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ABSTRACT

The discrete phase space representation of quantum mechanics involving a characteristic length
is investigated. The continuous (1 + 1)-dimensional phase space is first discussed for the sake of
simplicity. It is discretized into denumerable infinite number of concentric circles. These circles,
endowed with “unit area”, are degenerate phase cells resembling closed strings.
Next, Schrödinger wave equation for one particle in the three dimensional space under the influence
of a static potential is studied in the discrete phase space representation of wave mechanics. The
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Schrödinger equation in the arena of discrete phase space is a partial difference equation. The
energy eigenvalue problem for a three dimensional oscillator is exactly solved.
Next, relativistic wave equations in the scenario of three dimensional discrete phase space and
continuous time are explored. Specially, the partial finite difference-differential equation for a scalar
field is investigated for the sake of simplicity. The exact relativistic invariance of the partial finite
difference-differential version of the Klein-Gordon equation is rigorously proved. Moreover, it is
shown that all nine important Green’s functions of the partial finite difference-differential wave
equation for the scalar field are non-singular.
In the appendix, a possible physical interpretation for the discrete orbits in the phase space as
degenerate, string-like phase cells is provided in a mathematically rigorous way.

Keywords: Quantum theory; string-like phase cells.

PACS numbers: 02.30Em.

1 INTRODUCTION

In 1960, the quantum field theory of interacting
fields was proposed [1] in the arena of a discrete
space-time involving a characteristic length. The
corresponding Green’s functions of the partial
difference-equations representing wave fields
in discrete space-time were all non-singular.
Moreover, divergence difficulties of the usual
S-matrix theory were eliminated. However, all
the invariance and covariance of the continuous
Poincaré group were lost !

In 1994, a new representation of quantum
mechanics (or wave mechanics) in the setting
of the discrete phase space (involving a
characteristic length) was formulated [2, 3].
The corresponding classical wave equations
were expressed as partial difference equations.
Every Green’s function of these partial difference
equations is non-singular. Furthermore, every
partial difference wave equation turned out to
be invariant or covariant under the continuous
Poincaré group !

In 2010, quantum mechanics was explored
under the mixed representation involving the
background of three dimensional discrete phase
space and one dimensional continuous time
[4, 5, 6]. The resulting wave equations were
expressed as partial finite difference-differential
equations. (It is interesting to note that Hamilton
used [7] a partial finite difference-differential

equation for the light propagation through ether-
lattice !)

It was rigorously proved that every partial finite
difference-differential equation (corresponding
to the usual relativistic partial differential
wave equation in continuous space-time)
remains exactly invariant or covariant under
the continuous Poincaré group. Moreover,
every Green’s function turned out to be non-
singular. Finally, quantum electrodynamics
was investigated in the background of discrete
phase space and continuous time [6]. The
corresponding S-matrix elements in every order
turned out to be divergence-free.

In the present paper, physical interpretation of
discrete concentric circles as degenerate phase
cells is enunciated. However, a phase cell
respecting the uncertainty principle of quantum
mechanics must be of an area |∆p ·∆q| ≥ ~ .
Then, the puzzling situation arises of a circular
orbit in a phase plane possessing an area
! Fortunately, in pure mathematics, there are
examples of continuous Peano curves covering
completely a unit area already exit [8]. In the
appendix, a particular example of Peano curves
which covers an annular phase cell of unit
area is explained. In fact a sequence of such
annular phase cells is constructed such that in
the limiting case, the sequence of annular cells
collapse into one circular orbit in the (1 + 1)-
dimensional continuous phase space. Such an
orbit resembles a closed string [9] which with
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passage of time creates a two dimensional world
sheet [9] in the three dimensional space of a
phase plane and continuous time.

Next, in the (3 + 3)-dimensional continuous
phase space, three dimensional discrete orbits
S1 × S1 × S1 are considered. These are
the closed string-like degenerate phase cells
applicable to the real physical phenomena.
The arena of wave equations considered
is the three discrete variables together with
one continuous time variable. The scalar
wave equation comprises of one partial finite
difference-differential equation [4, 5]. The
relativistic invariance of such an equation is
rigorously proved. Furthermore, corresponding
Green’s functions are investigated. All of the nine
important Green’s functions of the partial finite
difference-differential equation are shown to be
non-singular.

2 NOTATIONS AND PRELIMINARY

DEFINITION

There is a characteristic length l > 0 implicit
in this paper. We choose physical units such
that c = ~ = l = 1. All physical quantities
are expressed as dimensionless numbers. Greek
indices take values from {1, 2, 3, 4}, whereas
roman indices take (special) values from {1, 2, 3}.
Einstein’s summation convention is followed in
both cases. We denote the flat space-time metric
of signature +2 by ηµν and the diagonal matrix
[ηµν ] := diag[1, 1, 1,−1]. We denote the set
of all non-negative integers by N := {0, 1, 2, 3}.
An element n ≡

(
n1, n2, n3, n4

)
∈ N4 and an

element
(
n, x4

)
≡

(
n1, n2, n3; t

)
∈ N3 × R.

