Journal of Advances in Biology & Biotechnology

24(11): 1-11, 2021; Article no.JABB.78516 ISSN: 2394-1081

Enhancing *Cucurbita pepo* Growth, Productivity, and Fruit Quality using Bacilli Strains and Cyanobacteria Treatments

Ashmawi Elsayed Ashmawi ^a, Amira M El-Emshaty ^{b*}, Gehan Mohamed Salem ^c and Mona Fekry Ghazal ^c

^a Department of Horticulture, Faculty of Agriculture, Alazhar University, Egypt. ^b Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt. ^c Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JABB/2021/v24i1130248

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/78516

Original Research Article

Received 07 October 2021 Accepted 15 December 2021 Published 16 December 2021

ABSTRACT

Two successful field experiments were carried out during 2020and 2021 growing seasons to evaluate the effect of bio fertilizers; *Bacillus amyloliquifaciens* (BA), *Bacillus megaterium* (BM) and cyanobacteria inoculation on the vegetative growth, growth parameters and plant chemical content of Cucurbita pepo (Squash) crop. The study of mixed inoculation with *both Bacillus strains*, and *cyanobacteria* was found to improve vegetative growth, plant chemical contents and positive microbial activity in the soil Rhizosphere in comparison to un-inoculated plants. Soil available nutrients (N and K) increased significantly with *BA* and *BM* combined with cyanobacteria while available phosphorus gave most increase with *BM*.

Keywords: Bacillus amyloliquifaciens; Bacillus megaterium; cyanobacteria; bio fertilizers; Squash plant.

^{*}Corresponding author: E-mail: amiraelemshaty@yahoo.com;

1. INTRODUCTION

The importance of the use of bio fertilizers in improving plant growth and yield was reported Bio fertilizers are considered [1]. as environmentally friendly and cost-effective alternative to chemical fertilizers, enhancing crop productivity and soil health in a long-term manner [2]. The microorganism beneficial nutrients, plant growth-promoting Rhizobacteria, P-solubilizing, P-mobilizing N₂-fixing, bio fertilizers are also of high importance [3].Through an immobilization process on carrier material, these microbial processes may aid plants in increasing nutrient uptake efficiency and increasing the availability of surface area and cell count of such microorganisms [4]. The Rhizosphere of a plant is a highly competitive ecosystem in which microorganisms compete for nutrients supplied by the plant root. Some of these bacteria are known as "PGPRs," or plant growth promoting Rhizobacteria, because they live within or around plant roots and encourages plant growth. Members of this genus can also persist for a long period in inappropriate environments [5]. Genetics and environmental factors have an impact on crop productivity. Plant-friendly microorganisms are employed in place of artificial fertilizers and pesticides to boost crop productivity. Rhizobacteria that promote plant development includes Bacillus species, where they create a number of compounds that help plants develop faster while also reducing pathogen infestation [6]. Bacillus modulates intracellular phytohormones metabolism and promotes plant stress tolerance by producing indole-3-acetic acid, gibberellic acid, and 1aminocvclopropane-1-carboxvlate (ACC). Furthermore. the manufacture of exopolysaccharides and siderophores, which prevent harmful ions from moving through plant tissues and regulate ionic balance and water suppressing transport while pathogenic microbial populations [7]. As a result, the usage of new biotechnological products that are both environmentally friendly and sustainable, such as microbial bio fertilizers PGPRs, is steadily expanding [8]. Plant metabolism was disrupted by unfavourable environmental circumstances, resulting in reduced crop growth and yield. Bacillus-induced physiological changes (i.e. regulation of water transport, nutrient uptake, activation of the antioxidant and defence systems) reduce biotic and abiotic stress factors that harm crops. By changing stress-responsive phytohormones. aenes. proteins. and

