
coordinates as the vanishing point To solve this interference, this paper addi-
tionally proposes a filtering method: with the help of the intersection point c of 
the lane lines at the convergence intersection, find the lane lines whose distance 
to point c is less than 10 pixels in the image, i.e., lane line l_1 and lane line l_2, 

 

 
Figure 15. One lane line scene. 
 

 
Figure 16. Ramp scene. 
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Figure 17. Converge into the intersection scene. 
 

and filter these two lane lines respectively, as shown in Figure 17 (a4). Similarly, 
filter lane line l_2 as shown in Figure 17 (b2) and calculate the distance dis1 
from the vanishing point location to the remaining three lane lines obtained af-
ter filtering lane line l_1. Similarly, filter lane line l_2 as shown in Figure 17 (c2) 
and calculate the distance dis2 from the vanishing point location to the remaining 
three lane lines obtained after filtering lane line l_2. dis0, dis1, and dis2 are selected 
as the smallest result, whose corresponding vanishing point location is the vanish-
ing point of this convergence scene, compare the vanishing point markers in Fig-
ure 17 (a4), Figure 17 (b4), and Figure 17 (c4), obviously the vanishing point lo-
cation in Figure 17 (c4) is more in line with the actual cognition. 

For the scene of high speed intersection, because the lane lines of the upper 
and lower high speed intersection and the direction of the lane lines of the nor-
mal driving road deviate more, so it will cause interference to the calculation of 
the vanishing point, as shown in Figure 18 (a4), because of the influence of the 
lower high speed intersection, the position of the vanishing point deviates com-
pared to the driver’s visual center, and the distance dis0 from the vanishing 
point to the lane line is calculated by recording all the lane lines in the image. 
For the scene of highway intersection, a lane line filtering method is proposed in 
this paper: there are four lane lines l_1, l_2, l_3 and l_4 in the image, as shown in 
Figure 18 (b3), Figure 18 (c3), Figure 18 (d3) and Figure 18 (e3), filter these 
four lane lines respectively, use the remaining three lane lines to calculate the 
vanishing point, and record the calculated distance from the vanishing point to 
the remaining three lane Compare dis0, dis1, dis2, dis3 and dis4, and select the 
one with the smallest value as the vanishing point position of the image. As in 
Figure 18 (e4), the location of the vanishing point after filtering out the lower 
highway lane line l_4 is more in line with the actual scene. 
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Figure 18. Highway intersection scene. 
 

The first method of finding the coordinates of the vanishing point of the in-
verse perspective transformation is too subjective for each marker, each person 
has a different concept of parallel lane lines, resulting in a different adjustment 
size for the location of the extinguishing points that make the lane lines parallel 
to each other, and different markers have a larger error in the location of the va-
nishing point obtained for the same scene; in addition, in the ramp scene where 
the curvature of the lane lines is relatively large, itself in the conversion after the 
In addition, in ramp scenes with large curvature of lane lines, it is difficult to 
make the lane lines parallel to each other in the bird’s-eye view after conversion. 
The second method of finding the vanishing point by calculation is more com-
prehensive for different scenes, and the error is smaller for the same scene with a 
fixed calculation method, so we use the calculation method to calibrate the true 
value of the vanishing point coordinates of the lane line data set. 

3.2. Network Structure 

In this paper, we consider lane line detection as an instance segmentation prob-
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lem for continuous elongated objects and propose a lane line detection method 
based on an improved PINet [18] network. The structure of PINet training net-
work is shown in Figure 19, the input size of 512 * 256 images and lane line 
labeling information, in the size Resizing layer, first through a series of convolu-
tion and pooling, the module for preliminary image feature extraction, and the 
output image of size 64 * 32 is sent to the Feature extraction layer, which is based 
on the Stacked Hourglass Network [19] and consists of two stacked hourglass 
network modules. The output of each Hourglass Network module is divided into 
three branches: Confidence branch, Offset branch, and lane line point instance 
classification branch (Feature). To improve the detection efficiency, the PINet 
network does not perform pixel-level discrimination and detection on the origi-
nal 512 * 256 size image but performs lane line detection on the reduced 64 * 32 
size image, so the predicted output of the network will have some deviation. To 
further improve the accuracy of lane line detection, the improved lane line de-
tection network structure is shown in Figure 20. The 1280 * 720 image taken by 
the front camera and the labeling information (Figure 1) is input, the sky part 
above the image that is not related to lane lines is cropped, and the image size is 
resized to 512 * 256 after a series of data enhancements methods such as rota-
tion, adding noise, mirror flip, etc. In addition to the lane detection branch, 
three other supervised and constrained branches are added, namely the lane 
attribute prediction branch (Type branch), the lane parallel structure prediction 
branch (Hara branch), and the extinction point prediction branch (Vanishing 
point branch). The improved network predicts the location and shape of the lane 
lines with pixel-level, lane line-level, and image-level constraints, and improves the 
prediction results by applying multi-layer structural constraints to the lane lines. 