Let a function f be defined by

f : N3 × R −→ R
(
or, f : N3 × R −→ C

)
. (2.1)

The right partial difference-differential equation and the left partial difference operations are defined
by [4, 10]

∆jf (n; t) := f
(
. . . , nj + 1, . . . ; t

)
− f

(
. . . , nj , . . . ; t

)
, (2.2a)

∆′
jf (n; t) := f

(
. . . , nj , . . . ; t

)
− f

(
. . . , nj − 1, . . . ; t

)
, (2.2b)

We define f (n; t) ≡ 0 for the cases where any of the nj < 0 .

Note that [
∆j∆

′
k −∆′

k∆j

]
f (n; t) ≡ 0 . (2.3)

We also assume that ∂2
t f (n; t) :=

∂2

∂t2
f (n; t) is a continuous function of t .

3 QUANTUM MECHANICS IN (1+1)-DIMENSIONAL PHASE SPACE

This simple toy model of the time-independent quantum mechanics is discussed to introduce discrete
phase space and relativistic quantum mechanics in the section § 5 later on.

The mathematics of such a model comprises of state vectors
−→
ψ belonging to a Hilbert space and

linear operators F (P,Q) involving the momentum operator P and the position operator Q . In the
usual Schrödinger representation of quantum mechanics, these mathematical objects are identified
as :

−→
ψ := ψ(q) , q ∈ R ; (3.1a)

P
−→
ψ := −i d

dq
ψ(q) , (3.1b)

Q
−→
ψ := qψ(q) , (3.1c)

[P,Q]
−→
ψ := [PQ−QP ]

−→
ψ = −i

−→
ψ = −iψ(q) . (3.1d)
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In the separable sector of the Hilbert space [11], it is assumed that
⟨−→
ψ |

−→
ψ
⟩
:=

∫
R ψ(q)ψ(q) dq < ∞ .

On the other hand, in the non-separable sector [2],

lim
L→∞

{
(1/2L)

∫ L

−L

ψ(q)ψ(q) dq

}
<∞

In the discrete phase space representation of quantum mechanics, we can try difference operators
P := c1∆+ c2∆

′ and Q := c3∆+ c4∆
′ , where

−→
ψ := f(n) , n ∈ N . Such a representation fails by

the equation (2.3).

We define two new difference operators in the following :

∆#f(n) :=
(
1/

√
2
) [√

n+ 1 f(n+ 1)−
√
n f(n− 1)

]
, (3.2a)

◦
∆ f(n) :=

(
1/

√
2
) [√

n+ 1 f(n+ 1) +
√
n f(n− 1)

]
. (3.2b)

One possible discrete phase space representation of the quantum mechanics is furnished by :
−→
ψ := ϕ(n) , n ∈ N ; (3.3a)

P
−→
ψ := −i∆#ϕ(n) , (3.3b)

Q
−→
ψ :=

◦
∆ ϕ(n) , (3.3c)

A
−→
ψ :=

(
1/

√
2
)
(Q− iP )

−→
ψ =

√
nϕ(n− 1) , (3.3d)

A†−→ψ :=
(
1/

√
2
)
(Q+ iP )

−→
ψ =

√
n+ 1ϕ(n+ 1) , (3.3e)[

A†, A
]−→
ψ := ϕ(n) =

−→
ψ . (3.3f)

The mathematics in (3.3d, 3.3e, 3.3f) are analogous to the creation and annihilation operators in the
standard quantum field theory [12].

We shall now solve the energy eigenvalue problem for a one dimensional (idealized) harmonic oscillator
by the finite difference representation in (3.3a, 3.3b, 3.3c).

(1/2)
[
(P )2 + (Q)2

]−→
ψ (N) = λ(N)

−→
ψ (N) , (3.4a)

or,
[
−
(
∆#

)2

+
( ◦
∆
)2

]
ϕ(N)(n) = 2λ(N)ϕ(n) , (3.4b)

or,
[(
n+

1

2

)
− λ(N)

]
ϕ(N)(n) = 0 . (3.4c)

Clearly, the eigenvalues and the real-valued normalized eigen functions are provided by :

λ(N) = N +

(
1

2

)
≥ 1

2
, N ∈ N , (3.5a)

ϕ(N)(n) = δ(N)n , (3.5b)∥∥∥−→ψ (N)

∥∥∥2

:=

∞∑
n=0

∣∣ϕ(N)(n)
∣∣2 ≡ 1 . (3.5c)

Consider the simple harmonic oscillator orbits in the (1 + 1)-dimensional phase plane with quantized
energy levels :

(1/2)
(
p2 + q2

)
= N +

(
1

2

)
, N ∈ N = {0, 1, 2, 3, . . .} . (3.6)

The equation above yields concentric circles [4] of radii
√
2N + 1 as depicted in Fig. 1.
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Fig. 1. Discrete orbits for possible occupation of the oscillating particle

In the corresponding (2 + 1)-dimensional state space [13] R2 × R , one possible discrete orbit in the
phase plane traces a vertical, 2-dimensional circular cylinder as the world sheet [9]. (See Fig. 2.)