associated metabolites, the Bacillus association boosts plant immunity to stressors [9]. Bacillus species are gaining popularity as a bio fertilizer or bio-pesticide due to their persistence and spore-forming ability. BA is a form of PGPR with a high vitality and capacity to be planted in the field [2]. It serves as a biological insecticide as well as a biological fertilizer. It was discovered that BA could help plants develop faster and more evenly. The proposed action mechanisms are as follows: first, several amino acids and fatty compounds produced by BA may aid plant growth and development, as well as the balance of soil minerals, such as phytase produced during metabolism [10], which could aid in the conversion of un absorbable organic phosphorus the soil to absorbable in phosphorus. thereby improvina plant phosphorus absorption efficiency [11]. Furthermore, numerous plant growth-promoting bacteria have been found to create plant growth regulators in the Rhizosphere, such as IAA, CTK, and other plant hormones, in order to boost plant growth and yield [12]. BM is a grampositive, rod-shaped bacterium that produces endospores. It is regarded to be one of the most common soil bacterial bio fertilizers that promotes plant development (PGPR) [13] and a soil inoculant that has the potential to solubilize phosphorus, which is beneficial to plants. Cyanobacteria have been shown to create connections with both vascular and nonvascular plants and produce growth-promoting chemicals. The presence of cyanobacteria in the Rhizosphere can aid in the digestion of organic compounds, and their interaction with agricultural plants is beneficial to crop establishment, growth, and yield [14].The application of *BM* fermentation broth exhibited a considerable increase in the germination and growth of several crops and inhabitation of the growth of approximately 20 different plant diseases [15]. Cyanobacteria are Gramnegative photosynthetic prokaryotes that can live in a variety of aquatic and terrestrial habitats. They can be found on their own or in symbiotic relationships with a wide range of lower and higher plants, as well as in microbial mats. They are well-known for their ability to fix nitrogen [16]. These organisms have the ability to fix nitrogen, produce various plant growth regulators (auxins, gibberellins, cytokines, etc.), improve soil fertility by adding organic matter, nitrogen, and phosphorus to soil, degrade agrochemicals various (pesticides and herbicides), and control pathogenic effects of other microorganisms and plants, all of which

can be used to boost agriculture [17]. The decomposed cvanobacteria organic matter mixes with the soil and functions as a binding mucilaginous agent, increasing the humus level and making the soil more suitable for other plant growth [18]. The biological soil crusts are degraded by natural and anthropogenic disturbances, and full recovery under natural conditions could take decades. Inoculation with cyanobacteria, on the other hand, substantially accelerates the recovery process, and biological crusts like these found in semiarid and arid regions of the world serve a vital role in maintaining and rebuilding the ecosystem [19]. Regarding to these reported facts and findings, bio fertilizers can be expected to reduce the use of chemical fertilizers and pesticides. They simply restore the soil's natural nutrient cycle and build soil organic matter, ensure that the host plants receive an adequate supply of nutrients and that their growth and physiology are properly regulated. Therefore, it's of our interest to study the effect of applying BA, BM and cyanobacteria as bio fertilizers in individual addition or in different mixtures on Cucurbita pepo (CP) crop in comparison with regular chemical fertilization (control).

2. MATERIALS AND METHODS

2.1 Experiment Design

Bacilli strains (BA and BM) and Cyanobacteria were provided by Agriculture Microbiology Department- Soils, Water & Environmental Research Institute, Agriculture Research Centre (ARC), Giza, Egypt. The work was conducted during two seasons 2020 and 2021 at the Experimental Farm of Al-Azhr University (Cairo, Egypt) to study the effect of selected Bacilli strains and cyanobacteria inoculation on CP crop. Culture of microorganism strains saved on the slant were inoculated into nutrient medium, and were made into liquid seed after shaking culture at 200 r/min for 24 h in the constant temperature shaking table of 32 °C, prior to seed sowina. The farm was fertilized with superphosphate (15% P₂O₅), 1.25 g ammonium sulphate (20.5% N) and 0.16 g potassium sulphate (48% K₂O). Seeds of CP were divided into two parts, where the first part was planted directly as control line and the second part was immersed into powder of cyanobacteria. The Bacilli strains were added as soil drench after seeds had been planted. Treatments of the experiment were as follow: Control; CP seeds dressed cyanobacteria powder; CP seeds

Ashmawi et al.; JABB, 24(11): 1-11, 2021; Article no.JABB.78516

drenched with *BA*; *CP* seeds drenched with *BM*; *CP* seeds drenched with *BM* and *BA*; *CP* seeds dressed *cyanobacteria* powder and drenched with *BA*; *CP* seeds dressed *cyanobacteria* powder and drenched with *BM*; *CP* seeds dressed *cyanobacteria* powder and drenched with *BM* and *BA*.

2.2 Soil Analysis

Mechanical analysis of soil (Table 1) was determined by the international pipette method using NaOH as a depressing agent [20]. The soil acidity (pH) was determined in the soil paste using a Gallenkamp pH meter (A. Gallenkamp Co.& Ltd., UK), and electric conductivity (EC) in 1: 2.5 soil: water extract was determined according to the reported procedures [21]. Available nitrogen (extracted using a 1% potassium sulphate solution) using the Devarda alloy method by steam distillation [22], [23]. Spectrophotometry of available phosphorus (extracted using a NaHCO₃ 500 mM solution with pH of 8.5) was determined at wavelength spectrophotometer 650 nm [24] using Beckman Du 7400 (GMI Co., MN, USA). Available potassium was flame photo metrically measured using a Corning flame photometer [25] using a 1 N ammonium acetate soln. (pH= 7.0). Organic matter was determined to Walkley & Black chromicacid according wet oxidation method [26]. Available micronutrients samples in soil were extracted by diethylene triamine pentaacetic acid (DTPA) soln. [27] and determined using the atomic absorption spectrophotometer. Saturation percentage (SP%) was according determined to reported procedure [28] and Hydraulic conductivity (K) values of the soil samples columns were determined according to standard method of Smith [29].