The network structure in this experiment includes a Resizing layer and a Fea-
ture extraction layer, and the Feature extraction layer is a two-layer stacked 
hourglass network. The details of the Resizing layer module network are shown 
in Table 3, where “layer” indicates the operation performed on the image,  

 

 
Figure 19. PINet network structure. 
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Figure 20. Improved network structure. 
 

Table 3. Resizing layer implementation details. 

Layer Size/Stride/Padding Output size 

Input data  3 * 512 * 256 

Conv + PRelu + bn 7/2/3 64 * 256 * 128 

Conv + PRelu + bn 
Conv + PRelu + bn 
Conv + PRelu + bn 

1/1/0 
3/1/1 
1/1/0 

64 * 256 * 128 
64 * 256 * 128 
64 * 256 * 128 

Max pooling 2/2 64 * 128 * 64 

Conv + PRelu + bn 
Conv + PRelu + bn 
Conv + PRelu + bn 

1/1/0 
3/1/1 
1/1/0 

64 * 128 * 64 
64 * 128 * 64 
64 * 128 * 64 

Max pooling 2/2 64 * 64 * 32 

Conv + PRelu + bn 
Conv + PRelu + bn 
Conv + PRelu + bn 

1/1/0 
3/1/1 
1/1/0 

128 * 64 * 32 
128 * 64 * 32 
128 * 64 * 32 

 
“Size”, “Stride” and “Padding” indicates the convolution kernel size, convolution 
step, and image padding pixel value of the convolution network, or the pooling 
window size and sliding step of the window for the pooling operation, and 
“Output” indicates the number of channels * length * width of the output image. 
After a series of convolution and pooling, the image features are initially ex-
tracted and the size is reduced to 1/8 of the original size, i.e., from 512 * 256 to 
64 * 32, followed by connecting the feature extraction layers. The stacked hour-
glass network provides a repetitive top-down and bottom-up inference mechan-
ism for the network to aggregate information across scales through a series of 
upsampling and downsampling, and the network output features retain the in-
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formation of all layers and are consistent with the original input size of the 
hourglass network as 64 * 32, which can ensure that the lane line information is 
not lost compared to the traditional neural network that only uses the convolu-
tional features of the last layer. As shown in Figure 20, the hourglass network is 
left-right symmetric, retaining the current scale information before performing 
downsampling, reducing the resolution of the features by convolution and pool-
ing, and after reaching the minimum resolution, upsampling is performed by 
inverse convolution, and the data from the previous scale are summed after up-
sampling to achieve cross-scale feature fusion. The hourglass network structure 
is shown in Figure 21, such as c7 doubles the resolution by up-sampling, c4 goes 
through a 1 × 1 convolution to get c4a, c4a can be regarded as a copy of c4, 
which has the same size and dimension as c4, while the size of c4a is the same as 
c7 that was up-sampled, and the values are added directly to get c4b. By stacking 
the feature maps layer by layer in this way, the final c1b then retains the infor-
mation of all layers. The output of the first layer of the hourglass network will 
not only be used as the input of the second layer of the hourglass network, but 
will also be used to determine the performance of the network model by com-
paring the loss of the difference between the predicted and true label values of 
the network through the loss function, and then find the optimization direction. 
the loss of the evaluation model is the sum of the losses calculated from the pre-
dicted and true values generated by all hourglass networks. 
• Lane Line Prediction Branch 

The lane line prediction task consists of three parts, namely the confidence 
branch, the offset branch, and the lane line point instance classification branch, 
to predict whether each pixel in the feature map is a lane line point, which pixel 
corresponds to the original image and which lane line it belongs to. The feature 
maps of each part are shown in Figure 22. In this experiment, the input image 
size is 512 * 256 and the hourglass network output feature map size is 64 * 32.  