Fig. 2. The two-dimensional cylindrical world sheet

In case the oscillator absorbs extra energy through an external interaction, the world sheet suddenly
jumps into a larger size. (See Fig. 3.)
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Fig. 3. World sheet associated with the oscillator jumping from one orbit to another

In the Fig. 1 , discrete orbits in (1+1)-dimensional
phase space resemble closed strings of the string
theory [9]. Moreover, hollow circular cylinders
in (2 + 1)-dimensional state space of Fig. 2
resemble world sheets of the string theory [9].
We shall briefly compare and contrast discrete
phase space orbits and circular cylinders in the
state space with closed strings and world sheets
of the string theory.

(1) Discrete circular orbits in phase space may or
may not be occupied by a particle (or a quanta).
However, a closed string has always a mass
density and a tension [9].

(2) Vertical hollow cylinders in the state space
may or may not contain a world line of a particle.
But a world sheet in string theory [9] has always
a mass density associated with it.

(3) A particle or a quanta can jump from one
vertical circular cylinder to another by interaction
with an external agent. However, in string theory,
one world sheet can bend or rupture into several
world sheets [9].

We shall interpret in the appendix, the discrete
orbits in phase space as depicted in Fig. 1 , as
degenerate phase cells.

We shall now discuss the transformation of
the Schrödinger representation of quantum
mechanics into the discrete phase representation

of the same. The Schrödinger representation is
provided in equations (3.1a, . . . , 3.1d). For the
discrete phase space representation, we need to
introduce the Hermite polynomials [14] and the
following equations :

Hn(q) := (−1)neq
2 dn

(dq)n

(
e−q2

)
, (3.7a)

fn(q) :=
e−(q2/2)Hn(q)

π1/4 · 2n/2 ·
√
n!
, (3.7b)∫ ∞

−∞
fn(q)fm(q) dq = δnm . (3.7c)

The transformation from the Schrödinger
representation to the discrete phase space
representation is furnished by the following :

−→
ψ := ϕ(n) , (3.8a)

ϕ(n) :=

∫ ∞

−∞
ψ(q)fn(q) dq , (3.8b)

P
−→
ψ =

∫ ∞

−∞

[
−i dψ(q)

dq

]
fn(q) dq = −i∆#ϕ(n) ,

(3.8c)

Q
−→
ψ =

∫ ∞

−∞
[qψ(q)] fn(q) dq =

◦
∆ ϕ(n) . (3.8d)

Here, we have assumed that lim
|q|→∞

|ψ(q)| = 0 .

For the derivation of (3.8c), we have utilized
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dHn(q)
dq

= 2nHn−1(q) . Furthermore, to
deduce (3.8d), we have used Hn+1(q) =
2qHn(q)− 2nHn−1(q) . Thus, we have recovered
equations (3.3a, 3.3b, 3.3c) .

4 FINITE DIFFERENCE - DIFFERENTIAL

VERSION OF THE SCHRÖDINGER

EQUATION

The wave function, position operators, and
momentum operators in discrete phase space

and continuous time are represented by [2, 3] :

−→
ψ := ϕ(n1, n2, n3; t) ≡ ϕ (n; t) , (4.1a)

Qk−→ψ := δkj
◦
∆j ϕ (n; t) , (4.1b)

Pj
−→
ψ := −i∆#

j ϕ (n; t) . (4.1c)

The time-dependent partial difference-differential
version of the Schrödinger wave equation is
represented [2] by :

1

2m
δjk∆#

j ∆#
k ϕ (n; t)−

[
V
( ◦
∆1,

◦
∆2,

◦
∆3 ; t

)]
ϕ (n; t) = −i∂tϕ (n; t) . (4.2)

In case of a conservative physical system, the wave function ϕ (n; t) and the Schrödinger equation
(4.2) reduce to

ϕ (n; t) = χ (n) · exp(−iEt) , (4.3a)

δjk∆#
j ∆#

k χ (n) + 2m
[
E − V

( ◦
∆1,

◦
∆2,

◦
∆3

)]
χ (n) = 0 . (4.3b)

Here, the constant E stands for the eigenvalue of energy.

Consider an idealized three dimensional oscillator in the Hamiltonian mechanics [13] characterized
by :

H
(
p1, p2, p3 ; q

1, q2, q3
)
:=

(
1

2

)[
δjkpjpk + δjkqjqk

]
= E > 0 . (4.4)

The corresponding Schrödinger equation (4.3b) drastically reduces to the algebraic equation[
E −

(
n1 + n2 + n3 +

3

2

)]
χ (n) = 0 . (4.5)

(Compare the equation above with (3.4c).)

