

Asian Journal of Physical and Chemical Sciences

3(1): 1-6, 2017; Article no.AJOPACS.35903 ISSN: 2456-7779

Equivalent Multiple Complex SUSY For Real SUSY

Biswanath Rath^{1*}

¹Department of Physics, North Orissa University, Takatpur, Baripada -757003, Odisha, India.

Author's contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/AJOPACS/2017/35903 <u>Editor(s)</u>: (1) Stanislav Fisenko, Department of Mathematics, MSLU, Russia. (2) Shridhar N. Mathad, Department of Engineering Physics, K. I. e. Societys k. I.e. Institute of Technology, Gokul, Hubli, India. <u>Reviewers:</u> (1) A. Ayeshamariam, Khadir Mohideen College, India. (2) Aruna P. Maharolkar, Marathwada Institute of Technology, India. (3) Oluwadare, Oluwatimilehin Joshua, Federal University of Oye-Ekiti, Nigeria. (4) Domagoj Kuic, University of Split, Croatia. (5) Okan Ozer, University Of Gaziantep, Turkiye. Complete Peer review History: http://sciencedomain.org/review-history/20830

Short Research Article

Received 1st August 2017 Accepted 26th August 2017 Published 6th September 2017

ABSTRACT

We notice real SUSY Hamiltonians have multiple equivalent complex Hamiltonians which may be (i) \mathcal{PT} invariant (ii) \mathcal{T} invariant or (iii) combination of both in nature . These three types of complex Hamiltonians give the same energy spectrum . We present here analytical results for the exactly solvable system and numerical results for others.

Keywords: Supersymmetry; \mathcal{PT} symmetry; real spectra; complex hamiltonians.

PACS: 11.30.Er, 03.65.Ge.

*Corresponding author: E-mail: biswanathrath10@gmail.com, brath@iopb.res.in;

1 INTRODUCTION

Our understanding on real spectra in quantum physics has been drastically changed after the thought breaking idea of Bender and Boettecher [1], who introduced the concept of \mathcal{PT} symmetry

. The operator $\mathcal P$ stands for parity ,reflecting the behaviour $:x \to -x ; p \to -p$ and $i \to i$. Similarly the operator $\mathcal T$ represents time reversal ,reflecting the behaviour $:x \to x ; p \to -p$ and $i \to -i$. However , $\mathcal P\mathcal T$ symmetry understanding took a new turn when Jones and Mateo [2],theoretically proved that inverted quartic oscillator

$$H = p^2 - x^4 \tag{1}$$

has equivalent hermitian operator reflecting the iso-spectral character . Later on Nanayakkara and Mathanaranjan [3]noticed that one dimensional complex Hamiltonian

$$H = p^2 - x^4 + 4ix$$
 (2)

also posseses equivalent hermitian operator reflecting iso-spectra. One simple question comes to mind that whether real Hamiltonians have complex counter part reflecting iso-spectral behaviour? In order to address this question we consider supersymmetry as an ideal example.

2 REAL SUSY

Here, we simply consider, SUSY Hamiltonians in short as follows . The generated Hamiltonians in terms of superpotential W, can be written as [4-7]

$$H^{+} = p^{2} + \frac{dW(x)}{dx} + W^{2}$$
(3)

and

$$H^{-} = p^{2} - \frac{dW(x)}{dx} + W^{2}$$
 (4)

For SUSY energy conditions

$$E_n^{(+)} = E_{n+1}^{(-)} \tag{5}$$

with

$$E_0^{(-)} = 0 \tag{6}$$

let us consider two quadratic exactly solvable Hamiltonians as

$$H^{-} = p^{2} + x^{2} - 1 \tag{7}$$

$$H^+ = p^2 + x^2 + 1 \tag{8}$$

We can have another two Hamiltonians as

$$H^{-} = p^{2} + x^{6} + 2x^{4} - 2x^{2} - 1$$
 (9)

$$H^{+} = p^{2} + x^{6} + 2x^{4} + 4x^{2} + 1$$
 (10)

The computed eigenvalues are tabulated in table 1 using matrix diagonalisation method [8]. Further ,for the iso-spectral energy condition

$$E_n^{(+)} = E_n^{(-)} \tag{11}$$

we can have the Hamiltonians as,

F

$$H^{-} = p^{2} + x^{4} + x^{2} - 2x + 0.25$$
 (12)

$$H^{+} = p^{2} + x^{4} + x^{2} + 2x + 0.25$$
 (13)

3 COMPLEX SUSY

Before, going to introduce complex SUSY, we would like to bring the attention of reader, an interesting idea on complex transformation of momentum [9-12] in terms of co-ordinate as

$$p \to p + ix$$
 (14)