 

 
Figure 21. Hourglass network structure. 
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Figure 22. Visualization feature map. 

 
The feature map is 1/8 of the original image size, so one pixel of the feature map 
corresponds to a matrix of 8 * 8 pixels in the original input image. The confi-
dence branch is responsible for semantic segmentation and predicts the confi-
dence value of whether each pixel in the output feature map belongs to a lane 
line, if the pixel belongs to a lane line, the confidence value is close to 1, other-
wise, the confidence value is close to 0. Because the size of the network input 
image and the network output feature map are not the same, to predict the loca-
tion of the lane line points more accurately, the offset branch gives the predicted 
value of each lane point the output value is between 0 and 1, which is expressed as 
x-axis offset and y-axis offset, respectively. If the predicted x-axis offset is 0.5, then 
the predicted location of the point is 4 pixels away from the true value in the x-axis 
direction, and similarly, the predicted y-axis offset is 0.5, then the predicted loca-
tion of the point is 4 pixels away from the true value in the y-axis direction. The 
lane line point instance classification branch predicts the high-dimensional feature 
(dimension 6 in this paper) of each lane line point, which is used to calculate the 
similarity between different lane line points. The implementation of the lane line 
point instance classification branch borrows from the 3D point cloud instance 
segmentation in SGPN [20] to predict which lane line point specifically belongs 
to a lane line. For each image, containing different lane line instances, according 
to the principle of similarity metric learning, points belonging to the same lane 
line instance should have similar features, and a similarity matrix is constructed 
to record the differences between the features of all point pairs to measure 
whether each point pair belongs to the same instance, as shown in Figure 23, for 
any two points ( )1 1,x y  in a 64 * 32 size lane line image and ( )2 2,x y , there is a 
corresponding coordinate ( ),j k  in the similarity matrix, where 

1 1 64j x y= + ×                         (1) 

2 2 64k x y= + ×                         (2) 

An embedded feature value is defined at ( ),j k  in the similarity matrix to 
indicate whether the points ( )1 1,x y  and ( )2 2,x y  belong to the same instance, 
and if they belong to the same instance, the corresponding value of this feature  
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Figure 23. Relationship between similarity matrix and lane line points. 

 
value is 1 (represented in green in the figure), otherwise, it is 2 (represented in 
yellow in the figure). The output predicts the instance classification features, 
predicts the relationship between each pixel and all other pixels, and by the si-
milarity matrix constructed for pixels belonging to the same instance their fea-
tures are expected to be closer, and for pixels of different instances the features 
are expected to be further apart. Then if the predicted embedding feature values 
of some lane line points are within a certain range, they can be considered as the 
same instance, and different instances are distinguished using this clustering 
process. The loss function featureL  [18] of the lane line point instance classifica-
tion branch is defined as: 

( )21 1 1

1 1 ,N
feature ii j k

e

Ne NeL f j k
N N= = =

= ∑ ∑ ∑                (3) 

( ) ( )
2

2

if 1
,

max 0, if 2

k jkJ

i
k jkJ

F F C
f j k

F F Cλ

 − == 
− − =





           (4) 

where N is the total number of images, i denotes the sequence number of im-
ages, Ne is the number of pixel frames in the feature map, JF



 denotes the pre-
dicted embedding feature of pixel j in the feature map, and λ is a constant. jkC  
denotes whether pixel j and pixel k are in the same lane instance, and if 1jkC = , 
it means that these two pixels belong to the same instance, and if 2jkC = , it 
means that these two pixels belong to different instances. 

confidenceL , offSetL , and featureL  are the loss functions of the confidence branch, 
offset branch, and lane line point instance classification branch, respectively, so 
the loss of the lane line prediction branch is: 

lane confidence offSet featureL aL bL cL= + +                  (5) 

