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Abstract 

The Wave/Particle duality of particles in Physics is well known. Particles have properties that uniquely 

characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric 

and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and 

velocity. This paper shows that all of these properties of a particle can be derived from a single wave function 

equation for that particle. Wave functions for the Electron and the Positron are presented and principles are 

provided that can be used to calculate the wave functions of all the fundamental particles in Physics. 

Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model 

of Physics and not considered to have a structure. This paper demonstrates that they do indeed have structure and 

that this structure extends into the space around the particle‟s center (in fact, they have infinite extent), but with 

rapidly diminishing energy density with the distance from that center. The particles are formed from 

Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. 

This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of 

their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle 

properties appear to originate from a single point at the center of the wave function structure, in the same sort of 

way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. 

This paper represents the first two fully characterized fundamental particles, with a complete description of their 

structure and properties, built up from the underlying Electromagnetic waves that comprise these and all 

fundamental particles. 

Keywords: electron, positron, wave, function, solution, electromagnetic, spin, mass, charge, proof, fundamental, 
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1. Introduction 

In order to provide the foundations of a link between Classical Physics field concepts and the wave/particle 

duality in Quantum Mechanics it is necessary to demonstrate how particles can be modeled both from a Classical 

Wave perspective while also satisfying the requirements of Quantum Mechanics, in particular the Schrödinger 

wave equation and the De Broglie equations. 

There is already evidence of this connection in the energy sum of the Electric and Magnetic fields in the 

Hamiltonian function that expresses the total energy of an atomic system: 

(Unifiedphysics 2015) “In 1926 Schrödinger used energy conservation to obtain a quantum mechanical equation 

in a variable called the wave function that accurately described single-electron states such as the hydrogen atom. 

The wave function depended on a Hamiltonian function and the total energy of an atomic system, and was 

compatible with Hertz's potential formulation. The wave function depends on the sum of the squares of E- and 

H-fields as is seen by examining the energy density function of the electromagnetic field.” 

In order to satisfy both the wave and particle natures of particles in a model of a particle, the particle‟s wave 

function must satisfy both the Classical wave equation (which ensures that the wave function can represent a 

vibration of the space-time continuum) and the Schrödinger wave equation (which ensures that the wave 

function can represent a quantum of energy – thus a particle) (Simpson. G.D. 2012). 

A wave function solution to the Classical wave equation describes the motion of all points on the wave at any 
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location in space and time. The position of a test point in space as it is affected by the wave motion can be 

represented as a displacement vector drawn from the starting location of the point to its current location. The 

wave function defines the magnitude and direction of the displacement vector at any location in space and at any 

time – therefore it completely and precisely defines the pattern of vectors that form the structure of the particle 

that it describes. 

In the case of Electromagnetism there is a single vector field that describes the motion of an Electromagnetic 

wave in this way, it is known as the Hertzian vector field (Ornigotti. A. et al, 2014), (J. J. Sein, 1989). The 

Electric and Magnetic fields can both be derived from the Hertzian vector field by differentiation with respect to 

space and time. 

(Ornigotti. A. et al, 2014) “in a vacuum a single Hertz vector written as the product of a scalar potential and a 

constant vector, naturally arises as consequence of the transversality of the electromagnetic fields” 

Therefore, a wave function that describes a field of vectors representing Hertzian vectors can also represent a 

wave function describing Electric and Magnetic field vectors. If the wave function satisfies both the Classical 

wave equation and the Schrödinger wave equation then it can also represent a vibration of space-time and a 

potential solution for a Quantum particle. 

In the case of a Classical wave function describing an Electromagnetic wave, the displacement vectors described 

by the wave function are of a physical charge displacement from the otherwise neutral vacuum state. Thus, the 

vacuum is seen to be polarised by the displacement by an amount with units of Volt-Meters. The presence of the 

displacement from the neutral vacuum state requires a certain energy, and the total (rest) energy of the particle‟s 

wave function is the sum of the resulting Electric and Magnetic fields (Traill. D. A, 2020); 

This paper presents two such solutions, one representing an electron and one representing a positron. In addition, 

it is shown that the correct Classical fields are produced by them, matching those of the real particles, and that 

the Quantum Mechanical requirements of the De Broglie equations are also met by them. 

1.1 Lorentz Transformation of the Wave Function Solutions 

The Schrödinger wave equation is not Lorentz Invariant, whereas the Klein-Gordon or Dirac equations (which 

are Lorentz Invariant) are usually used to model electrons/positrons. In my model, however, as the mass of the 

electron/positron does not appear as a point particle but is present as the mass equivalent of the total energy of in 

the Electromagnetic field (Electric and Magnetic fields combined) in the fields derived from the wave-function 

equation (Traill. D. A , 2020), the mass term in the Klein-Gordon and Dirac equations would be zero as the 

energy of the field is already accounted for in the other terms in these equations. The Klein-Gordon equation 

reduces to the Classical wave equation when the mass term is zero, and my wave function solutions are solutions 

to the Classical wave equation. 

The Klein-Gordon equation (OxfordReference, 2021): 

[☐ − (mc/ħ)
2
]ψ = 0, 

where ☐ = ∇2
 − (1/c

2
)(∂/∂t

2
) 

So, if m = 0: 

[∇2
 − (1/c

2
)(∂/∂t

2
)] ψ = 0, 

∇2
 ψ = (1/c

2
)(∂/∂t

2
) ψ, 

which is the Classical wave equation. 

The Classical wave equation is Lorentz Invariant, so my wave function solutions are also Lorentz Invariant. 