It has been explicitly addressed in the case of Harmonic Oscillator[9-12]. In this paper we apply the same to real SUSY operators as

$$H_1^+ = p^2 - x^2 + i(xp + px) + \frac{dW(x)}{dx} + W^2$$
 (15)

and

$$H_1^- = p^2 - x^2 + i(xp + px) - \frac{dW(x)}{dx} + W^2$$
 (16)

The above two Hamiltonians are \mathcal{PT} invariant in nature . In our view ,the above two Hamiltonians must retain iso-spectral behaviour with that of real SUSY Hamiltonians .Now consider another transformation as

$$p \to p + i$$
 (17)

The new complex Hamiltonians are as follows

$$H_2^+ = p^2 + 2ip - 1 + \frac{dW(x)}{dx} + W^2$$
 (18)

and

$$H_2^- = p^2 + 2ip - 1 - \frac{dW(x)}{dx} + W^2$$
 (19)

The above two Hamiltonians are ${\cal T}$ invariant in nature . Now consider combination of these two and write two new Hamiltonians as

$$H_3^+ = p^2 - x^2 + i(xp + px) + 2ip - 2x - 1 + \frac{dW(x)}{dx} + W^2$$
(20)

and

$$H_3^- = p^2 - x^2 + i(xp + px) + 2ip - 2x - 1 - \frac{dW(x)}{dx} + W^2$$
(21)

Interestingly in this case the Hamiltonians are neither \mathcal{PT} invariant nor \mathcal{T} invariant in nature . In order to show explicitly we consider few cases as given below.

3.1 Complex SUSY: Analytical Result

Here we would like to state that quadratic operator can be addressed analytically.Let us discuss few lines on analytical expression for energy level relating to quadratic Hamiltonian [10,11]

$$H = h_{11} p^{2} + i h_{12} (xp + px) + h_{22} x^{2} + i h_{1} p + h_{2} x$$
(22)

having eigenvalue

$$\epsilon_n = \left[\sqrt{(h_{11}h_{22} + h_{12}^2)}\right](2n+1) + \frac{(h_1^2h_{22} - h_2^2h_{11} - 2h_1h_2h_{12})}{4(h_{11}h_{22} + h_{12}^2)}$$
(23)

Here we suggest two different complex Hamiltonians as follows Now consider complex SUSY on exactly solvable real systems as:

$$H_1^+ = p^2 + i(xp + px) + 1$$
(24)

$$H_1^- = p^2 + i(xp + px) - 1$$
(25)

$$H_2^- = p^2 + x^2 + 2ip \tag{26}$$

$$H_2 = p^2 + x^2 + 2ip - 2 \tag{27}$$

$$H_3^+ = p^2 + i(xp + px) + 2ip - 2x$$
(28)

$$H_3^- = p^2 + i(xp + px) + 2ip - 2x - 2$$
⁽²⁹⁾

Using the above exression ,one can see that

$$H_3^-, H_2^-, H_1^- = 2n \tag{30}$$

and

$$H_3^+, H_2^+, H_1^+ = 2n + 2$$
 (31)

Here , n=0,1,2,3 Interested reader can easily verify the SUSY energy conditions.

3.2 Complex SUSY: Numerical Result

Here we consider the complex SUSY Hamiltonians as

$$H_1^- = p^2 + x^6 + 2x^4 - 3x^2 - 1 + i(xp + px)$$
(32)

$$H_1^+ = p^2 + x^6 + 2x^4 + 3x^2 + 1 + i(xp + px)$$
(33)

$$H_2^- = p^2 + x^6 + 2x^4 - 2x^2 + 2ip - 2$$
(34)

$$H_2^+ = p^2 + x^6 + 2x^4 + 4x^2 + 2ip$$
(35)

$$H_3^- = p^2 + x^6 + 2x^4 - 3x^2 - 2 + i(xp + px) + 2ip - 2x$$
(36)

$$H_3^+ = p^2 + x^6 + 2x^4 + 3x^2 + i(xp + px) + 2ip - 2x$$
(37)

The above Hamiltonians can not be solved analytically. For numerical results we apply matrix diagonalisation method [8] as follows

$$H|\Psi>=E|\Psi>$$
(38)

where

$$|\Psi>=\sum_{m}A_{m}|m>$$
(39)

In the above $|m\rangle$ is the harmonic oscillator wave function which satisfies the eigenvalue relation

$$(p^{2} + x^{2})|m\rangle = (2m+1)|m\rangle$$
(40)

Further in general ,for SUSY Hamiltonian we get nine term recurrence relation as

$$A_{m-6}P_m + A_{m-4}Q_m + A_{m-2}R_m + A_{m-1}S_m + A_mT_m + A_{m+1}U_m + A_{m+2}V_m + A_{m+4}W_m + A_{m+6}Y_m = 0$$
(41)

