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ABSTRACT

We notice real SUSY Hamiltonians have multiple equivalent complex Hamiltonians which may be
(i) PT invariant (ii) T invariant or (iii) combination of both in nature . These three types of complex
Hamiltonians give the same energy spectrum . We present here analytical results for the exactly
solvable system and numerical results for others.
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1 INTRODUCTION

Our understanding on real spectra in quantum
physics has been drastically changed after the
thought breaking idea of Bender and Boettecher
[1], who introduced the concept of PT symmetry
. The operator P stands for parity ,reflecting
the behaviour :x → −x ;p → −p and i →
i . Similarly the operator T represents time
reversal ,reflecting the behaviour :x → x;p →
−p and i → −i. However , PT symmetry
understanding took a new turn when Jones
and Mateo [2],theoretically proved that inverted
quartic oscillator

H = p2 − x4 (1)

has equivalent hermitian operator reflecting
the iso-spectral character . Later on
Nanayakkara and Mathanaranjan [3]noticed that
one dimensional complex Hamiltonian

H = p2 − x4 + 4ix (2)

also posseses equivalent hermitian operator
reflecting iso-spectra . One simple question
comes to mind that whether real Hamiltonians
have complex counter part reflecting iso-spectral
behaviour ? In order to address this question we
consider supersymmetry as an ideal example .

2 REAL SUSY

Here, we simply consider, SUSY Hamiltonians in
short as follows . The generated Hamiltonians in
terms of superpotential W , can be written as [4-7]

H+ = p2 +
dW (x)

dx
+W 2 (3)

and
H− = p2 − dW (x)

dx
+W 2 (4)

For SUSY energy conditions

E(+)
n = E

(−)
n+1 (5)

with
E

(−)
0 = 0 (6)

let us consider two quadratic exactly solvable
Hamiltonians as

H− = p2 + x2 − 1 (7)

H+ = p2 + x2 + 1 (8)

We can have another two Hamiltonians as

H− = p2 + x6 + 2x4 − 2x2 − 1 (9)

H+ = p2 + x6 + 2x4 + 4x2 + 1 (10)

The computed eigenvalues are tabulated in
table 1 using matrix diagonalisation method [8].
Further ,for the iso-spectral energy condition

E(+)
n = E(−)

n (11)

we can have the Hamiltonians as,

H− = p2 + x4 + x2 − 2x+ 0.25 (12)

H+ = p2 + x4 + x2 + 2x+ 0.25 (13)

3 COMPLEX SUSY

Before, going to introduce complex SUSY , we
would like to bring the attention of reader, an
interesting idea on complex transformation of
momentum [9-12] in terms of co-ordinate as

p → p+ ix (14)

It has been explicitly addressed in the case of
Harmonic Oscillator[9-12] . In this paper we apply
the same to real SUSY operators as

H+
1 = p2 −x2 + i(xp+ px)+

dW (x)

dx
+W 2 (15)

and

H−
1 = p2−x2 + i(xp+px)− dW (x)

dx
+W 2 (16)

The above two Hamiltonians are PT invariant in
nature . In our view ,the above two Hamiltonians
must retain iso-spectral behaviour with that of
real SUSY Hamiltonians .Now consider another
transformation as

p → p+ i (17)

The new complex Hamiltonians are as follows

H+
2 = p2 + 2ip− 1 +

dW (x)

dx
+W 2 (18)

and

H−
2 = p2 + 2ip− 1− dW (x)

dx
+W 2 (19)

The above two Hamiltonians are T invariant in
nature . Now consider combination of these two
and write two new Hamiltonians as
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H+
3 = p2 − x2 + i(xp+ px) + 2ip− 2x− 1 +

dW (x)

dx
+W 2 (20)

and
H−

3 = p2 − x2 + i(xp+ px) + 2ip− 2x− 1− dW (x)

dx
+W 2 (21)

Interestingly in this case the Hamiltonians are neither PT invariant norT invariant in nature . In order
to show explicitly we consider few cases as given below.