Therefore, my wave-function solutions are compatible with Relativity even though the Schrödinger wave 

equation (to which they are also solutions) is not a Relativistic wave equation. Another point to make here is that 

the wave functions are solutions to the Schrödinger wave equation (which applies in a frame that is at rest) and 

from Relativity we know that all inertial reference frames are equivalent – which means that Physics is the same 

for any moving observer. Therefore, we can conclude that the wave function in the moving reference frame is 

still a solution to the Schrödinger wave equation in that reference frame, even though that frame is moving with 

respect to us, and the Schrödinger wave equation itself is not Lorentz invariant. 

2. The Solutions 

These are the suggested wave function equations for the Electron and the Positron. Other work has suggested 

that the structure of the electron is that of a spherical standing wave (Milo Wolff, 2012). That model has some 

problems, however, such as the resulting structure has no ability to explain the electron charge and would result 
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in the waves all having zero amplitude at the same time during their oscillation cycle, which would cause 

problems with the conservation of energy. This model has been taken further and it has been found that in order 

to explain charge, the required structure is that of a spinning spiral wave, with inward or outward flowing phase. 

These equations are formulated based on my initial analysis of the form of the structure that must be required – 

that of a spinning spiral with a spherical wave distribution. The equations were further refined with the use of the 

3D modelling software developed by the author to simulate the wave functions. Also, the properties of these 

modelled wave functions were analysed to refine the amplitude term of the wave functions such that the electric 

potential of the modelled particles matches that of the real particles. Having done this gives good confidence that 

the resulting equations are a true description of the real fundamental particles. 

The images located in [Figures 3-11] show graphical representations of the fields derived from these wave 

functions using a 3D vector modelling program developed by the author to aid in the visualization and testing of 

proposed wave function solutions. 

For the Electron: 
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For the Positron: 
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Where: 

e    = Electron wave function   p  = Positron wave function 

eQ    = Electron Charge (-)   pQ  = Positron Charge (+) 

eM   = Mass of an Electron  pM  = Mass of a Positron 

0     = Permittivity of free space 

    t   = Time 

   r   = Distance from particle's centre (to any location in space) 

   c   = The speed of light 

     = The Reduced Plank‟s Constant 

3. The Solutions Satisfy the Wave Equations 

The wave nature of the particles is being modelled here as a vibration of the space-time continuum (a physical 

charge displacement) and the particle nature is modelled as localized quanta of this wave energy (a temporally 

stable 3D wave structure). In order to satisfy both the wave and particle natures of particles in the model, the 

wave function must satisfy both the Classical wave equation (which ensures that the wave function can represent 

a real, physical vibration of the space-time continuum) and the Schrödinger wave equation (which ensures that 

the wave function can represent a quantum of energy – thus a stable particle) (Simpson. G.D. 2012). 

Classical wave equation:                 
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Schrödinger wave equation:                ˆi H
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Where: ˆ  H Total Energy 
 

   ˆ      H Kinetic Energy KE PotentialEnergy PE    
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The wave function describes a field of rotating displacement vectors which can each be thought of as comprising 

two orthogonal Quantum Harmonic Oscillators (OpenStax, 2020); one along each axis of the complex plane. The 

vectors trace out a circle, such that at any given time half of the total energy is present as Kinetic energy and half 

as Potential energy. The amount of energy in each these forms depends on the phase of each of the component 

Quantum Harmonic Oscillators. In their simple harmonic motion oscillation, each oscillates between full KE and 

full PE, but when one has full KE the other has full PE and vice-versa. 

See Appendix A for the proof that a Quantum Mechanical wave-function can be modelled as a field of Real 3D 

vectors and still satisfy both the Schrödinger and Classical wave equations. 

Due to Equipartition of energy in a Classical wave (Duffin. R.J, 1969): 

KE = PE =

2
2

2m
   

So:                              i
t




 =

2
2

m
                                  (4) 

Testing the electron solution with the Schrödinger wave equation 

Referring to Eqs. 1 and 4: 

In Spherical coordinates (Gradient, Divergence, Curl, and Laplacian, LibreTexts, 2020) the Laplacian of    is: 
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As the wave function    is spherically symmetrical, all the vectors at the same distance   from the origin are 

identical, so the terms involving   and   are zero. 

So ∇    reduces to: 
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Thus, the Schrödinger wave Eq. 4 becomes: 
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Thus: 
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As from    by differentiation of Eq. 1, we can also say that: 
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Also: 
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Thus: 
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So, from Eq.s. 8a, 9a and 11a, we can see that LHS = RHS of the Schrödinger wave equation (Eq. 4), so the 

wave function (Eq. 1) is a solution to it: 
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Eq. 9a equals Eq. 11a: 
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Testing the electron solution with the Classical wave equation 

Referring to Eqs. 1 and 3: 
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Thus: 
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And, substituting Eqs. 6a, 10a and 15a into Eq. 3: 
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So LHS = RHS of Classical Wave equation (Eq. 3) too, so the electron wave function (Eq. 1) is a solution to it 

also. 

Testing the positron solution with the Schrödinger wave equation 

Referring to Eqs. 1 and 4: 

In Spherical coordinates the Laplacian of    is: 

∇    
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As the wave function    is spherically symmetrical, all the vectors at the same distance   from the origin are 

identical, so the terms involving   and   are zero. 