Therefore, the energy eigenvalues and the corresponding normalized eigenfunctions are furnished
by :

E(N1,N2,N3) = N1 +N2 +N3 +

(
3

2

)
≥ 3

2
, (4.6a)

χ(N1,N2,N3)

(
n1, n2, n3) = δ(N1)n1 · δ(N2)n2 · δ(N3)n3 , (4.6b)∥∥∥−→ψ ∥∥∥2

:=

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

χ(N1,N2,N3)

(
n1, n2, n3) ≡ 1 . (4.6c)
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5 DISCRETE PHASE SPACE,
CONTINUOUS TIME, AND
RELATIVISTIC KLEIN-
GORDON EQUATION

The abstract operator form of the Klein-Gordon
equation is given by :[

ηµνPµPν +m2I
]−→
ψ =

−→
0 , (5.1a)

or,
[
δjkPjPk − (P4)

2 +m2I
]−→
ψ =

−→
0 . (5.1b)

It is clear that the abstract Hilbert-vector
equations (5.1a,5.1b) are relativistic invariant
equations for any mass parameter m ≥
0 . Therefore, the Klein-Gordon equations
(5.1a,5.1b), in every representation of quantum
mechanics must be relativistic. But we need
to prove the last assertion in a mathematically
rigorous way. We choose the mixed finite
difference-differential representation [5, 6] of the
equation (5.1b) as[

δjk∆#
j ∆#

k − (∂t)
2 −m2

]
ϕ (n ; t) = 0 . (5.2)

The main reason for such a choice is to
maintain micro-causality relations [15] in the
corresponding second quantization [5] of the
scalar field ϕ (n ; t) .

The relativistic invariance and covariance are
governed by the ten-parameter, continuous,
Poincaré group [12, 16] I O(3; 1) provided by :

q̂ µ = cµ + lµνq
ν , (5.3a)

ηµν l
µ
αi

ν
β = ηαβ , (5.3b)

aµβl
β
ν = lµβa

β
ν = δµν . (5.3c)

The four parameter Abelian subgroup of space-
time translation is characterized by :

lµν = δµν = aµν , (5.4a)

q̂ µ = cµ + qµ , (5.4b)

q µ = −cµ + q̂ µ . (5.4c)

A scalar field ϕ
(
q1, q2, q3, q4

)
transforms

tensorially [17] [18] as

ϕ̂
(
q̂ 1, q̂ 2, q̂ 3, q̂ 4) = ϕ

(
q1, q2, q3, q4

)
, (5.5a)

or, ϕ̂
(
q1, q2, q3, q4

)
= ϕ

(
q1 − c1, q2 − c2, q3 − c3, q4 − c4

)
. (5.5b)

Assuming that the function ϕ
(
q1, q2, q3, q4

)
admits a Taylor series expansion [19] in a star-shaped

domain, we obtain from (5.5b),

ϕ̂
(
q1, q2, q3, q4

)
= ϕ

(
q1, q2, q3, q4

)

+

∞∑
j=1

(−1)j

j !


4∑

i1=1

· · ·
4∑

ij=1

(i1+···+ij=j)

(
ci1 . . . cij

)
· ∂j

∂qi1 · · · ∂qij
ϕ
(
q1, q2, q3, q4

)
 , (5.6a)

or, ϕ̂
(
q1, q2, q3, q4

)
= exp [−cµ∂qµ]ϕ

(
q1, q2, q3, q4

)
, (5.6b)

or, ηαβ∂qα∂qβϕ̂
(
q1, q2, q3, q4

)
−m2ϕ̂

(
q1, q2, q3, q4

)
= exp [−cµ∂qµ] ·

[
ηαβϕ

(
q1, q2, q3, q4

)
−m2ϕ

(
q1, q2, q3, q4

)]
= 0 . (5.6c)

Thus, the invariance of the Klein-Gordon equation under the four parameter subgroup of space-time
translation is proved in an unusual way. There is a quantum mechanical aspect to this proof. The
Schrödinger representation of relativistic quantum mechanics is characterized by :
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−→
ψ := ψ

(
q1, q2, q3, q4

)
≡ ψ

(
q1, q2, q3 ; t

)
, (5.7a)

Pj
−→
ψ := −i ∂qjψ

(
q1, q2, q3, q4

)
, (5.7b)

P4
−→
ψ := i ∂q4ψ

(
q1, q2, q3, q4

)
, (5.7c)

Qν−→ψ := qνψ
(
q1, q2, q3, q4

)
= ηνµqµψ

(
q1, q2, q3, q4

)
. (5.7d)

The equation (5.6b) can be expressed as

−̂→
ψ = exp [−icµPµ]

−→
ψ := U

(
c1, c2, c3, c4

)−→
ψ . (5.8)

Here, U
(
c1, c2, c3, c4

)
is a unitary transformation involving four real parameters cµ .