3.1 Complex SUSY: Analytical Result
Here we would like to state that quadratic operator can be addressed analytically.Let us discuss few
lines on analytical expression for energy level relating to quadratic Hamiltonian [10,11]

H = h11p
2 + ih12 (xp + px ) + h22 x

2 + ih1p + h2 x (22)

having eigenvalue

ϵn = [
√

(h11h22 + h2
12)](2n+ 1) +

(h2
1h22 − h2

2h11 − 2h1h2h12)

4(h11h22 + h2
12)

(23)

Here we suggest two different complex Hamiltonians as follows Now consider complex SUSY on
exactly solvable real systems as:

H+
1 = p2 + i(xp+ px) + 1 (24)

H−
1 = p2 + i(xp+ px)− 1 (25)

H+
2 = p2 + x2 + 2ip (26)

H−
2 = p2 + x2 + 2ip− 2 (27)

H+
3 = p2 + i(xp+ px) + 2ip− 2x (28)

H−
3 = p2 + i(xp+ px) + 2ip− 2x− 2 (29)

Using the above exression ,one can see that

H−
3 ,H−

2 , H−
1 = 2n (30)

and
H+

3 , H+
2 , H+

1 = 2n+ 2 (31)

Here , n=0,1,2,3 ... . Interested reader can easily verify the SUSY energy conditions.

3.2 Complex SUSY: Numerical Result
Here we consider the complex SUSY Hamiltonians as

H−
1 = p2 + x6 + 2x4 − 3x2 − 1 + i(xp+ px) (32)

H+
1 = p2 + x6 + 2x4 + 3x2 + 1 + i(xp+ px) (33)

H−
2 = p2 + x6 + 2x4 − 2x2 + 2ip− 2 (34)

H+
2 = p2 + x6 + 2x4 + 4x2 + 2ip (35)

H−
3 = p2 + x6 + 2x4 − 3x2 − 2 + i(xp+ px) + 2ip− 2x (36)

H+
3 = p2 + x6 + 2x4 + 3x2 + i(xp+ px) + 2ip− 2x (37)
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The above Hamiltonians can not be solved analytically. For numerical results we apply matrix
diagonalisation method [8] as follows

H|Ψ >= E|Ψ > (38)

where
|Ψ >=

∑
m

Am|m > (39)

In the above |m > is the harmonic oscillator wave function which satisfies the eigenvalue relation

(p2 + x2)|m >= (2m+ 1)|m > (40)

Further in general ,for SUSY Hamiltonian we get nine term recurrence relation as

Am−6Pm+Am−4Qm+Am−2Rm+Am−1Sm+AmTm+Am+1Um+Am+2Vm+Am+4Wm+Am+6Ym = 0
(41)

Where
Pm =< m|H|m− 6 > (42)

Qm =< m|H|m− 4 > (43)

Rm =< m|H|m− 2 > (44)

Sm =< m|H|m− 1 > (45)

Um =< m|H|m+ 1 > (46)

Vm =< m|H|m+ 2 > (47)

Wm =< m|H|m+ 4 > (48)

Ym =< m|H|m+ 6 > (49)

Tm =< m|H|m > −E (50)

For the benefit of readers we present diagonal elements as given below .

< m|H+|m >= 2.5m3 + 6.75m2 + 13m+ 6.875 (51)

< m|H+
1 |m >= 2.5m3 + 6.75m2 + 12m+ 6.375 (52)

< m|H+
2 |m >= 2.5m3 + 6.75m2 + 13m+ 5.875 (53)

< m|H+
3 |m >= 2.5m3 + 6.75m2 + 12m+ 5.375 (54)

< m|H−
1 |m >= 2.5m3 + 6.75m2 + 6m+ 1.375 (55)

< m|H−
2 |m >= 2.5m3 + 6.75m2 + 7m+ 0.875 (56)