2.3 Plant Analysis

2.3.1 Determination of total chlorophyll

To estimate the mass of chlorophyll a, chlorophyll b, and total chlorophyll per leaf, pigments were extracted by soaking 0.5 g fresh and young leaves in a dimethyl formamide (DMF) soln. overnight at 4 °C. The pigments were computed using equation of Moran and a spectrophotometer Beckman Du 7400 at wavelengths of 663, 470, and 647 nm [30].

2.3.2 Phosphatase enzyme analysis

The activity of phosphatase was measured using the technique of Tabatabai & Bremner [31].

2.3.3 Determination of plant growth parameters and chemical Contents

Plant height (cm) was measured from the first node to the plant top, Leaf number per plant and total number of fruits/ plot was counted. Fruit length and diameter (using a vernier caliper) was measured in cm. Fresh Fruit weight/ plot was determined by a balance in kg. Fruit firmness was measured in kg/cm² by Magness and Ballauf pressure tester (D. Ballauf Manufacturing Co., MD. USA). Fruit size was measured in cm³ by immersing the fruit in a container filled with water and measuring the displaced water with a graduated jar. Fruit dry weight was calculated as g/100g fresh weight by drying 100g of fresh weight in a 70 °C oven until it achieved a consistent weight. The samples were analyzed for dehydrogenase activity according to the method described by Casida [32]. Plant samples were wet digested using sulphuric acid and per

chloric acid mixture [33] and plant nutrients were determined in the aliquot using kjeldahl method [34] for nitrogen, stannous chloride reduced molybdo-phosphoric blue colour method [34] for phosphorus and flame photometer [34] for potassium. Percentages of total soluble solids (%T.S.S.) were determined by Abbe refract meter [35]. The dye 2,6- dichlorophenol indophenol method was used to determine ascorbic acid as mg/100 g fresh weight [36]. Total sugars were determined as g/100g dry weight according to Dubois [37].

2.3.4 Statistical analysis

Appropriate analysis of variance was performed using COSTATE V 6.4 (2005) for Windows [38]. The Least Significant Differences test at the 0.05 level of probability was used to compare the differences among the means of the various treatment combinations as illustrated by a computer software program based on significant various differences among the mean of treatments as determined by the Least Significant Differences test [39], [40].

rimental soil
rimental soil

		I	Physic	al prope	erties			
Soil Type	Fine sand %	Coarse sand %	Silt %	Clay %	Wilting point (% v/v)	SP %	Field capacity (% v/v)	Hydraulic conductivity (cmhr-1)
Sandy clay Ioam	34.06	18.69	9.00	27.31	31.90	21.23	40.29	1.36
Available wate	er (% v/v)	H.W%		Bulk d	ensity (M	lg m-3)	Total por	osity%
8.39		6.3		1.52			47.5	
		C	Chemic	al prop	erties			
pH in suspension 1:2.5	Organic matter (O.M%)	Availabl	e nutri	ents (pp	om)			
7.84	0.541	Ν	Р	К	Fe	Mn	Zn	Cu
		25	9	88	12.4	9.9	1.5	0.88
5	Soluble cation	**(meq/ L)			;	Soluble	anions**(m	neq/ L)
Ca++	Mg++	Na+	K+	Co3	Hco3-	CI-	SO4=	
5.51	2.75	10.69	1.03	7.70	3.20	14.80	2.91	
SAR		ESP		CaCO	3%		EC (ds/m))
-								

pH in suspension 1:2.5

EC** (ds/m), soluble cation ** and anions (meq/L): in saturated past extract.

EC: Electric conductivity; HW: Hygroscopic water; HC: hydraulic conductivity.

3. RESULTS AND DISCUSSION

3.1 Plant Growth Parameters

The collected data in Tables (2 and 3) illustrated the influence of *BM*, *BA* and cyanobacteria on some growth parameters of squash plants.

Selected bacteria and fungi (*BM*, *BA*, and *cyanobacteria*) are greatly boosted the growth characteristics of CP plants, such as plant height (cm), number of leaves/plant, and number of fruits/ plot (Table2).