So ∇    reduces to: 

∇    
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Thus, the Schrödinger wave Eq. 4 becomes: 
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As from    by differentiation of Eq. 2, we can also say that: 
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Also: 
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Thus: 

  

 

 

  

 

  
(  

   

  
)  

     

     
   *

     
 

 
(  

 

 
)+                   (11b) 

So, from Eqs. 8b, 9b and 11b, we can see that LHS = RHS of the Schrödinger wave equation (Eq. 4), so the 

wave function (Eq. 2) is a solution to it: 
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Eq. 9b equals Eq. 11b: 
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Testing the positron solution with the Classical wave equation 

Referring to Eqs. 2 and 3: 
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Thus: 
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And, substituting Eqs. 6b, 10b and 15b into Eq. 3: 
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So LHS = RHS of Classical Wave equation (Eq. 3) too, so the positron wave function (Eq. 2) is a solution to it 

also. 

4. The Wave Function and Electromagnetism 

Each of the measurable fields in Electromagnetic Theory (J. J. Sein, 1989), (Traill, D.A, 2002), (Kouzaev, G.A, 

2010), and their connection back to the wave function, can be expressed quite simply by the following set of 

equations and illustrated by Figure 1. 

 

 

 

                                          

 

 

 

Figure 1. The mathematical connections between the fields 
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Note: Eq. 20 is derived from Eq. 3 as the Classical wave equation states that ∇  
  

  
, so H is equivalently 
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Where: 

        = Wave function 

      V   = Voltage (electric potential) 

      E  = Electric field vector 

      A  = Vector potential 

      H   = Magnetic field vector 

        = Charge density 

5. Analysis of the Wave Functions 

Both wave functions represent a field of rotating charge displacement vectors. The pattern described by the 

phases of the field of rotating vectors is that of a spinning spiral wave. The phase wave phase flows either away 

from or towards the centre of the particle (Figures [3, 4a, 4b]). The Electron spins with the phase wave flowing 

outward and the Positron with the phase wave flowing inwards (Traill, D.A, 2002). 

The angular frequency in the wave function is derived from the following three known equations. 

                     (22) 

                  (23) 

                    (24) 

Substituting Eq. 23 and Eq. 24 into Eq. 22 and solving for we have: 

  
   

   
              (25) 

Then to convert to angular frequency: 

                   (26) 

Substituting Eq. 25 into Eq. 26 and using the electron mass    gives: 

  
   

 

 
  Radians per Second            (27) 

This describes the rate of rotation of each of the vectors in the vector field that describes the Electron/Positron 

wave function. 

The centre of the Electron comprises a vector that rotates around a fixed position at the particle‟s centre over 

time. As time progresses this vector propagates radially outwards, at the speed of light, away from the centre 

thus forming the phase wave spiral. Therefore, the phase of each vector depends not only on time, but also on 

distance   from the centre of the wave function. 

So, the phase of each rotating vector in space will depend on two things: 
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(1) The vector rotation rate, determined by:               
   

 
                           (28) 

(2) The propagation delay for a wave travelling radially outwards at the speed of light, given the vector rotation 

rate above:                                                    
   

 
 
 

 
                                (29) 

Thus, the total phase change (for an electron) at a distance   from the centre is the sum of these two factors: 

   
 

 
(  

 

 
)        (30) 

Every point on the wave function spiral comprises a vector that rotates around a fixed location in space as the 

phase waves pass through each point.  

In a classical wave, each point in the medium supporting that wave (such as the water molecules in a water wave) 

moves in a circular motion as the wave passes. The frequency of this circular motion is the same as that of the 

wave. However, when two waves of equal frequency (but travelling in opposite directions) combine to form a 

standing wave, each point in the medium rotates at twice the angular frequency of each of the two component 

waves.  

The spinning spiral of rotating vectors that the wave function describes can be modelled as a standing wave 

comprised from two interfering waves: a spherical IN wave and a spherical OUT wave. Thus, each point in the 

medium supporting this standing wave is rotating at twice the frequency of either the IN or OUT wave alone.  

The spherical IN and OUT waves work together, by means of constructive and destructive interference due to a 

slight frequency difference between the IN and OUT waves, forming the spinning spiral structure of the particle. 

Each point in this spatial structure is being influenced by both IN and OUT waves (one wave from each side), a 

vector at that point spins around at a rate based on the frequency of the IN and OUT waves, with an amplitude of 

double each of the IN and OUT wave components. The frequency of the IN and OUT waves is the same except 

for a slight difference that modulates this fundamental frequency and thereby forms the spinning spiral pattern. 

The frequency of the vector rotation for any point in the wave function is given by Eq. 27. Thus, the angular 

wave frequency of each IN/OUT wave is given by: 

   Radians per Second                  (31) 

From Eq. 26 and Eq. 31, the travelling wave fundamental frequency of an IN or OUT wave is: 

  
 

  
  Hertz               (32) 

So, from Eq. 27 and Eq. 32, the Electron‟s IN/OUT wave frequency is: 

  =                        Hertz                 (33a) 

And (for a propagation speed of  ) the spatial frequency (wavenumber) is: 

electronf                                    (33b) 

 

6. Verification Using the De Broglie Equations 

The De Broglie wavenumber for a moving particle is       
  

 
                              (34) 

This is 13747.79 for an Electron travelling at           
110 secm 

                       (35) 

The Classical interpretation of the De Broglie wave is that of a beat frequency of the upstream and downstream 

components (with respect to the particle‟s direction of motion) of the Electron‟s IN/OUT wave, so: 

 up electron

c
f f

c v
 


        (36) 
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 down electron

c
f f

c v
 


        (37) 

Again, the speed of the Electron   = 
110 secm 

 

Thus from Eq. 36 and Eq. 37 the beat frequency wavenumber is: 

          

 
  13747.79            (38) 

So, we can see that the De Broglie wavenumber matches the beat frequency wavenumber of the calculated 

Electron IN/OUT waves for an Electron travelling at 
110 secm 

(Eq. 35 equals Eq. 38). 

