
TYPE Original Research
PUBLISHED 31 May 2023
DOI 10.3389/frobt.2023.944375

OPEN ACCESS

EDITED BY

Muhammad Rukunuddin Ghalib,
De Montfort University, United Arab
Emirates

REVIEWED BY

Lior Shamir,
Kansas State University, United States
Patrick Sebastian,
University of Technology Petronas,
Malaysia

*CORRESPONDENCE

Yu Ishihara,
yu_ishihara.a2@keio.jp

SPECIALTY SECTION

This article was submitted to Robot
Learning and Evolution, a section of the
journal Frontiers in Robotics and AI

RECEIVED 15 May 2022
ACCEPTED 20 March 2023
PUBLISHED 31 May 2023

CITATION

Ishihara Y and Takahashi M (2023),
Image-based robot navigation with task
achievability.
Front. Robot. AI 10:944375.
doi: 10.3389/frobt.2023.944375

COPYRIGHT

© 2023 Ishihara and Takahashi. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

Image-based robot navigation
with task achievability

Yu Ishihara1* and Masaki Takahashi2

1Graduate School of Science and Technology, Keio University, Yokohama, Japan, 2Department of
System Design Engineering, Keio University, Yokohama, Japan

Image-based robot action planning is becoming an active area of research
owing to recent advances in deep learning. To evaluate and execute robot
actions, recently proposed approaches require the estimation of the optimal
cost-minimizing path, such as the shortest distance or time, between two states.
To estimate the cost, parametric models consisting of deep neural networks
are widely used. However, such parametric models require large amounts of
correctly labeled data to accurately estimate the cost. In real robotic tasks,
collecting such data is not always feasible, and the robot itself may require
collecting it. In this study, we empirically show that when a model is trained
with data autonomously collected by a robot, the estimation of such parametric
models could be inaccurate to perform a task. Specifically, the higher the
maximum predicted distance, the more inaccurate the estimation, and the robot
fails navigating in the environment. To overcome this issue, we propose an
alternative metric, “task achievability” (TA), which is defined as the probability
that a robot will reach a goal state within a specified number of timesteps.
Compared to the training of optimal cost estimator, TA can use both optimal and
non-optimal trajectories in the training dataset to train, which leads to a stable
estimation. We demonstrate the effectiveness of TA through robot navigation
experiments in an environment resembling a real living room. We show that TA-
based navigation succeeds in navigating a robot to different target positions, even
when conventional cost estimator-based navigation fails.

KEYWORDS

image-based navigation, mobile robot, path planning, optimal control, deep learning

1 Introduction

There is a strong demand for technologies that can easily manage and control multiple
robotic agents. The cybernetic avatar concept proposed by a working group of the Japanese
government’s cabinet office aims to develop such technologies and infrastructure by 2050
to engage the aging population (Cabinet Office Government of Japan, 2019). Images would
allow human operators to efficiently control such robotic agents. Furthermore, certain tasks
are easy to execute visually (e.g., navigating to a place where an image was taken).Therefore,
in this research, we focus on an image-based action selection method for controlling robots.

Several image-based action selection methods have been proposed owing
to recent advances in deep learning (Zhu et al., 2017; Codevilla et al., 2018;
Kahn et al., 2018; Kumar et al., 2018; Pathak et al., 2018; Hirose et al., 2019b;
Eysenbach et al., 2019; Chaplot et al., 2020; Shah et al., 2020; Terasawa et al., 2020;
Chebotar et al., 2021; Ishihara and Takahashi, 2021). These methods select the
action according to the image corresponding to the initial state sstart and/or the
image corresponding to the goal state sgoal. To select an action, a deep neural

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2023.944375
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2023.944375&domain=pdf&date_stamp=2023-05-26
mailto:yu_ishihara.a2@keio.jp
mailto:yu_ishihara.a2@keio.jp
https://doi.org/10.3389/frobt.2023.944375
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2023.944375/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.944375/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ishihara and Takahashi 10.3389/frobt.2023.944375

network-based controller trained end-to-end is commonly
used (Zhu et al., 2017; Codevilla et al., 2018; Kahn et al., 2018;
Kumar et al., 2018; Pathak et al., 2018; Hirose et al., 2019b). In a
real task involving a robot, there are safety requirements, such as
avoiding the entrances to undesired areas and avoiding collisions
with obstacles. However, satisfying these requirements using a
controller trained end-to-end is difficult because it requires the
analysis of a trained controller. For the practical use of robots, it is
preferable to avoid the need for additional analysis. Conversely,
conventional path-planning algorithms can easily satisfy these
requirements by planning motions (e.g., moving in a certain
direction at a certain speed) using an environmental map. Recently,
several path-planning algorithms that use images as input have been
proposed (Eysenbach et al., 2019; Terasawa et al., 2020; Ishihara and
Takahashi, 2021). Therefore, in this research, we also consider an
image-based path planner as a robot controller.