In both seasons, treatment with BM combined with each of BA and/ or cyanobacteria had the best stimulatorv impact and maximal augmentation in plant parameters compared to control, followed by treatment with BA mixed with BM. As indicated by revealed data (Table 2), it' obviously clear that BM had the greatest significant growth in plant height (75.17 and 79.90 cm, respectively) in both seasons. Furthermore, BM/ BA mixture produced the same highest values with number of leaves/ plant (22.0 and 23.67), and the addition of BM, Ba and cyanobacteria produced the same results (22.0 and 23.33). The blend of BM, BA, and cyanobacteria produced the largest number of fruits per plot in CP crop (620.67and 653.00), followed by BM and BA. On the other hand, Table 3 shows the growth and some yield parameters as affected by the individual addition or combined effect of *BM*, *BA*, and *cyanobacteria*.

The highest values of fruit length in both seasons recorded with the mixture are of BA/BM/Cvanobacteria (12.33 and11.17cm). followed by BA/BM mixture (11.90 and11.0cm) and BA/ Cyano mixture (11.03and10.43cm) comparing to the control. The effect of two types of bacteria and cyanobacteria on fruit diameter is recorded in the order BA/BM/Cvano mixture (2.78cm) in the first season and nearly the same with BA/BM mixture (2.77cm) in the second season, while the highest value is recorded on treatment with BA/BM/Cyano mixture (3.53cm) in the second season.

Fruit fresh weight yielded the highest values in both seasons with the addition of *BM* (38.62 and 37.11 g) followed by *BM/Cyano* (37.52 and 34.70 g) as compared with control. The same pattern is observed in fruit dry weight, where treatment with *BM* (3.411 and 3.25 g) recorded the highest values in both seasons, followed by BM/Cyano mixture (2.84and 2.89g) in both seasons.

Fruit firmness and fruit size are among the yield metrics included in the same table. Fruit firmness data shows that the highest values are obtained with the combined application of *BA/ BM/Cyano* (7.67 and 7.80 kg/cm²) and the lowest values were obtained with *Cyanobacteria* (6.21 and 6.34 kg/cm²) in the two seasons, respectively.

Treatments	Plant hei	ght (cm)	Number of	leaves/plant	Number of fruits/ plot	
				Season		
	2020	2021	2020	2021	2020	2021
Control	58.57g	60.23g	13.00e	14.33e	337.33f	442.67h
BA	70.60d	73.70e	17.67cd	18.67c	579.00d	583.33e
BM	69.00e	71.30f	17.67cd	17.33d	469.00e	567.33f
Cyanobacteria	65.90f	75.97d	16.67d	16.33d	466.67e	459.33g
BA/BM mixture	73.03b	78.33b	22.00a	23.33a	616.67a	645.00b
BA/Cyano mixture	72.63bc	77.03c	19.33b	21.67b	605.67b	633.00c
BM/Cyano mixture	71.77c	75.50d	18.33bc	19.67c	589.33c	593.33d
BA/BM/ Cyano mixture	75.17a	79.80a	22.00a	23.67a	620.67a	653.00a
L.S.D. (0.05)	0.93	0.59	1.38	1.01	7.80	4.73

 Table 2. Effect of inoculation with BM, BA and cyanobacteria on growth parameters of squash plants at harvest time during the seasons of 2020 and 2021

Treatments	Fruit length (cm) Fruit diameter (cm)		ameter (cm)			2				uit size (cm)		
						Seas				-	•	
	2020	2021	2020	2021	2020	2021	2020	2021	2020	2021	2020	2021
Control	8.67g	7.73d	1.60d	2.10f	21.86h	20.91g	2.00f	2.13f	5.26h	5.37h	21.97f	21.23h
BA	9.93e	10.03b	2.40b	2.97d	30.16e	34.29b	2.14f	2.25e	6.40e	6.62e	34.40b	42.93b
BM	9.80e	8.83c	2.13c	2.90de	38.62a	37.11a	3.41a	3.25a	6.31f	6.53f	43.30a	45.87a
Cyanobacteria	9.20f	8.50c	2.10c	2.77e	33.19d	29.81d	2.63c	2.43d	6.21g	6.34g	31.17c	29.73e
BA/BM	11.90b	11.00a	2.77a	3.37b	26.58f	26.46e	2.45d	2.33e	7.25b	7.61b	42.07a	27.03f
mixture												
BA/Cyano	11.03c	10.43b	2.70a	3.17c	24.50g	24.95f	2.29e	2.28e	6.94c	7.22c	25.17e	22.83g
mixture												
BM/Cyano	10.40d	10.10b	2.40b	3.03cd	37.52b	34.70b	2.73bc	2.60c	6.51d	6.76d	28.07d	38.23c
mixture												
BA/BM/Cyano	12.33a	11.17a	2.87a	3.53a	35.87c	31.68c	2.84b	2.89b	7.67a	7.80a	34.40b	34.13d
mixture												
L.S.D.(0.05)	0.31	0.44	0.19	0.15	0.95	1.25	0.15	0.09	0.07	0.04	1.33	1.04