The Energy of the Electron can be checked too, using the De Broglie relation: 

                   (39) 

Using Eq. 27: 

   
   

 

 
    

                   (40) 

Which is the Energy/Mass relationship as it should be. 

This can also be proved using the displacement amount of the Quantum Harmonic Oscillators (OpenStax, 2020) 

in the wave function vector field. The units of the vectors in the wave function are Volt-Meters, so they need to 

be converted to just Meters, then the energy of the Oscillators calculated (See Appendix C). 

The electron rest mass has also been calculated from my 3D model by integrating the Electric and Magnetic field 

vector energies over a small volume (cube) of space with the electron wave function at the center of the volume. 

The resulting rest-mass value is 100.46% of the actual electron rest-mass. (Traill. D. A, 2020) 

7. Derivation of the Classical Electric Potential for the Electron and Positron 

For the Electron wave function, the Electric Potential (V ) is    (  ), which in spherical coordinates is [10]. 

div(  ) =
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               (41a) 

For the Positron wave function, the Electric Potential (V ) is    (  ), which in spherical coordinates is 

(Gradient, Divergence, Curl, and Laplacian , LibreTexts, 2020). 

div(  ) =
 

  

 

  
(    )  

 

     

 

  
(      )  

 

     

   

  
               (41b) 

When viewed close-up, the spinning spiral and charge layers that comprise the Electron/Positron are clearly 

visible. Due to the fast spinning of the spiral (and outward or inward phase flow), or at large distance scales 

where the undulations of the spinning charge layers are small by comparison, the fields appear to become 

smooth and be of a continuous nature [Fig. 6-11]. So, for example, the Electric Potential for the 

Electron/Positron in this case appears to be the RMS (Root-Mean-Squared (The RMS Voltage of an AC 

Waveform, electronics-tutorials, 2015)) of Eq. 41a or 41b, which is equal to the classical equation: 

  

     
 or  

  

     
                  (42) 

For the Proof that this is the case, see Appendix B. 

8. Comparison With Quantum Mechanics 

8.1 The Quantum Mechanical Wave-Function 

In Classical Physics, the wave function   describes a field of displacement vectors; that is the complex number 

of the wave-function describes X-axis and Y-axis displacements from the origin on an Argand diagram. In 

Quantum Mechanics, however, the wave function     is a complex scalar value rather than a vector, although 
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the complex number of its wave-function is in the same mathematical form. However, the complex „i‟ term in 

the wave equation simply represents a 90-degree rotation (orthogonal vector quantities), and so the equation can 

be reformulated purely Classically, with no complex numbers by introducing a rotation matrix in place of the „i‟ 

term. 

In Quantum Mechanics the square of the wave function gives the probability density of finding a particle at a 

point in space:  

     
                  (43) 

In order to get vector quantities in Quantum Mechanics one must apply a vector operator to the probability, such 

as applying the position or momentum operators to the wave-function.  

The Classical wave function, on the other hand, remains a vector and its magnitude is equivalent to the Quantum 

Mechanical scalar wave function: 

    | |             (44) 

 

As my Classical wave function solutions, Eqs. 1, 2, are comprised of an array of Quantum Harmonic Oscillators, 

the Ehrenfest (Krishnaswami. Govind S, 2011) and Virial (LeBohec. S, 2021) theorems state that the QM 

Expectation values follow their Classical trajectories and have an equipartition of energy (between Kinetic and 

Potential forms), so my Classical wave function solutions will also apply in a Quantum Mechanical 

interpretation. 

See Appendix A for the proof that a Quantum Mechanical wave-function can be modelled as a field of Real 3D 

vectors (with a rotation matrix in place of the complex „i‟ term) and still satisfy both the Schrödinger and 

Classical wave equations. 

So, given that my Classical wave function model is compatible with the Quantum Mechanical wave function, 

this work sheds new light on the wave/particle duality issue in Quantum Mechanics. The Classical wave 

functions presented here for the particles is fundamentally a wave structure, yet the energy of this wave structure 

remains localized (quantized) and its properties appear to be associated with a single point – at the center of the 

wave function structure. As this wave structure is not a point particle but is spread through space with varying 

degrees of energy density in different locations, we can see how the probability amplitude referred to in 

Quantum Mechanics may be associated with the energy density and other properties of the dynamic waves of the 

Classical wave function.  

8.2 Normalization of the Wave-Function 

In Quantum Mechanics is it important that a wave-function be normalizable; that is the area under the curve of 

the wave function be finite, such that the square of the wave-function can represent a probability density of 

finding the particle. The probability integrated over the whole wave-function must be 1, so that the particle exists 

somewhere in space. An infinite probability doesn‟t make physical sense, so in order that the wave-function 

represents a real particle, it must be Normalizable. 

As my wave function solutions (Eqs. 1 & 2) contain a   ⁄  term they would not, on face value, appear to be 

normalizable due to an infinity at    . However, if in reality, a function is known to be finite, as is the case 

for an electron or positron, then it may be considered Normalizable (Wave Mechanics, 2018), (Physics – Stack 

Exchange discussion, 2018). As my wave functions are comprised of Quantum Harmonic Oscillators with real 

displacements in space, at size scales less that this displacement distance, the nature of the function will no 

longer be   ⁄ , thus restricting its amplitude and preventing an infinite quantity (Gopalakrishnan, S, 2006). For 

these wave-functions, the order of magnitude of this displacement is             meters (see (OpenStax, 

2020) on the physical displacement for a Quantum Harmonic Oscillator; in this case assuming all of the energy 

of an electron was a single Quantum Harmonic Oscillator at the particle‟s center). Thus, there is a natural limit 

on the   ⁄  factor in the wave-function amplitude. Thus, these wave-functions are compatible with Quantum 

Mechanics, and their probability density may be calculated via Eq. 43, with the use of Eq. 44. 