Where

$$P_m = \langle m | H | m - 6 \rangle \tag{42}$$

$$Q_m = \langle m|H|m-4 \rangle \tag{43}$$

$$R_m = \langle m | H | m - 2 \rangle \tag{44}$$

$$S_m = \langle m | H | m - 1 \rangle \tag{45}$$

$$U_m = \langle m | H | m + 1 \rangle \tag{46}$$

$$V_m = \langle m|H|m + 2 \rangle \tag{47}$$

$$W_m = \langle m | H | m + 4 \rangle \tag{48}$$

$$Y_m = \langle m|H|m + 6 \rangle \tag{49}$$

$$T_m = \langle m | H | m \rangle - E \tag{50}$$

For the benefit of readers we present diagonal elements as given below .

$$< m|H^+|m> = 2.5m^3 + 6.75m^2 + 13m + 6.875$$
 (51)

$$< m|H_1^+|m> = 2.5m^3 + 6.75m^2 + 12m + 6.375$$
 (52)

$$< m|H_2^+|m> = 2.5m^3 + 6.75m^2 + 13m + 5.875$$
 (53)
 $< m|H_2^+|m> = 2.5m^3 + 6.75m^2 + 12m + 5.875$ (54)

$$< m|H_3|m >= 2.5m + 6.75m + 12m + 5.375$$
 (34)
 $< m|H^-|m >= 2.5m^3 + 6.75m^2 + 6m + 1.375$ (55)

$$< m|H_1|m >= 2.5m^4 + 6.75m^4 + 6m + 1.375$$
 (55)
 $< m|H_2|m >= 2.5m^3 + 6.75m^2 + 7m + 0.875$ (56)

$$< m|H_2|m > = 2.5m^3 + 6.75m^2 + 6m + 0.375$$
 (30)
 $< m|H_2|m > = 2.5m^3 + 6.75m^2 + 6m + 0.375$ (37)

$$m|H_3|m \ge 2.5m + 0.15m + 0.015$$
 (57)

$$< m|H| |m> = 2.5m^{\circ} + 6.75m^{2} + 7m + 1.875$$
 (58)

In table 1 , we reflect eigenvalues along with the real SUSY Hamiltonians . Here $H_{1,2,3}^- \to E_n^{-C}$ and $H_{1,2,3}^+ \to E_n^{+C}$

Table 1. Eigenvalues of real and complex SUSY hamiltonians

n	$E_n^{(-R)}$	$E_n^{(+R)}$	E_n^{-C}	E_n^{+C}
0	0	3.373 001 0	0	3.373 001 0
1	3.373 001 0	8.743 633 3	3.373 001 0	8.743 633 3
2	8.743 633 3	15.261 907 1	8.743 633 3	15.261 907 1
3	15.261 907 1	22.749 693 9	15.261 907 1	22.749 693 9

3.3 Iso- Spectral Complex Hamiltonians: Numerical Result

Now we consider iso-spectral nature of complex SUSY Hamiltonians . The Hamiltonians considered here as $U^{-} = \frac{2}{3} + \frac{4}{3} + \frac{1}{3} (-1 + 1) + \frac{2}{3} + \frac{4}{3} + \frac{1}{3} + \frac{1}{$

$$H_1 = p^2 + x^4 + i(xp + px) - 2x + 0.25$$

$$H^+ = n^2 + x^4 + i(xp + px) + 2x + 0.25$$
(69)

$$H_1 = p + x + i(xp + px) + 2x + 0.25$$
(60)

$$H_2 = p^2 + x^2 + x^2 + 2ip - 2x - 0.75$$
(61)

$$H^+ = p^2 + x^4 + x^2 + 2ip - 2x - 0.75$$
(62)

$$H_2^+ = p^2 + x^4 + x^2 + 2ip + 2x - 0.75$$
(62)

$$H_3^- = p^2 + x^4 + i(xp + px) - 4x + 2ip - 0.75$$
(63)

$$H_3^+ = p^2 + x^4 + i(xp + px) + 2ip - 0.75$$
(64)

Here we calculate energy eigenvalues using matrix diagonalisation , on solving the eigenvalue relation as stated above . Here we solve a seven term recurrence relation as given below

$$A_{m-4}Q_m + A_{m-2}R_m + A_{m-1}S_m + A_mT_m + A_{m+1}U_m + A_{m+2}V_m + A_{m+4}W_m = 0$$
(65)

where

$$Q_m = \langle m | H | m - 4 \rangle \tag{66}$$

$$R_m = \langle m | H | m - 2 \rangle \tag{67}$$

$$S_m = \langle m|H|m-1 \rangle \tag{68}$$

$$U_m = \langle m | H | m + 1 \rangle \tag{69}$$

$$V_m = \langle m|H|m+2 \rangle \tag{70}$$

$$W_m = \langle m | H | m + 4 \rangle \tag{71}$$

$$T_m = \langle m | H | m \rangle - E \tag{72}$$

For the benefit of readers we present diagonal elements as given below .