In previous research studies on image-based path planning,
a robot’s actions were selected by estimating the optimal cost-
minimizing path to reach the goal, such as the shortest distance
or time, using the sstart and sgoal images (Kahn et al., 2018;
Eysenbach et al., 2019; Terasawa et al., 2020; Ishihara andTakahashi,
2021). To estimate the cost of a given path from input images, deep
neural networkmodels are trained using the trajectory data obtained
from the environment. As long as the evaluation is accurate, a robot
can select the appropriate actions and complete the task. However,
such models require a large amount of correctly labeled data to
accurately estimate the cost. In real robotic tasks, collecting such
data is not always feasible, and the robot itself may require collecting
it. In this study, we empirically show that when a model is trained
with data autonomously collected by a robot, the estimation of
such parametric models could be inaccurate to perform a task.
Specifically, the estimation accuracy decreases in proportion to the
maximum predicted distance to the goal. Hence, the higher the
maximum predicted distance, the more inaccurate the estimation,
and the robot fails navigating in the environment.

To overcome this issue, we propose an alternative evaluation
metric to evaluate paths planned for robots. We call this
evaluation metric “task achievability” (TA), which is defined as
pπ(sT = sgoal|sstart,τ): the probability that the robot will reach the
goal state sgoal within time T with policy π, starting from an initial
state sstart and following path τ. Even though this metric does not
guarantee the optimality of the path to be navigated, we demonstrate
that the path generated by TA is identical to the optimal cost-
minimizing path. The advantage of using TA is shown in Figure 1.
To train an optimal cost estimator, the dataset must consist only
of optimal cost trajectories. However, it is difficult to create such
a dataset by checking each image in the trajectory and removing
non-optimal trajectories. Hence, training an optimal cost estimator
is significantly affected by incorrectly labeled data, which leads to
inaccurate cost estimations. In contrast, a TA estimator can use
all the training data in the dataset without considering whether
the trajectory in a dataset is optimal. Therefore, we expect the TA
estimator to be stable and easy to train. In addition, because the
TA metric’s value is always between 0 and 1 (i.e., the value is not
proportional to the distance between states), we expect the trained
model to estimate the value robustly.

In this research, we propose two types of estimation models,
direct and indirect, to estimate the TA. The direct model trains

FIGURE 1
Example of labeled data generated from a random sampling of two
states. If there exist two different sets of trajectory data that reach a
goal state (st2) from an initial state (st1), the training data may contain
incorrectly labeled (i.e., non-optimal) data (e.g., sample path 2) when
training an optimal cost estimator. In contrast, when training a TA
estimator, both data are labeled as 1.

a vision transformer (Dosovitskiy et al., 2021)-based model to
output the probability pπ(sT = sgoal|sstart,τ) for each action in τ.
The indirect model assumes deterministic dynamics and trains a
state (image) prediction model fpred(τ, sstart) that outputs the future
state sfuture and estimates the probability pπ(sT = sgoal|sstart, sfuture)
as an approximation of pπ(sT = sgoal|sstart,τ). We demonstrate the
effectiveness of the proposed method through robot navigation
experiments conducted in a simulated environment resembling a
living room. The proposed approach can successfully navigate the
robot to both near and distant states, even when conventional cost-
based estimators fail.

The contributions of this study are as follows: 1) an empirical
demonstration of the cost estimation model’s failure when
estimating the cost between two distant states; 2) the proposal of
a new evaluation metric and its estimation algorithm using deep
neural network models; and 3) a demonstration of the effectiveness
of our new metric through robot navigation experiments in a
simulated environment resembling a real living room.

The rest of this paper is organized as follows: In Section 1,
we present related works and clarify the differences between our
approach and that of previous works. In Section 3, we define
the proposed metric and present the cost estimation model with
its training procedure for the evaluation metric. We provide our
experimental results and discuss the effectiveness of our approach
in Section 4. In Section 5, we draw the conclusion from our study
and point out future research directions.