9. Conclusion 

The wave functions presented here describe particles with all the correct properties for an Electron and a 



http://apr.ccsenet.org Applied Physics Research Vol. 14, No. 1; 2022 

69 

Positron and satisfy the requirements of both the Classical and Quantum Mechanical interpretations.  

The wave function represents a field of rotating charge displacement vectors with units of Volt-Meters. The 

spinning vectors form a phase wave that describes a spinning spiral. The resulting phase wave flows either away 

from or towards the centre of the particle. Interactions between the phase waves of two or more particles can be 

shown to be the cause of the Electrical and Magnetic attraction/repulsion between charged particles due to 

momentum exchanges between the wave structures (Traill, D.A, 2020). 

In general, the concepts use to build these two wave equations could be applied to all particles in Physics. The 

key principles are: 

1. The frequency of the waves that comprise the three-dimensional wave structure of the particle is based on 

the particle's mass (via the calculation shown above). 

2. A particle's charge is defined by either an outward or inward flowing phase wave. A neutral particle would 

have no net phase flow inward or outward, but may contain regions of either inward or outward flow, which 

cancel out in the region surrounding the particle. 

3. The completed wave function must satisfy both the Classical and Schrödinger wave equation. 

4. Particles such as Protons (or other particles containing Quarks) might contain several components to the 

overall wave function (Traill. D. A, 2021a, 2021b, 2021c, 2021d), which work together to form a stable particle 

(i.e. together they satisfy the other three principles stated here). 

Further work can now, in principle, be done to determine the wave functions and thus structures of all of the 

known fundamental particles. The author has made some inroads into this endeavour in other work that suggests 

the wave function equations of the Proton (Traill. D. A, 2021b), the Neutron (Traill. D. A, 2021c) and the 

Electron Neutrino (Traill. D. A, 2021d).  
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Supplementary Material 

10.1 Images from the Model 

 

 

Figure 3. The electron wave function from the side (the spin axis is vertical) 

 

 

Figure 4(a). The electron wave function viewed from the top (looking down the spin axis) 
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Figure 4(b). The electron wave function (vector arrows only) viewed from the top (looking down the spin axis) 

 

 

Figure 5. The electric potential of the electron showing the double spiral of charge layers 
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Figure 6. The electric potential of the electron with the small-scale wave function undulations smoothed out (the 

individual charge layers are not visible) 

 

 

Figure 7. The electric field of the electron with the small-scale wave function undulations smoothed out 
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Figure 8. The magnetic field of the electron viewed from the side (spin axis is vertical) with the small-scale wave 

function undulations smoothed out. The vectors into/out of the page are not shown in order to reveal the nice 

magnetic field lines. 

 

 

Figure 9. The magnetic field of the electron viewed from the top (looking down the spin axis) with the 

small-scale wave function undulations smoothed out 
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Figure 10. The vector potential field of the electron viewed from the side (the spin axis is vertical) with the 

small-scale wave function undulations smoothed out 

 

 

Figure 11. The vector potential field of the electron viewed from the top (looking down the spin axis) with the 

small-scale wave function undulations smoothed out. Note how the energy of the particle flows around the spin 

axis in closed loops. 
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Appendix A: 

Proof that a Quantum Mechanical wave-function can be modelled as a field of Real 3D vectors and still 

satisfy both the Schrödinger and Classical wave equations: 

The Electron 

See (Kadin, A. M. 2005) for an example of the Schrödinger equation formulated without the use of complex 

numbers. 

(The Positron calculation work out the same but use the different Ѱ function) 

>  

 

 

 

>  

 

>  

 

>  
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Appendix B: 

Proof that the average (RMS) of the divergence of the wave function gives the Electric Potential field for 

the electron/positron, and that it is the same as the known Classical equation: 

Here the Wave Function is converted from Cartesian to Spherical coordinates and then the RMS is taken over 

both the ϕ and ϴ angle coordinates to smooth the 3D spiral structure of the Wave Function into a continuous, 

smooth scalar field such as that of the Classical Electric Potential field. When this is done, the resulting field is 

compared to the Classical formula. There is a near perfect match between the two, with the only difference being 

factor based on   which has a value of 1.054571800E−34. This difference would be so small as to go 

un-noticed. There is, however, a larger proportion of the potential in the wave function along the equatorial plane, 
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and a decrease (to nearly zero) along the polar axes in the spiral potential field of the original wave function 

(before the RMS is taken) which may be detectable in a well-constructed experiment. 

The Electron 

(The Positron calculation are the same but use the different Ѱ function) 

>  

>  

 

>  

 

>  

 

>  
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Appendix C: 

The wave function units are Volt-Meters, so by converting them to just Meters (by dividing by the Electric 

Potential (voltage) formula) and using the Energy of a Quantum Harmonic Oscillator field (OpenStax, 2020), the 

energy of the Electron wave function can be shown to be the correct amount: 

>  
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Appendix D: 

Field Calculation Code From the Model 

This is a portion of the model developed by the author to model the Electron/Positron and their associated fields; 

such as Electric, Magnetic, Vector Potential fields. It is written in the Delphi language and is the function that 

calculates the fields from the mathematical wave function. 