• Prediction Of Lane Line Virtual And real Attributes 
The real and imaginary attributes of lane lines determine the drivable range of 

vehicles as well as the forward direction in the real world. In the experiment, the 
network predicts the lane lines while predicting the imaginary and real attributes 
of lane lines, the location of lane line attributes in the feature map is the same as 
the location of lane lines, and the prediction of lane line attribute information 
can enhance the lane line feature information. In the experiment, the lane line 
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attribute prediction is implemented using the segmentation method, as shown in 
Figure 24, the lane line attributes truth map is assigned to each pixel grid 
attribute value, where the background value is 0, the dashed line value is 1, and 
the solid line value is 2. The lane line attribute prediction feature map outputted 
by the hourglass network is classified pixel by pixel to judge the existence of lane 
line key points by attribute information prediction at the pixel level to monitor 
the lane line attribute The prediction branch output feature map and the real 
and imaginary attributes of the lane line do the difference operation whose loss 
calculation function is: 

( ) 21
, , , , , , , ,1 1 0

1 1 1 exp log 0.5 logK
ty

N Ne
pe i j k i j k i j k i j ki j kL y p y p

N Ne
−

= = =
 = − − − ⋅ ⋅ ∑ ∑ ∑  (6) 

where N is the total number of images, Ne is the number of pixel cells in the 
feature map, and K is the number of attribute labels. The probability that the jth 
cell is predicted to be the kth label value is , ,i j kp , and , ,i j ky  is the label, i.e., if 
the category of the jth cell is k, then , , 1i j ky = , otherwise, it is equal to 0. 
• Prediction Of Parallel Properties Of Lane Lines 

The lane lines exist parallel in the real world and lose this structure between 
the lane lines in the image due to the perspective principle of the camera, but the 
image can be converted to a bird’s eye view by inverse perspective and modeled 
in the bird’s eye view to reconstruct the parallelism between each other. the IPM 
transformation method can convert the original image to a bird’s eye view by the 
perspective transformation matrix H. Due to the need to adapt to different 
highway scenes, the Therefore H matrix is not fixed, and in the experiments, the 
network predicts the parameters of the ideal perspective change based on the 
input image to adapt to the complex road scenes. The network predicts the lane 
lines, and for each lane line represented by a series of points, as shown in Figure 
25, the minimum external matrix of the lane line points is found to obtain the 
centerline perpendicular to the short edge, and the clockwise angle between the 
positive x-axis and the centerline is θ. Then the predicted lane lines can be ex-
pressed as 0ax by c+ + = . As shown in Figure 26, assuming the predicted lane 
lines are 1L  and 2L , and project them into the bird’s-eye view after the inverse 
perspective transformation, the corresponding instances of lane lines are 1l  and 

2l , then 1l  and 2l  can be expressed as: 
 

 
Figure 24. True value map of lane line virtual and real attributes. 
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Figure 25. Lane-line representation. 

 

 
Figure 26. Bird’s eye view conversion. 

 

1 1 1 0a x b y c⋅ + ⋅ + =                        (7) 

2 2 2 0a x b y c⋅ + ⋅ + =                       (8) 

Since the lane lines in the bird’s eye view have a parallel relationship with each 
other, the difference of x is always constant in the case of equal y. Therefore, 

1 2 2 1a b a b=⋅ ⋅ , then it is possible to provide negative feedback to the network 
through LH. The closer LH is to 0, the more accurate the detection of lane lines is, 
thus improving the accuracy of lane line detection by constraining the relation-
ship between lane lines. 
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−
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=

−
=
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∑
∑               (9) 

where N is the total number of images, Li is the number of lane lines in the ith 
image, and L1 is the Smooth L1 loss function. 
• Prediction of Lane Line Disappearance Point Location 

The vanishing point, which is also the distant intersection of lane lines, is re-
garded as a special kind of key point to be predicted by feature maps in the net-
work, and in this way, the task of predicting the vanishing point is used as a li-
miting and guiding factor in the training process to optimize the detection re-
sults of lane lines at the image level. After reading the JSON file to get the true 
value of the vanishing point, since the target of the vanishing point is too small 
and has only one coordinate information, a circle is drawn with the vanishing 
point as the center and 4 as the radius as shown in Figure 27, and all the coor-
dinate information of the whole vanishing point marking circle is used as the  
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Figure 27. Left is the vanishing point true value graph, right is the vanishing point pre-
diction graph. 

 
true value and the feature map to do the pixel-level loss function calculation as 
follows. 

( ) ( ) ( )1 1

1 1 log 1 log 1v
N Ne

p i jL y p y p
N Ne= =

= − ⋅ + − ⋅ −  ∑ ∑        (10) 

where N is the total number of images, Ne is the number of pixel frames in the 
feature map, y is the extinction sample label, the positive sample label is 1 and 
negative sample label is 0, and p is the probability of predicting a positive sample. 