Table 3. Effect of inoculation with BM, BA and cyanobacteria on CP fruit features during the seasons of 2020 and 2021

Treatments		soluble s (%)		[.] bic acid 00 g F.W.)	Total (mg/g	-		lorophyll g/ g)
				Sea	ason			
	2020	2021	2020	2021	2020	2021	2020	2021
Control	3.31d	3.40g	18.47h	17.82e	17.77f	18.70f	1.011h	1.022g
BA	5.61ab	4.51e	22.83e	23.24c	25.00d	22.93d	1.185e	1.231e
BM	5.67a	5.72b	21.90f	22.84c	23.57e	20.83e	1.168f	1.123f
Cyanobacteria	3.62c	3.61f	20.14g	20.63d	17.77f	20.40ef	1.155g	1.122f
BA/BM mixture	5.57b	4.64d	29.04b	30.59a	29.17b	33.50a	1.356b	1.466b
BA/Cyano mixture	5.67a	5.74a	28.14c	25.92b	28.00bc	30.63b	1.243c	1.387c
BM/Cyano mixture	5.63ab	5.71bc	26.61d	23.57c	28.87c	28.10c	1.233d	1.249d
BA/BM/Cyano mixture	5.63ab	5.70c	29.88a	31.16a	32.10a	34.93a	1.388a	1.492a
L.S.D.(0.05)	0.07	0.01	0.82	1.21	1.29	2.04	0.005	0.007

 Table 4. Effect of inoculation with B. megaterium, B. amyloliquifaciens and cyanobacteria on squash fruits features during the seasons of 2020 and 2021

Fruit size is the penultimate characteristic in this table, and it increased the most with the addition of *BM* and also with the mixture of *BA*/*BM* (43.30 and 42.07cm, respectively) in the first season, whereas in the second season, the greatest value was observed on treatment with the mixture of *BM* (45.87cm) followed by *BA* (42.93cm).

3.2 Photosynthetic Pigments, Chemical Constituents and Fruit Quality Parameters

Table 4 shows the effects of two types of bacillus, either alone or in combination with cyanobacteria on some chemical fruit quality parameters of squash crop such as total soluble solids(TSS), endogenous phytohormones content (i.e. Ascorbic acid), chemical content (i.e. total sugar), and photosynthetic pigments (i.e. Total chlorophyll).

In terms of fruit quality, data shows that inoculation with BA separately (5.67%) or in combination with Cyanobacteria (5.67%) resulting in a good rise in total soluble solids (T.S.S), followed by mixed inoculation with BA/BM (5.57%) in the first season. The biggest rise is obtained on treatment with mixture of BA/Cyano (5.74%) in the second season, followed by adding BM separately (5.72%). Ascorbic acid (Vitamin C) data is well-known for its antioxidant qualities, and it's also one of the chemical fruit quality factors. In both seasons, largest increase is observed the with BA/BM/Cyano mixture (29.88 and 31.16 mg/ 100 g F.W), followed by *BA/BM* mixture (29.04 and 30.59 mg/ 100 g F.W). A cyanobacterium, on the other hand, has the lowest value in both seasons. The maximum increase in total sugar is appeared on treatment with *BA/BM/Cyano* blend (32.10 and 34.93 mg/g FW, respectively). Treatment with *BA/BM* blend (29.17 and 33.50 mg/g FW) comes in the second order.

3.3 Plant Chemical Contents

3.3.1 Effect of inoculation with *BM*, *BA* and *cyanobacteria* on squash chemical content

The effect of inoculation *with BM, BA* and *cyanobacteria* on squash plants is tabulated in Table 5.

The results in Table 5 show that the application of BA/BM/Cyano resulted in the highest significant values of plant nitrogen percent (2.75 and 3.43%), followed by BM/Cyano blend (2.57and 2.88%). While, applying of BM separately produced the smallest increase in nitrogen content. Plant phosphorus content increased the most with a mixture of BA/BM/Cyano in the first and second seasons (0.726 and 0.813%, respectively), followed by BA/Cvano mixture (0.653 and 0.742%). The potassium contents of the squash plant are displayed the highest values in both seasons as a result of the addition of BA/BM/Cyano (4.44 and 4.26%, repectively). These are followed by the treatment blend BA/BM (4.20 and 4.32%) and hence with cyanobacteria (2.42 and 2.25%) which showing the smallest decrease in both seasons.