1. procedure TForm1.RecalcFields(scr:smallint);  
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2. var  

3.   Current_Ex,Current_Ey,Current_Ez: extended;  

4.   Current_Bx,Current_By,Current_Bz : extended;  

5.   r,x,y,z,unit_x,unit_y,unit_z,k : extended;  

6.   theta, delta, theta_const, expTheta, lnTheta, term0, term1, term2, term3 : extended;  

7.   normal_x,normal_y,normal_z,dir_x,dir_y,dir_z : extended;  

8.   scalar_amp, Vector_amp, SpinConstant, E_amp : extended;  

9.   NewScreen : smallint;  

10.   xpos,ypos,zpos,midx,midy,midz:smallint;  

11.   ThisGroup,NewGroup: PointGrp;  

12.   vect,CurlVect,DivVect, PrevVectorPotential,ElecFieldFromA: vector;  

13.   Scalar_Group: ScalarGrp;  

14.   VectGrp: VectorGrp;  

15.   I: Integer;  

16.  

17. begin  

18.   

19.   if scr=0 then NewScreen:=1 else NewScreen:=0; {determine which data to update}  

20.  

21.   if not Flip_YZ then begin  

22.  

23.      midx:=Trunc(GridWidth/2);  

24.      midy:=Trunc(GridHeight/2);  

25.      midz:=Trunc(GridDepth/2); 

26.   

27.      SpinConstant:=( Hhat / ElectronMass ); // Metres^2/(Radians*Second)  

28.      delta := ( ElectronCharge * Hhat ) / ( 2 * Pi * ElectronMass * SpeedOfLight * Permittivity );  

29.       

30.      // theta_const is in Radians/Second ( i.e. the same as solving E = hf for f, where E=mc^2, and 

h=2*Pi*Hhat,  

31.      // then converting f to angular frequency w, via w = 2*Pi*f )  

32.      // ( theta_const could be, equivalently : - c^2/SpinConstant )  

33.      theta_const:=( -ElectronMass * sqr(SpeedOfLight) ) / Hhat;  

34.       

35.       

36.     

37.      /////////////////////////////////////  

38.      // Thus the Total Electron Wave Equation (Ye) is:  

39.      //  

40.      // Ye =- ((Qe*Hhat) / (2*Pi*r*Me*c*Eo )) * Exp( ( - i * Me * c^2 / Hhat ) * ( T – r/c ) )  

41.      //  

42.      // and the Electric Potential div(psi) in spherical coordinates is  

43.      //  
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44.      // V = (Qe / ( 2 * Pi * r * Me * c * Eo )) * (Me * c * r * Hhat) *  Exp( ( - i * Me * c^2 / Hhat ) * ( T – 

r/c ) )  

45.      //  

46.      // Where:  

47.      // Ye is Electron Wave Function (psi) 

48.      // Qe is Electron's Charge  

49.      // Pi is 3.14159 etc  

50.      // Eo is the Permittivity of free space  

51.      // Exp is the Exponential function  

52.      // i is the Complex number (square root of -1)  

53.      // Me is the Mass of an Electron  

54.      // c is the speed of light  

55.      // Hhat is the reduced Plancks constant ( i.e. h/(2*Pi) )  

56.      // T is Time  

57.      // r is the radial distance from the center of the Electron  

58.      //  

59.      // exp(-theta) = cos(theta) - isin(theta)  

60.      // using x,y,z coordinates:  

61.      // x = cos(theta)  

62.      // y = -sin(theta)  

63.       

64.      // theta:=theta_const*(Time - r/ SpeedOfLight);  

65.      //  

66.      // term1:=delta/r  

67.      // term2:=cos(theta);  

68.      // term3:=-sin(theta);  

69.      //  

70.      // if ( ViewTop ) then begin // Assign values to x, y, z coordinates, depending on view from the top or 

side.  

71.      //   x:=term1 * term2;  

72.      //   y:=term1 * term3;  

73.      //   z:=0;  

74.      // end  

75.      // else begin  

76.      //   x:=term1 * term2;  

77.      //   y:=0;  

78.      //   z:=term1 * term3;  

79.      // end; 

80.      /////////////////////////////////////  

81.  

82.      for xpos:=0 to GridWidth-1 do begin {scan grid's x coords}  

83.        for ypos:=0 to GridHeight-1 do begin {scan grid's y coords}  

84.          for zpos:=0 to GridDepth-1 do begin {scan grid's z coords}  
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85.            ThisGroup:=PointGroup(scr, xpos, ypos, zpos);  

86.             

87.            x:= xpos - midx;  

88.            y:= ypos - midy;  

89.            z:= zpos - midz;  

90.             

91.            r:=sqrt( sqr(x) + sqr(y) + sqr(z) );  

92.            if ( r < 0.00000000000001 ) then r:=0.00000000000001;   // prevent divide by zero errors  

93.             

94.            unit_x:= x/r;  

95.            unit_y:= y/r;  

96.            unit_z:= z/r;  

97.             

98.            r:=r*(ActualWidth/GridWidth);   // get actual distance in metres  

99.            if ( r < 0.00000000000001 ) then r:=0.00000000000001;   // prevent divide by zero errors 

100.             

101.            /////////////////////////////////////  

102.            /// WAVE FUNCTION TO TEST  

103.            ///  

104.            case StartOption of  

105.              1: begin  

106.               

107.              if ( electron ) then begin                   // if electron being modelled  

108.                theta:=theta_const*(Time – r/ SpeedOfLight);  

109.                term1:=delta/r;  

110.              end  

111.              else begin                                            // if positron being 

modelled  

112.                theta:=theta_const*(Time + r/ SpeedOfLight);  

113.                term1:=-delta/r;  

114.              end;  

115.               

116.              term2:=cos(theta);  

117.              term3:=-sin(theta);  

118.               