In relativistic quantum mechanics and relativistic quantum field theories [4, 5, 6] , the generalization
of the equation (5.8) to the ten parameter Poincaré group I O(3, 1) is furnished by :

−̂→
ψ = U

[
cµ, lαβ

]
·
−→
ψ

:= exp
[
−icµPµ +

(
i

4

)
ωαβ (QαPβ −QβPα + PβQα − PαQβ)

]
·
−→
ψ , (5.9a)

ωβα = −ωαβ . (5.9b)

The six parameters ωαβ are related to parameters lαβ of the equations (5.3a, 5.3b).

The Schrödinger type of covariance is characterized by :

P̂µ = Pµ , Q̂µ = Qµ , (5.10a)
−̂→
ψ = U

[
cµ, lαβ

]
·
−→
ψ . (5.10b)

It is well known [15, 19] that the operator ηµνPµPν , which is one of the Casimir operators [4] of the
Poincaré group I O(3, 1), commutes with all ten generators Pµ and [QαPβQβPα + PβQα − PαQβ ].
Therefore, we obtain from (5.1a,5.1b), (5.9a,5.9b), and (5.10a,5.10b) that[

ηµν P̂µP̂ν +m2I
] −̂→
ψ =

[
ηµν P̂µP̂ν +m2I

]
U [. . .] ·

−→
ψ

= U [. . .] ·
[
ηµν P̂µP̂ν +m2I

]−→
ψ =

−→
O . (5.11)

Therefore, the above Hilbert-vector equation demonstrates the exact proof for the invariance of the
Klein-Gordon Hilbert-vector equations (5.1a,5.1b).

Now, every representation of quantum mechanics satisfies every operator and Hilbert-vector equations
in (5.1a,5.1b) , (5.9a,5.9b) , and (5.10a,5.10b) . Thus, we can conclude that the transformed scalar
field is given by :

ϕ̂ (n ; t) = U [. . .]ϕ (n ; t)

:= exp
[
−cj∆#

j + c4∂t +

(
1

4

)
ωjk

(
∆◦

j∆
#
k −∆◦

k∆
#
j +∆#

k ∆◦
j −∆#

j ∆◦
k

)
+ωj4

(
t∆#

j −∆◦
j∂t

)]
ϕ (n ; t) (5.12)

9
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The transformed function ϕ̂ (n ; t) in (5.12) must satisfy the Klein-Gordon equation (5.2) , namely[
δjk∆#

j ∆#
k − (∂t)

2 −m2
]
ϕ (n ; t) = 0 . (5.13)

The above equation concludes the proof for the exact relativistic invariance of the finite difference-
differential version of the Klein-Gordon equation as expressed in (5.2) .

In the Schrödinger representation of quantum mechanics, the usual Klein-Gordon equation is given
by :

δjk∂qj∂qkψ
(
q1, q2, q3; t

)
− (∂t)

2ψ
(
q1, q2, q3; t

)
−m2ψ

(
q1, q2, q3; t

)
= 0 . (5.14)

On the other hand, the mixed partial difference-differential version of the Klein-Gordon equation from
the equation (5.2) is provided by :

δjk∆#
j ∆#

k ϕ
(
n1, n2, n3; t

)
− (∂t)

2ϕ
(
n1, n2, n3; t

)
−m2ϕ

(
n1, n2, n3; t

)
= 0 . (5.15)

Now, we shall compare and contrast various Green’s functions arising out of (5.14) and (5.15) .

The relevant Green’s functions of the Klein-Gordon equations (5.14) in the continuous space-time are
expressed as one of the integral representations [20].

∆(a)

(
q, q4; q̂, q̂ 4;m

)
:=

1

(2π)4
·
∫
R3

{∫
C(a)

exp [ipµ (qµ − q̂ µ)]

[ηαβpαpβ +m2]
· dp4

}
· dp1dp2dp3 . (5.16)

Here, q4 = t , p4 = −p4 , and C(a) is a contour in the complex p4-plane. The integrand in (5.16) has
two simple poles on the real line at

p4 = ±ω := ±
√

(p1)2 + (p2)2 + (p3)2 +m2 . (5.17)

We shall restrict contour integration to the four contours C+, C−, C and C(R) as depicted in the Fig.
4.

10
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We define

s := −ηµν (q
µ − q̂µ) (qν − q̂ν)

=
(
q4 − q̂4

)2 − δjk
(
qj − q̂j

)(
qk − q̂k

)
. (5.18)

Note that s < 0 for a spacelike separation and s > 0 for a timelike separation.

We also recall step functions by :

θ(x) :=

{
1 for x > 0 ,
0 for x < 0 .