Treatments	Ν	1%		P%		K%
				Season		
	2020	2021	2020	2021	2020	2021
Control	1.44f	1.83d	0.252f	0.336g	1.47f	1.67f
BA	1.80d	2.29c	0.445c	0.532d	3.62c	2.73cd
BM	1.77d	2.49c	0.412d	0.452e	3.69c	2.35de
Cyanobacteria	1.61e	2.43c	0.359e	0.352f	2.42e	2.25e
BA/BM mixture	2.13c	2.88b	0.715a	0.745b	4.20b	4.32a
BA/Cyano mixture	2.19c	2.84b	0.653b	0.742b	3.73c	3.16bc
BM/Cyano mixture	2.57b	2.88b	0.454c	0.651c	3.36d	3.20b
BA/BM/Cyano mixture	2.75a	3.43a	0.726a	0.813a	4.44a	4.26a
L.S.D.(0.05)	0.14	0.24	0.011	0.008	0.20	0.39

Table 5. Effect of inoculation with BM, BA and cyanobacteria on chemical content of squash plant at harvest during the seasons of 2020 and 2021

Table 6. Effect of inoculation with BM, BA and cyanobacteria on squash fruits features duringthe seasons of 2020 and 2021

Treatments	% N	1	% P		% K			
	Season							
	2020	2021	2020	2021	2020	2021		
Control	33.00g	40.00e	13.26g	14.24e	278.33e	265.33d		
BA	79.00e	93.33c	16.32de	17.55c	325.00d	345.33c		
BM	70.00f	84.33d	17.62a	18.64a	278.33e	279.67d		
Cyanobacteria	66.67f	81.67d	14.36f	15.52d	318.67d	341.33c		
BA/BM mixture	128.67b	136.67a	16.17e	17.31c	367.33b	378.33b		
BA/Cyano mixture	101.00d	116.00b	16.63cd	17.54c	345.33c	356.00c		
BM/Cyano mixture	108.00c	116.33b	16.70c	17.60bc	325.00d	352.00c		
BA/BM/Cyano mixture	137.67a	142.00a	17.10b	18.08b	517.33a	528.67a		
L.S.D.(0.05)	4.51	5.46	0.34	0.50	14.41	21.66		

3.3.2 Soil analysis

3.3.2.1 Available N, P and K percentages in Squash Rhizosphere

Treatment with bio fertilizers' formulations increased the content of nitrogen, potassium, phosphorus [14]. Squash plants were individually inoculated with *BA* or with either *BM* or *cyanobacteria* showing significant increase in available N, P, and K comparing to uninoculated plants, as detailed in Table 6.

The combination of *BA*, *BM*, and *cyanobacteria* resulted in the greatest increase in available nitrogen content (137.67 and 14.00%), followed by the combination of *BA* and *BM* (128.67and136.67%). In both seasons, the highest available phosphorus value (P%) was obtained when *BM* was used alone or in combination with *BA* and *cyanobacteria*. The most significant increase in available K (K%)

was observed when squash plants were inoculated with BA/Bm/Cyanobacteria blend (517.33 and 528.67%), followed by a mixture of BA/Bm/Cyanobacteria (367.33and378.33%).

3.3.2.2 Phosphatase and Dehydrogenase activity

Dehydrogenase enzyme activity (DHA) is an indicator of overall microbial activity in the soil because it indicates energy transfer. The enzyme activity in the Rhizosphere of squash plants is determined and tabulated in Table 7.

The data revealed that inoculation with *BM* increased (DHA) levels separately or in combination with *BA* and *cyanobacteria* compared to those who were not infected. The highest positive increase is observed with *BA/BM/Cyano* mixture (126.23 and 143.83 mg/g soil/24h). *BA/ Cyano* (112.27 and 135.06 mg/g soil/24h) comes next.