119.              // Assign values to x, y, z coordinates, depending on view from the top or side.  

120.              with points[NewScreen,xpos,ypos,zpos].PsiVect do begin  

121.                if ( ViewTop ) then begin  

122.                  x:=term1 * term2;  

123.                  y:=term1 * term3;  

124.                  z:=0;  

125.                end  

126.                  else begin  
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127.                  x:=term1 * term2;  

128.                  y:=0;  

129.                  z:=term1 * term3;  

130.                end;  

131.              end;  

132.              points[NewScreen,xpos,ypos,zpos].Psi := term1;  

133.              end;  

134.            end;  

135.            ///  

136.            /////////////////////////////////////  

137.             

138.          end;  

139.        end;  

140.      end;   // end {scan grid's x coords}  

141.       

142.      for xpos:=0 to GridWidth-1 do begin {scan grid's x coords}  

143.        for ypos:=0 to GridHeight-1 do begin {scan grid's y coords}  

144.          for zpos:=0 to GridDepth-1 do begin {scan grid's z coords}  

145.           

146.            ThisGroup:=PointGroup(scr, xpos, ypos, zpos);  

147.            NewGroup:=PointGroup(NewScreen, xpos, ypos, zpos);  

148.             

149.            with points[NewScreen,xpos,ypos,zpos] do begin  

150.              if (smoothing) then begin                                          // If smoothing 

of the wave-function‟s undulations is enabled. 

151.                x:= xpos - midx;  

152.                y:= ypos - midy;  

153.                z:= zpos - midz;  

154.                 

155.                r:=sqrt( sqr(x) + sqr(y) + sqr(z) );  

156.                if ( r < 0.004 ) then r:=0.004;   // prevent divide by zero errors  

157.                r:=r*(ActualWidth/GridWidth);   // get actual distance in metres  

158.                if ( r < 0.00000000000001 ) then r:=0.00000000000001;   // prevent divide by zero 

errors 

159.                 

160.                ElectricPotential:=ElectronCharge/(4*Pi*r*Permittivity);  

161.              end  

162.              else begin  

163.                VectGrp:=VectorGroup(NewGroup, PSI_VECTOR_FIELD);  

164.                ElectricPotential:=VectDiv(VectGrp);  

165.              end;  

166.            end; 

167.          end;  
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168.        end;  

169.      end; // end {scan grid's x coords}  

170.       

171.      for xpos:=0 to GridWidth-1 do begin {scan grid's x coords}  

172.        for ypos:=0 to GridHeight-1 do begin {scan grid's y coords}  

173.          for zpos:=0 to GridDepth-1 do begin {scan grid's z coords}  

174.             

175.            ThisGroup:=PointGroup(scr, xpos, ypos, zpos);  

176.            NewGroup:=PointGroup(NewScreen, xpos, ypos, zpos);  

177.             

178.            { ThisGroup's points are assigned as follows: P3                      P5  

179.                                                                                       

P1 P0 P2  

180.                                                                                             

P4            P6  

181.            Where P5 & P6 are in the Z plane (P5 at the back and P6 at the front) }  

182.             

183.            x:= xpos - midx;  

184.            y:= ypos - midy;  

185.            z:= zpos - midz;  

186.             

187.            r:=sqrt( sqr(x) + sqr(y) + sqr(z) );  

188.            r:=r*(ActualWidth/GridWidth);   // get actual distance in metres  

189.  

190.            if ( r < 0.00000000000001 ) then r:=0.00000000000001;   // prevent divide by zero errors  

191.                

192.            // Electric Field is: -div of ElectricPotential Field - d/dt of Vector Potential field  

193.            Scalar_Group:=ScalarGroup(NewGroup, ELECTRIC_POTENTIAL_FIELD);  

194.             

195.            // This is the negative div of ElectricPotential Field  

196.            // This is the Vector Laplacian of Psi, which is -grad of ElectricPotential minus dA/dt. 

197.            // As Cartesian coordinates are being used, the Vector Laplacian is calculated as the 

198.            // Scalar Laplacian on each x,y,z coordinate. 

199.            // (will add the rest of the Electric field definition once the Vector Potential is known) 

200.            // E = -grad(div(Psi)) - dA/dt 

201.            points[NewScreen,xpos,ypos,zpos].Electric:=ScalarGrad(Scalar_Group);  

202.            with points[NewScreen,xpos,ypos,zpos]. Electric do begin    // Make negative 

203.              x:= -x;  

204.              y:= -y;  

205.              z:= -z;  

206.            end; 

207.  

208.            // From Schrödinger 's wave equation:  
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209.            // d(psi)/dt = i * Hhat/ElectronMass * Laplacian(psi) 

210.            // 

211.            // Note: div(V) = Laplacian(psi)  

212.            // SpinConstant = Hhat/ElectronMass  

213.            // 

214.            // So… 

215.            // d(psi)/dt = i*SpinConstant*div(V)  

216.            // 

217.            // VectorPotential = (1/c^2)*d(psi)/dt 

218.            //  

219.            // A is orthogonal to and proportional to the div(V) vector  

220.            // (multiplying by i rotates the vector 90 degrees in the complex plane). 

221.            // so use the Normal vector to the div(V) vector and the Static Electric field amplitude 

(E_amp). 

222.               

223.            // get amplitude of Static Electric field component  

224.            E_amp:=VectSize(points[NewScreen,xpos,ypos,zpos].Electric);  

225.           

226.            // Calculate the Unit & Normal vectors of the div(V) vector (depending on view from top or 

side) 

227.            with points[NewScreen,xpos,ypos,zpos]. Electric do begin  

228.              unit_x:= x/E_amp;  

229.              unit_y:= y/E_amp;  

230.              unit_z:= z/E_amp;  

231.  