$$< m|H^+|m> = 1.5m^2 + 3.5m + 2$$
 (73)

$$< m|H_1^+|m> = 1.5m^2 + 2.5m + 1.5$$
 (74)

$$< m|H_2^+|m> = 1.5m^2 + 3.5m + 1$$
 (75)
 $< m|H_1^+|m> = 1.5m^2 + 2.5m + 0.5$ (76)

$$< m|H_3| m >= 1.5m^2 + 2.5m + 0.5$$
 (76)
 $< m|H^-|m >= 1.5m^2 + 2.5m + 1.5$ (77)

$$< m|H_1^-|m> = 1.5m^2 + 2.5m + 1.5$$
 (77)
 $< m|H_2^-|m> = 1.5m^2 + 3.5m + 1$ (78)

$$< m|H_2|m > = 1.5m^2 + 2.5m + 1$$
 (70)
 $< m|H_2|m > = 1.5m^2 + 2.5m + 0.5$ (79)

$$< m | m_3 | m > -1.5m + 2.5m + 0.5$$
 (75)

$$< m|H^-|m> = 1.5m^2 + 3.5m + 2$$
 (80)

In table 2, we reflect eigenvalues along with the real iso-spectral Hamiltonians using matrix diagonalisation method as described earlier . Here $H_{1,2,3}^- \to E_n^{-C}$ and $H_{1,2,3}^+ \to E_n^{+C}$

Table 2. Eigenvalues of real and complex Iso-Spectral hamiltonians

n	$E_n^{(-R)}$	$E_n^{(+R)}$	E_n^{-C}	E_n^{+C}
0	1.277 243 8	1.277 243 8	1.277 243 8	1.277 243 8
1	4.771 390 0	4.771 390 0	4.771 390 0	4.771 390 0
2	8.812 448 7	8.812 448 7	8.812 448 7	8.812 448 7
3	13.333 679 9	13.333 679 9	13.333 679 9	13.333 679 9

4 CONCLUSION

In this paper we have found that for real SUSY Hamiltonians, there are multiple complex equivalent Hamiltonians reflecting iso-spectral behaviour. Hence we believe all bounded operators are associated with equivalent complex operators i.e

ACKNOWLEDGEMENTS

Author is thankful to all the five referees for their constructive remarks. Suggestions of this kind are always welcome.

COMPETING INTERESTS

Author has declared that no competing interests exist.

References

- [1] Bender CM, Boettcher S. Real spectra in non-hermitian hamiltonians having \mathcal{PT} Symmetry. Phys. Rev. Lett. 1998;80(24):5243.
- [2] Jones HF, Mateo J. Equivalent hermitian hamiltonianfor the non-Hermitian $-x^4$ potential. Phys. Rev. 2006;D73:085002.
- [3] Nanayakkara A, Mathanaranjan T. Equivalent hermitian hamiltonians for some non-hermitian Hamiltonians. Phys. Rev. 2012;A86:022106.

- [4] Witten E. Dynamical breaking of supersymmetry. Nucl. Phys. 1981;B185:513.
- [5] Gendenshtein L. Derivation of exact spectra of the schrodinger equation by means of supersymmetry. Pis'ma. Zh. Eksp. Teor. Fiz. 1983;38:299.
- [6] Cooper F, Khare A, Sukhatme
 U. Supersymmetry in Quantum Mechanics" (World Scientific, Singapore); 2001.
- [7] Rath B. Generalisation of supersymmetric energy condition(SUSY-EC) from Fokker-Plank equation, IL Nuovo Cimento. 2000;B115:1229. Erratum. 2009;B124 N.8. 1.
- [8] Rath B, Mallick P, Samal PK. A study of spectral instability in $V(x) = ix^3$ Through Internal Perturbation: Breakdown of Unbroken \mathcal{PT} Symmetry. The. African. Rev. Phys. 2015;10:0007:55.
- [9] Ahmed Z. Pseudo-Hermiticity of Hamiltonians under gauge-like transformation: Real spectrum of non-Hermitian Hamiltonians. Phys. Lett. 2002;A 294:287.
- [10] Zhang HB, Jiang GY, Wang GC. Unified algebraic method to non-Hermitiansystems with Lie algebraic Linear structure. J. Math. Phys. 2015;56:072103.
- [11] Fernandez FM. Non-Hermitian Hamiltonians and Similarity Transformations. Int. Jour. Theo. Phys. 2015;77:570.
- [12] Rath B, Mallick P. Energy and wave function analysis on Harmonic Oscillator under simultaneous Non-Hermitian transformationsof co-ordinate and momentum:Iso-spectral case. Open. Phys. 2016;14:492.

© 2017 Rath; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

> Peer-review history: The peer review history for this paper can be accessed here: http://sciencedomain.org/review-history/20830