Treatments	(µ inor	Phosphatase ganic phosphorus/g dry soil/day)	Dehydrogenase (mg/g soil/24h)					
	Season							
	2020	2021	2020	2021				
Control	11.73g	14.57h	63.54f	72.65f				
BA	17.47e	22.83f	95.19d	113.31d				
ВМ	27.15c	37.42d	99.00cd	126.94c				
Cyanobacteria	15.77f	19.13g	89.78e	107.68e				
BA/BM mixture	29.20b	39.45c	103.99c	127.38c				
BA/Cyano mixture	23.07d	29.32e	95.44d	123.61c				
BM/Cyano mixture	33.10a	42.40b	112.27b	135.06b				
BA/BM/Cyano mixture	34.35a	46.67a	126.23a	143.83a				
L.S.D.(0.05)	1.34	1.97	5.30	5.12				

Table 7. Some microbial activities in Rhizosphere of squash plants as affected by interactions
between <i>BM, BA</i> and <i>cyanobacteria</i> during the seasons of 2020 and 2021

Multiple inoculations, especially with BM/BA and cyanobacteria, also resulted in the maximum phosphatase activity. As a co-inoculation system, Bacillus and cvanobacteria work well together. BA/ BM/Cvano mixture shows the highest (34.35 and 46.67 increase u inorganic phosphorus/g dry soil/day), followed bv BM/Cyano (33.10 and 42.40 µ inorganic phosphorus/g dry soil/day), respectively in both seasons. BA/Cyano (112.27 and 135.06 µ inorganic phosphorus/g dry soil/day) comes next. In terms of phosphatase activity, utilizing soluble P fertilizer in un- inoculated treatments reduced phosphatase activity as compared to nitrogenfixing bacteria. This could be due to P cycle enzyme activities are inversely related to P availability, and when P is a limiting nutrient, demand rises, resulting in higher phosphatase activity in the presence of P-solubilizes. Phosphatase activity is also higher after dual inoculation, notably with Paenibacillus Polymyxa (PP) and BM and mycorrhizae bacteria which they work well together as a co-inoculation system [41].

4. CONCLUSION

It's of our interest to study the effect of some bio fertilizers (BM, BA, and cyanobacteria) on the growth parameters and chemical contents of squash plant for their great importance and validation for plant growth and production. According to the findings, plants inoculated with BM and BA combined with cyanobacteria produced the maximum increase in photosynthetic pigments, whereas cyanobacteria produced the lowest rise. These results could be attributed to the effect of such bio treatments on increasing photosynthetic pigments, which in turn

helped to increase total carbohydrates and sugar levels in the leaves, resulting in vigorous growth as measured by plant stem length, stem diameter, number of leaves per plant, leaf area/ plant, and leaf dry weight/ plant. Combined inoculation with Bacillus species mixed by cyanobacteria is the best addition followed by BA, BM and Cyanobacteria individually and/ or in a mixture. Bacillus species increase biological nitrogen fixation and solubilisation of insoluble complex organic matter to a simpler form, making them biologically available to plants. It also improves soil moisture retention, soil nutrient (nitrogen and phosphorus) availability to plants, and soil microbial status, as well as soil aeration and natural fertilization.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Malusa E, Vassilev N. A contribution to set a legal framework for biofertilisers. Applied microbiology and biotechnology 2014; 98(15):6599-6607.

- Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh H. Unrealized potential of seed biopriming for versatile agriculture. In Nutrient use efficiency: from basics to advances:193-206: Springer. Number of 2015:193-206.
- Singh D, Singh S, Singh AK, Meena VS. Impact of long term cultivation of lemon grass (Cymbopogon citratus) on postharvest electro-chemical properties of soil. Ann Agric Biol Res 2014;19(1):45-48.
- 4. Kulkarni K, Bhogale GM, Nalawade R. Adsorptive removal of fluoride from water samples using Azospirillum biofertilizer and lignite. Korean Journal of Chemical Engineering. 2018;35(1):153-163.
- Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A. Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 2016;21(5):573.
- Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R. FZB24® Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer 2000; 1(00):1.
- Saghafi D, Delangiz N, Lajayer BA, Ghorbanpour M. An overview on improvement of crop productivity in saline soils by halotolerant and halophilic PGPRs. 3 Biotech 2019;9(7):1-14.
- Kumari R, Singh DP. Nano-biofertilizer: An emerging eco-friendly approach for sustainable agriculture. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2020;90(4):733-741.
- 9. Etesami H. 2020. Plant–microbe interactions in plants and stress tolerance. In Plant Life Under Changing Environment:355-396. Iran: Elsevier. Number of 355-396 pp.
- Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, et al. Comparative analysis of the complete genome sequence of the plant growth– promoting bacterium Bacillus amyloliquefaciens FZB42. Nature biotechnology 2007; 25(9):1007-1014.
- 11. Fan J-y, He Y-q. Brief Review of Secreted Phytases from Bacillus subtilis. Journal-Yunnan Agricultural University 2006; 21(6):715.