(5.19a)

ε(x) :=

(
x

|x|

)
for x ̸= 0 . (5.19b)

Now, we shall provide explicitly four of the Green’s functions (5.16) and contours exhibited in the
fig. 4. Denoting the Dirac delta function by δ(s) , the explicit expressions are furnished in the following
[15, 20] :

∆+

(
q, q4; 0, 0;m

)
=

1

4π
ε(q4)δ(s)− m

8π

ε(q4)θ(s)√
s

J1
(
m
√

(s)
)
+
im

8π

θ(s)√
s
N1

(
m
√

(s)
)

+
im

4π2

θ(−s)√
−s

K1

(
m
√

(−s)
)
, (5.20a)

∆−
(
q, q4; 0, 0;m

)
=

1

4π
ε(q4)δ(s)− m

8π

ε(q4)θ(s)√
s

J1
(
m
√

(s)
)
− im

8π

θ(s)√
s
N1

(
m
√

(s)
)

− im

4π2

θ(−s)√
−s

K1

(
m
√

(−s)
)
, (5.20b)

∆(. . .) = ∆+(. . .) + ∆−(. . .) =
1

2π
ε(q4)δ(s)− m

4π

ε(q4)θ(s)√
s

J1(m
√

(s)) , (5.20c)

∆(R)(. . .) = θ(q4)∆+(. . .)− θ(−q4)∆−(. . .)

=
1

4π
δ(s)− m

8π

θ(s)√
s

[
J1

(
m
√

(s)
)
− iN1

(
m
√

(s)
)]

+
im

4π2

θ(−s)√
−s

K1

(
m
√

(−s)
)
.

(5.20d)

Here, J1(· · · ) , N1(· · · ) and K1(· · · ) are various Bessel functions[21, 22]. Every Green’s function
∆(a)(. . .) has singularity on the light cone s = 0 and contributes to divergence difficulties of the S-
matrix. (The Green’s function ∆(R)(. . .) =

(
i
2

)
∆(F)(. . .) of the Feynman-Dyson notation.)

Now, we shall investigate the corresponding Green’s functions of the finite difference-differential
version of the Klein-Gordon equation (5.14,5.15). The required Green’s functions [5] are furnished by
the improper integrals :

∆#
(a)

(
n, t; n̂, t̂;m

)
:=

1

(2π)

∫
R3

{[
3

Π
j=1

ξnj (pj) · ξn̂j (pj)

]
·

[∫
C(a)

exp
[
−ip4(t− t̂)

]
[δklpkpl − (p4)2 +m2]

dp4
]}

dp1dp2dp3 , (5.21a)

ξnj (pj) := (i)n
j

· fnj (pj) =
(i)n

j

· e−(pj/2) ·Hnj (pj)

π1/4 · 2nj/2 ·
√

(nj)!
, (5.21b)

Here, Hnj (pj) are Hermite polynomials as mentioned in the equation (3.7a). The contours C(a) are
identical to those given in the fig. 4. We introduce spherical polar coordinates by

p1 = p sin θ cosϕ , p2 = p sin θ sinϕ , p3 = p cos θ . (5.22)

11
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Using the above equation (5.22) , we obtain from (5.21a, 5.21b) ,

∆#
(a)

(
n, t; n̂, t̂;m

)
:=

(i)n
1+n2+n3

(2π) · π3/2 · 2(n1+n2+n3)/2 ·
√

(n1)!(n2)!(n3)!
·

·
∫ ∞

0

∫ π

0

∫ π

−π

{[
e−p2 ·Hn1(p sin θ cosϕ) ·Hn2(p sin θ sinϕ) ·Hn3(p cos θ)

]
·

[∫
C(a)

exp [−ip4t]
[p2 − (p4)2 +m2]

dp4
]}

p2 sin θdpdθdϕ . (5.23)

There exist nine distinct contours C(a) in the fig. 4. In case Green’s function ∆#
+(. . .) and ∆#

−(. . .) are
investigated, the seven other Green’s functions out of ∆#

(a)(. . .) can be dealt with linear combinations
[20] of ∆#

+(. . .) and ∆#
−(. . .) . Therefore, we carry out the contour integration C+ and C− from the

equation (5.23). In that case, we derive that

∆#
+

(
n, t; 0, 0;m

)
=

(i)n
1+n2+n3+1

2π3/2 · 2(n1+n2+n3)/2 ·
√

(n1)!(n2)!(n3)!
·∫ ∞

0

∫ π

0

∫ π

−π

{
e−p2 ·Hn1(· · · ) ·Hn2(· · · ) ·Hn3(· · · ) ·

[
e−iωt

ω

]}
p2 sin θ dp dθ dϕ , (5.24a)

∆#
−

(
n, t; 0, 0;m

)
=

(i)n
1+n2+n3−1

2π3/2 · 2(n1+n2+n3)/2 ·
√

(n1)!(n2)!(n3)!
·∫ ∞

0

∫ π

0

∫ π

−π

{
e−p2 ·Hn1(· · · ) ·Hn2(· · · ) ·Hn3(· · · ) ·

[
eiωt

ω

]}
p2 sin θ dp dθ dϕ . (5.24b)

Therefore, we deduce that

lim
t→0

[
∆#(· · · )

]
= lim

t→0

[
∆#

+(· · · ) + ∆#
−(· · · )

]
= lim

t→0

{
· · ·

∫ ∞

0

∫ π

0

∫ π

−π

{
· · ·

[
sinωt

ω

]}
p2 sin θ dp dθ dϕ

}
= 0 . (5.25)

Thus, in the second quantization [5] of a scalar field ϕ (n), the semblance of microcausality is still
preserved !