232.              if ( ViewTop ) then begin  

233.                 normal_x:=unit_y;  

234.                 normal_y:=-unit_x;  

235.                 normal_z:=unit_z;  

236.              end  

237.              else begin  

238.                 normal_x:=unit_z;  

239.                 normal_y:=unit_y;  

240.                 normal_z:=-unit_x;  

241.              end;  

242.           end;  

243.  

244.            with points[NewScreen,xpos,ypos,zpos].VectorPotential do begin                

245.                if (smoothing) then begin 

246.                  x := normal_x*SpinConstant*E_amp/sqr(SpeedOfLight); 

247.                  y := normal_y*SpinConstant*E_amp/sqr(SpeedOfLight); 

248.                  z := normal_z*SpinConstant*E_amp/sqr(SpeedOfLight); 

249.                end 



http://apr.ccsenet.org Applied Physics Research Vol. 14, No. 1; 2022 

98 

250.                else begin 

251.          // A = - (1/c^2)*dYe/dt = -i*(Me/Hhat)*Ye 

252.          if ( ViewTop ) then begin 

253.            x := -(ElectronMass/Hhat)*points[NewScreen,xpos,ypos,zpos].PsiVect.y; 

254.            y := (ElectronMass/Hhat)*points[NewScreen,xpos,ypos,zpos].PsiVect.x; 

255.            z := (ElectronMass/Hhat)*points[NewScreen,xpos,ypos,zpos].PsiVect.z; 

256.          end 

257.          else begin 

258.            x := -(ElectronMass/Hhat)*points[NewScreen,xpos,ypos,zpos].PsiVect.z; 

259.            y := (ElectronMass/Hhat)*points[NewScreen,xpos,ypos,zpos].PsiVect.y; 

260.            z := (ElectronMass/Hhat)*points[NewScreen,xpos,ypos,zpos].PsiVect.x; 

261.          end; 

262.       end;            

263.            end;            

264.            // Electric Field is: -div of ElectricPotential Field - d/dt of Vector Potential field  

265.            // In Electric, we already have negative div of ElectricPotential Field, now subtract d/dt of 

Vector Potential field  

266.  

267.           PrevVectorPotential:= points[scr,xpos,ypos,zpos].VectorPotential; 

268.  

269.   if (smoothing) then begin 

270.      ElecFieldFromA.x := (1/TimeStep)*(points[NewScreen,xpos,ypos,zpos].VectorPotential.x - 

PrevVectorPotential.x); 

271.      ElecFieldFromA.y := (1/TimeStep)*(points[NewScreen,xpos,ypos,zpos].VectorPotential.y - 

PrevVectorPotential.y); 

272.      ElecFieldFromA.z := (1/TimeStep)*(points[NewScreen,xpos,ypos,zpos].VectorPotential.z - 

PrevVectorPotential.z); 

273.   end 

274.   else begin 

275.      // dA/dt = (Me*c/Hhat)^2*Ye 

276.      ElecFieldFromA.x := -sqr(ElectronMass * SpeedOfLight / 

Hhat)*points[NewScreen,xpos,ypos,zpos].PsiVect.x; 

277.      ElecFieldFromA.y := -sqr(ElectronMass * SpeedOfLight / 

Hhat)*points[NewScreen,xpos,ypos,zpos].PsiVect.y; 

278.      ElecFieldFromA.z := -sqr(ElectronMass * SpeedOfLight / 

Hhat)*points[NewScreen,xpos,ypos,zpos].PsiVect.z; 

279.   end;         

280.   

281.   // Electric Field is: -div of ElectricPotential Field - d/dt of Vector Potential field 

282.   // In Electric, we already have negative div of ElectricPotential Field, now subtract d/dt of Vector 

Potential field 

283.   with points[NewScreen,xpos,ypos,zpos].Electric do begin 

284.     // E = -div(V) - dA/dt 

285.     x := x - ElecFieldFromA.x; 
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286.     y := y - ElecFieldFromA.y; 

287.     z := z - ElecFieldFromA.z; 

288.   end; 

289.             

290.            // Magnetic Field is Curl of Vector Potential Field  

291.            VectGrp:=VectorGroup(NewGroup, VECTOR_POTENTIAL_FIELD);  

292.            CurlVect:=VectCurl(VectGrp);  

293.             

294.            // Calculate Magnetic B Field 

295.            with points[NewScreen,xpos,ypos,zpos].Magnetic do begin  

296.              x:= CurlVect.x;  

297.              y:= CurlVect.y;  

298.              z:= CurlVect.z;  

299.            end;  

300.          end;  

301.     end; // end {scan grid's x coords} 

302.  

303.     for xpos:=0 to GridWidth-1 do begin {scan grid's x coords} 

304.         for ypos:=0 to GridHeight-1 do begin {scan grid's y coords} 

305.        for zpos:=0 to GridDepth-1 do begin {scan grid's z coords} 

306.             ThisGroup:=PointGroup(scr, xpos, ypos, zpos); 

307.             NewGroup:=PointGroup(NewScreen, xpos, ypos, zpos); 

308.                  

309.             with points[NewScreen,xpos,ypos,zpos] do begin 

310.                 VectGrp:=VectorGroup(NewGroup, ELECTRIC_FIELD); 

311.                 ChargeDensity:=-Permittivity*VectDiv(VectGrp); 

312.             end; 

313.         end; 

314.     end; 

315.      end; // end {scan grid's x coords}  

316.   end; //if Flip_YZ  

317. end; 
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