- Bent E, Tuzun S, Chanway CP, Enebak S. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can. J. Microbiol. 2001;47(9):793-800.
- Miljaković D, Marinković J, Balešević-Tubić S. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms. 2020;8(7):1037.
- Prasanna R, Chaudhary V, Gupta V, Babu S, Kumar A, Singh R, et al. Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. European Journal of Plant Pathology 2013;136(2):337-353.
- Jiao R, Munir S, He P, Yang H, Wu Y, Wang J, et al. Biocontrol potential of the endophytic Bacillus amyloliquefaciens YN201732 against tobacco powdery mildew and its growth promotion. Biological Control. 2020;143:104-160.
- Prasanna R, Sharma E, Sharma P, Kumar A, Kumar R, Gupta V, et al. Soil fertility and establishment potential of inoculated cyanobacteria in rice crop grown under non-flooded conditions. Paddy and Water Environment 2013;11(1):175-183.
- Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, et al. Impact of agrochemicals on soil microbiota and management: A review. Land. 2020; 9(2):34.
- Maqubela M, Mnkeni P, Issa OM, Pardo M, D'acqui L. Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant and Soil 2009; 315(1):79-92.
- Wang W, Liu Y, Li D, Hu C, Rao B. Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biology and Biochemistry. 2009;41(5):926-929.
- 20. Wirth EH. Soil and Plant Analysis, by CS. PIPER. Interscience Publishers, Inc., New York. Journal of the American Pharmaceutical Association (Scientific ed.) 1946;35(6):192.A2015 Available:https://doi.org/10.1002/jps.30303 50611.
- 21. Sahlemedhin S, Taye B. Procedures for soil and plant analysis. Technical paper 2000; 74(110.
- 22. Pramer D, Schmidt E. Experimental soil microbiology burges publishing company

Minneapolis, 15. Minnesota, USA. Sons Ltd. Beecles and London. 1964:31-32.

- 23. Black CA, Evans D, White J. 1965. Methods of soil analysis: chemical and microbiological properties, ASA.
- 24. Olsen SR. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture.
- 25. Dewis J, Freitas F. Physical and chemical methods of soil and water analysis. FAO Soils Bulletin. 1970;10):275.
- 26. Hesse PR. 1971. A Text Book of Soil Chemical Analysis London, UK: John murry
- 27. Lindsay WL, Norvell WA. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America Journal. 1978; 42(3):421-428. Available:https://doi.org/10.2136/sssaj1978 .03615995004200030009x.
- Aali KA, Parsinejad M, Rahmani B. Estimation of Saturation Percentage of Soil Using Multiple Regression, ANN, and ANFIS Techniques. Computer and Information Science 2009; 2(3):127-136. Available:https://doi.org/10.5539/cis.v2n3p 127.
- 29. Smith KA. 2000. Soil and environmental analysis CRC Press
- Moran R. Formulae for determination of chlorophyllous pigments extracted with N, N-dimethylformamide. Plant Physiology. 1982;69(6):1376-1381.
- 31. Tabatabai MA, Bremner JM. Use of pnitrophenyl phosphate for assay of soil phosphatase activity. Soil biology and biochemistry. 1969;1(4):301-307.

- Casida Jr L, Klein DA, Santoro T. Soil dehydrogenase activity. Soil Science. 1964;98(6):371-376.
- Chapman H, Pratt P. 1978. Methods of analysis for soils, plant and water. 50: "University of California Division of Agricultural Sciences" Sciences. Priced Publication. Number of.
- Jackson M. Soil chemical analysis: Advanced Course 930. USA: UW-Madison Libraries Parallel Press; 1973.
- Sparks DL, Page AL, Helmke PA, Loeppert RH. Methods of soil analysis, part 3: Chemical methods. John Wiley & Sons; 2020.
- Hernández Y, Lobo MG, González M. Determination of vitamin C in tropical fruits: A comparative evaluation of methods. Food Chem. 2006;96(4):654-664.
- Dubois M, Gilles KA, Hamilton JK, Rebers Pt, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956;28(3): 350-356.
- 38. CoStat V. 2005. Cohort software798 light house Ave. PMB320. USA
- 39. Duncan DB. Multiple range and multiple F tests. Biometrics 1955;11(1):1-42.
- Gomez KA, Gomez AA. Statistical procedures for agricultural research. John Wiley & Sons; 1984.
- Ju W, Jin X, Liu L, Shen G, Zhao W, Duan C, et al. Rhizobacteria inoculation benefits nutrient availability for phytostabilization in copper contaminated soil: drivers from bacterial community structures in rhizosphere. Applied Soil Ecology. 2020; 150:103-150.

© 2021 Ashmawi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/4.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/78516