4. Experimental Results and Analysis 
4.1. Experimental Data 

All data for this experiment come from Beijing Trunk Co., Ltd. on Beijing high-
ways, and the datasets are all highways, which are more in line with the needs of 
in-house research than the TuSimple [21] dataset and the CuLane dataset, with 
41,058 training data and 4171 validation data, including scenes of congestion, 
blocking blurred lane lines, and special weather (rain, snow, and fog). 

4.2. Experimental Results 

• Evaluation Metrics 
There are two accuracy evaluation metrics for lane lines, Accuracy, FPR, and 

FNR on the Tusimple dataset and F1 Score on the CULane dataset, each of the 
two evaluation metrics has its focus, and both metrics are used to evaluate the 
training model in this experiment. 

Where the Accuracy is calculated as: 

im
im

im

C
Accuracy

S
= Σ                       (1) 

imC  is the number of correctly predicted lane points, and imS  is the number 
of lane points in the real label. When the distance between the predicted points 
and the actual lane points is less than the set threshold, the lane points are con-
sidered to be correctly predicted. A lane line is considered correctly predicted 
when the percentage of correctly predicted points in a lane line exceeds 85%. 

FPR is defined as follows: 
FpredFPR
Npred

=                          (2) 

FNR is defined as follows: 
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MpredFNR
Ngt

=                         (3) 

Fpred is the total number of lane lines predicted incorrectly (false checks), 
Npred is the total number of lane lines predicted, Mpred is the number of lane 
lines not predicted but present (missed checks), and Ngt is the number of all 
lane lines in the label. 

F1Score, also known as the balanced F Score, considers both accuracy and re-
call and is a reconciliation balance between the two. 

1 2 precision recallF Score
precision recall

⋅
= ⋅

+
                  (4) 

TPprecision
TP FP

=
+

                      (5) 

TPrecall
TP FN

=
+

                       (6) 

The CULane dataset renders lane points as 30-pixel-wide lane lines and cal-
culates the intersection-to-merge ratio (IoU) between the predicted lane lines 
and the real lane lines. IoU greater than a specific threshold (0.5) is considered 
as correct prediction (TP), IoU less than or equal to the threshold is considered 
as wrong detection (FP), and having real lane lines but no detection is consi-
dered as FN. 
• Experiment Comparison 

To demonstrate the effectiveness of the experimental approach in this paper, 
several experiments were conducted to compare the model in this paper with the 
PINet model, and to compare the performance variation of this approach in the 
test set. To explore the effectiveness of pixel-level, lane-level, and image-level 
constraint structures, this paper combines pixel-level perception with the Base 
model (Base + T) and adds the lane line constraints into the Base + T combina-
tion as Base + T + H. The results of the ablation experiments can be seen in Ta-
ble 4, where the accuracy of lane line detection (Accuracy and F1Score) is im-
proving, proving that the method proposed in this paper is effective that used 
together can improve the performance of lane line detection. 

Figure 28 shows the performance of this experimental model in different 
scenarios with different colors for different lane line instances. The top row 
shows the true value of the lane line labels, and the bottom row shows the pre-
dicted lane line results of this experimental model. 

 
Table 4. Comparison of ablation experiments. 

Network Accuracy (%) FPR FNR F1 Score 

Base 0.9224 0.1785 0.1133 0.8538 

Base + T 0.9532 0.0956 0.0666 0.9220 

Base + T + H 0.9652 0.0791 0.0567 0.9289 

Ours 0.9644 0.0561 0.0502 0.9415 
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Figure 28. Experimental results. 

4.3. Conclusion 

In this paper, information closely related to lane lines such as the virtual and real 
properties of lane lines, the parallel structure of lane lines, and the distant inter-
section of lane lines are utilized to constrain the structure of lane line perception 
in multiple layers, and through ablation experimental comparison, it is shown 
that the method in this paper is effective and can improve the accuracy of lane 
line detection and significantly reduce the error detection rate, thus ensuring the 
safety of unmanned vehicles. However, there is still much room for improve-
ment in the accuracy of the lane detection task. The current model performs well 
in most scenarios, but underperforms in complex scenarios where lanes cross 
and merge into and out of each other, and such complex road scenarios are also 
accident-prone, requiring more accurate predictions. 
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