Now, we shall investigate the convergence of improper integrals contained in the equation (5.23)
defining Green’s functions. The task is considerably simpler if we set the constant m = 0 . Thus, we
obtain from (5.24a, 5.24b) the following :

∆#
±

(
n, t; 0, 0; 0

)
=

(i)n
1+n2+n3±1

2π3/2 · 2(n1+n2+n3)/2 ·
√

(n1)!(n2)!(n3)!
·

∫ ∞

0

∫ π

0

∫ π

−π

{
e−p2 ·Hn1(p sin θ cosϕ) ·Hn2(p sin θ sinϕ) ·Hn3(p cos θ) ·

[
e∓ipt

]}
· p sin θ dp dθ dϕ . (5.26)

Now, we consider the two dimensional integral :

I(0) :=

∫ π

0

∫ π

−π

{
e−p2 · p ·Hn1(p sin θ cosϕ) ·Hn2(p sin θ sinϕ) ·Hn3(p cos θ)

·[cos pt]} sin θ dθ dϕ . (5.27)

12
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By the mean value theorem of integration [23] , there exists a point (θ0, ϕ0) such that

I(0) = (2π2) · e−p2 · p · [cos pt] ·Hn1(p sin θ0 cosϕ0) ·Hn2(p sin θ0 sinϕ0) ·Hn3(p cos θ0) sin θ0 . (5.28)

Similarly, the integral

I(1) =

∫ π

0

∫ π

−π

{
e−p2 · p ·Hn1(p sin θ cosϕ) ·Hn2(p sin θ sinϕ) ·Hn3(p cos θ) · [sin pt]

}
· sin θ dθ dϕ

= (2π2) · e−p2 · p · [sin pt] ·Hn1(p sin θ1 cosϕ1) ·Hn2(p sin θ1 sinϕ1) ·Hn3(p cos θ1) · sin θ1 . (5.29)

Therefore, improper integrals∫ ∞

0

∫ π

0

∫ π

−π

{
e−p2 ·Hn1(p sin θ cosϕ) ·Hn2(p sin θ sinϕ) ·Hn3(p cos θ) ·

[
e∓ipt

]}
p sin θ dp dθ dϕ

= (2π2)

∫ ∞

0

{
·e−p2 · p · [cos pt] ·Hn1(p sin θ0 cosϕ0) ·Hn2(p sin θ0 sinϕ0) ·Hn3(p cos θ0)

sin θ0} dp

∓i(2π2) ·
∫ ∞

0

{
e−p2 · p · [sin pt] ·Hn1(p sin θ1 cosϕ1) ·Hn2(p sin θ1 sinϕ1) ·Hn3(p cos θ1)

· sin θ1} dp . (5.30)

Since Hnj (· · · ) are polynomial functions, the
improper integrals in (5.30) converge.
Therefore, from the equation (5.26), Green’s
functions ∆#

± (n, t; 0, 0; 0) are non-singular.
By the linear combinations [20] of ∆#

+(· · · )
and ∆#

−(· · · ) , other seven Green’s functions
obtainable from the fig. 4 are also non-
singular[24].
Divergence-free Green’s functions are necessary
(but not sufficient) to remove divergence
difficulties of the S-matrix theory. Thus, non-
singular Green’s functions in (5.21a, 5.21b) are
obviously important [5, 6].
Now we evaluate explicitly some important
Green’s functions in the equation (5.23) at the
coincident points. These are provided by

∆#
+ (0, 0; 0, 0; 0) =

(
i√
π

)
, (5.31a)

∆#
− (0, 0; 0, 0; 0) = −

(
i√
π

)
, (5.31b)

∆(0, 0; 0, 0; 0) = 0 , (5.31c)

lim
t→0+

[
∆#

R (0, t; 0, 0; 0)
]
=

(
i√
π

)
. (5.31d)

6 CONCLUSION

An exact representation of the quantum
mechanics, involving a characteristic length
has been developed in papers [2] and [3]
of the bibliography. This formulation is exactly
relativistic ! In the second quantization of
interacting electromagnetic and Dirac fields, we
have proved the convergence of the S-matrix
elements. We are now investigating possible
experimental verification of the divergence-
free Quantum-Electrodynamics involving a
characteristic length.
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APPENDIX

Peano Curves and Degenerate String-Like Phase Cells

The purpose of this appendix is to elaborate the meaning of circular orbits in Fig.5 as degenerate
phase cells and also one possible random movement of a particle inside such a cell.