< m|H−
3 |m >= 2.5m3 + 6.75m2 + 6m+ 0.375 (57)

< m|H−|m >= 2.5m3 + 6.75m2 + 7m+ 1.875 (58)

In table 1 , we reflect eigenvalues along with the real SUSY Hamiltonians . Here H−
1,2,3 → E−C

n and
H+

1,2,3 → E+C
n

Table 1. Eigenvalues of real and complex SUSY hamiltonians

n E
(−R)
n E

(+R)
n E−C

n E+C
n

0 0 3.373 001 0 0 3.373 001 0
1 3.373 001 0 8.743 633 3 3.373 001 0 8.743 633 3
2 8.743 633 3 15.261 907 1 8.743 633 3 15.261 907 1
3 15.261 907 1 22.749 693 9 15.261 907 1 22.749 693 9
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3.3 Iso- Spectral Complex Hamiltonians: Numerical Result
Now we consider iso-spectral nature of complex SUSY Hamiltonians . The Hamiltonians considered
here as

H−
1 = p2 + x4 + i(xp+ px)− 2x+ 0.25 (59)

H+
1 = p2 + x4 + i(xp+ px) + 2x+ 0.25 (60)

H−
2 = p2 + x4 + x2 + 2ip− 2x− 0.75 (61)

H+
2 = p2 + x4 + x2 + 2ip+ 2x− 0.75 (62)

H−
3 = p2 + x4 + i(xp+ px)− 4x+ 2ip− 0.75 (63)

H+
3 = p2 + x4 + i(xp+ px) + 2ip− 0.75 (64)

Here we calculate energy eigenvalues using matrix diagonalisation , on solving the eigenvalue relation
as stated above . Here we solve a seven term recurrence relation as given below

Am−4Qm +Am−2Rm +Am−1Sm +AmTm +Am+1Um +Am+2Vm +Am+4Wm = 0 (65)

where
Qm =< m|H|m− 4 > (66)

Rm =< m|H|m− 2 > (67)

Sm =< m|H|m− 1 > (68)

Um =< m|H|m+ 1 > (69)

Vm =< m|H|m+ 2 > (70)

Wm =< m|H|m+ 4 > (71)

Tm =< m|H|m > −E (72)

For the benefit of readers we present diagonal elements as given below .

< m|H+|m >= 1.5m2 + 3.5m+ 2 (73)

< m|H+
1 |m >= 1.5m2 + 2.5m+ 1.5 (74)

< m|H+
2 |m >= 1.5m2 + 3.5m+ 1 (75)

< m|H+
3 |m >= 1.5m2 + 2.5m+ 0.5 (76)

< m|H−
1 |m >= 1.5m2 + 2.5m+ 1.5 (77)

< m|H−
2 |m >= 1.5m2 + 3.5m+ 1 (78)

< m|H−
3 |m >= 1.5m2 + 2.5m+ 0.5 (79)

< m|H−|m >= 1.5m2 + 3.5m+ 2 (80)

In table 2, we reflect eigenvalues along with the real iso-spectral Hamiltonians using matrix diagonalisation
method as described earlier . Here H−

1,2,3 → E−C
n and H+

1,2,3 → E+C
n

Table 2. Eigenvalues of real and complex Iso-Spectral hamiltonians

n E
(−R)
n E

(+R)
n E−C

n E+C
n

0 1.277 243 8 1.277 243 8 1.277 243 8 1.277 243 8
1 4.771 390 0 4.771 390 0 4.771 390 0 4.771 390 0
2 8.812 448 7 8.812 448 7 8.812 448 7 8.812 448 7
3 13.333 679 9 13.333 679 9 13.333 679 9 13.333 679 9
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4 CONCLUSION

In this paper we have found that for real
SUSY Hamiltonians, there are multiple complex
equivalent Hamiltonians reflecting iso-spectral
behaviour. Hence we believe all bounded
operators are associated with equivalent complex
operators i.e
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