Consider a parametrized curve f1 into a plane as depicted in the Fig. 5.

Fig. 5. The graph of the curve f1

Here, f1 represents a continuous, piecewise linear curve defined over nine closed intervals
[
j−1
9
, j
9

]
of R , with j ∈ {1, 2, . . . , 9} . The image of the function f1 is exhibited in the continuous, piecewise
zigzag oriented curve inside a square of unit area of x-y plane.

The continuous, piecewise linear parametrized curve f2 has 92 = 81 linear segments as shown in the
Fig. 6 below.

Fig. 6. The graph of the curve f2

The continuous, piecewise linear parametrized curve fn has 3n oriented line segments. The sequence
of functions {fn}∞1 possesses the limiting function f := lim

n→∞
fn . It can be rigorously proved that the

graph of the limiting function f fully covers [8] the area of the square D with Area (D) = 1 . Such an
example of f constitutes an example for Peano curves [8].
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Now, we define a sequence of functions {h1, h2, . . . , hM , . . .} from the domain D into the sequence
of closed co-domains {D1, D2, . . . , DM , . . .} such that each of DM is a subset inside R2 . (Consult
the Fig. 7)

Fig. 7. The graph of the function hM

The linear transformation hM is explicitly specified by :

ρ =

(
1

2Mπ

)
x+

(
1

2

)
, (6.1a)

ϕ = (2Mπ)y −Mπ ; M ∈ {1, 2, . . .} . (6.1b)

The Jacobian of each of the transformations hM is furnished by :

∂(ρ, ϕ)

∂(x, y)
≡ 1. (6.2)

Therefore, the area of DM is provided by the double integral :

Area (DM ) =

∫ 1/2+1/2Mπ

1/2

∫ Mπ

−Mπ

dρdϕ ≡ 1 . (6.3)

We can physically interpret both the x-y plane R2 and ρ-ϕ plane R2 as two dimensional phase planes
[13]. Thus, the closed regions D and DM can both be physically interpreted as phase cells. Each
of D and DM is endowed with area Area(DM ) =Area(D) = 1 permitted by the uncertainty principle
|∆x ·∆y| = |∆ρ ·∆ϕ| = 1 . Moreover, the mapping hM is a canonical mapping of the Hamiltonian
mechanics [13] and quantum mechanics. In the limiting case lim

M→∞
Area(DM ) = 1 . In the same

limiting case, the sequence of closed co-domains {DM}∞1 collapses into the infinite straight line
given by ρ = 1

2
and ϕ ∈ (−∞,∞) . Thus, the limiting infinite straight line (with unit area) in the ρ-ϕ

phase plane represents an open string-like phase cell.
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Now, we shall introduce another canonical transformation gM from the phase space region DM into
the annular phase space region AM as depicted in the following Fig. 8.

Fig. 8. The canonical transformation gM

The canonical transformation gM is furnished by :

q =
√

2ρ cosϕ , (6.4a)

p =
√

2ρ sinϕ , (6.4b)

∂(q, p)

∂(ρ, ϕ)
≡ 1 , (6.4c)

Area (AM ) ≡ 1 . (6.4d)

In the limiting case of M → ∞ , the outer circular boundary of the annular region AM collapses into
the inner circular boundary of the unit radius. However, in this limiting process, the unit area of AM

is still preserved by the equation (6.4d) . This collapsed inner circle of unit area, possessing infinite
winding number, is now identified with the smallest of closed, circular string-like phase cells depicted
in the Fig. 1.

In case of a closed, circular phase cell of radius
√
2N + 1 in the Fig. 1, the function g

(N)
M and the

closed domain D
(N)
M have to be defined as follows :

D
(N)
M :=

{
(ρ, ϕ) : N +

1

2
≤ ρ ≤ N +

1

2
+

1

2Mπ
, −Mπ ≤ ϕ ≤Mπ

}
. (6.5)

The mapping g(N)
M is exactly the same as given in (6.4a, 6.4b, 6.4c) . The corresponding closed co-

domain A
(N)
M is an annular region in the q-p phase plane R2 .

Now, we shall discuss the physical meaning of a Peano curve exemplified in Figs. 5, 6 and 8. In
Figs. 5, 6 and 7, the region D of unit area is interpreted as a phase cell inside the x-y phase plane
R2 . Graphs of the mapping {fn}∞1 yield continuous zig-zag tracks of a particle hidden from external
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observations. Specially, the graph of the limiting mapping f := lim
n→∞

fn covers completely the phase

cellD . therefore, the graph of the mapping g(N)
M ◦h(N)

M ◦f from R into R2 is a continuous zig-zag curve
completely covering the annular region A

(N)
M in the q-p phase plane. This Peano curve represents a

possible particle trajectory inside a phase cell of unit area. Moreover, in the limitM → ∞ , the annular
region A

(N)
M , containing the Peano curve [8], completely collapses to the circle of radius

√
2N + 1 as

shown in the Fig. 1.
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