2 Related work

2.1 Deep image-based action generation

Because of the recent advances in deep learning, several image-
based robotic action generation algorithms have been proposed. A
frequently used method is an end-to-end training of a deep neural
network model (Zhu et al., 2017; Codevilla et al., 2018; Kahn et al.,

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2023.944375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ishihara and Takahashi 10.3389/frobt.2023.944375

2018; Kumar et al., 2018; Pathak et al., 2018). These methods input
images and output an action and are trained using methods such
as imitation learning and reinforcement learning. However, an
end-to-end model requires additional evaluations and analyses to
guarantee the safety of output actions and is difficult to apply in real
robotic applications. Another approach based on topological maps
has also been proposed (Chaplot et al., 2020); (Shah et al., 2020).
This approach constructs a topological map using images from a
dataset collected in the environment and then plans actions on
the topological map. However, this method also cannot guarantee
the safety of planned actions because obstacle information is not
reflected on the topological map.

One approach to avoiding obstacles while visually navigating a
robot to its goal is visual path-following. Visual path-following tries
to follow a collision-free path by tracking intermediate goal images
(i.e., features or landmarks) along the path. Hirose et al. recently
proposed a visual path-following algorithm that outperforms
conventional visual navigation methods (Hirose et al., 2019a). A
drawback of the visual path-following algorithm is that it requires
collecting the image sequence of a path to follow. Another approach
is to use conventional path-planning methods such as A* and
rapidly exploring random tree (RRT) motion planning algorithms
(LaValle, 2006) and combine conventional path planners with a
CNN-based deep neural network model (Eysenbach et al., 2019;
Terasawa et al., 2020; Ishihara and Takahashi, 2021). In contrast to
the visual path-followingmethod, this approach only requires a goal
image and not the entire sequence of images to the goal. With the
assumption that safety is critical in real-world robot applications
and considering its simplicity, we focus on this approach (i.e.,
combining conventional path planners with CNN-based models).
Wewill demonstrate that an evaluationmetric is crucial to executing
tasks when combining conventional path planners with CNN-based
models. Conventionally usedmetrics, such as timesteps and distance
between states, are not effective in navigating between distant states.
Therefore, we propose a new metric and an estimation method
for selecting actions. We also compare the proposed method with
Hirose et al.’s visual path-following method (Hirose et al., 2019a)
and demonstrate the effectiveness of our approach.

2.2 Evaluation metric of a robot’s action
selection

Evaluation of action is the core procedure of image-based
action generation and path planning. An action is generated
according to the maximization or minimization of evaluation
metric. Frederik et al. used pixel distance as an evaluation metric
of action selection for image-based robot manipulation tasks
(Ebert et al., 2017). Zhu et al. (2017) combined task-completion
reward and time penalty to evaluate the action and used an image-
based policy with reinforcement learning to train. Hirose et al.
(2019b) combined image pixel distance, traversable probability, and
velocity error to train a policy for visual path-following. However,
combiningmultiple objectives into a singlemetric requires adjusting
the weights to balance between the objectives. Conversely, in the
context of image-based path planning, cost metrics, such as distance
or time between states (Kahn et al., 2018; Eysenbach et al., 2019;
Terasawa et al., 2020; Ishihara and Takahashi, 2021), are frequently

FIGURE 2
Conceptual difference between conventional cost estimation-based
path planners and TA. Cost estimation-based navigation (A) estimates
and selects the optimal cost-minimizing path. TA-based navigation (B)
does not necessarily select the optimal cost-minimizing path and can
select any path that reaches the goal.

used. To achieve image-based planning, the cost is frequently
estimated using a neural network model (Eysenbach et al., 2019;
Terasawa et al., 2020; Ishihara and Takahashi, 2021). Therefore, the
accuracy of the model is critical for the success of image-based
action generation. In this paper, we empirically show that when
a model is trained with insufficient data, the estimation accuracy
decreases proportionally to the distance between states. To overcome
this issue, inspired by the work of Chebotar et al. (2021) on
reinforcement learning tasks, we propose using p(sT = sgoal|sstart,τ)
the probability that the robot reaches the goal state within time T,
as an evaluation metric of planned actions. In contrast to the results
obtained by Chebotar et al. (2021), in our work, the probability is
conditioned on a path τ instead of an action to evaluate paths.

3 Task achievability and its estimation
method

3.1 Task achievability

Previous research studies focused on selecting and optimizing
actions by estimating the cost to move between states, such as
distance or traveling time. The cost is commonly calculated using
an estimation model that consists of deep neural networks trained
with data collected in the environment. However, when the training
dataset contains non-optimal paths, the cost estimation becomes
inaccurate, which is explained in the subsequent section. As a result
of using an inaccurate cost estimator, the robot fails to achieve its
tasks. To overcome this issue, we used TA as an alternative metric
for selecting and evaluating actions. TA is defined as the probability
that the robot will reach the goal state sgoal within time Twith policy
π, starting from an initial state sstart and following path τ:

pπ (sT = sgoal|sstart,τ) . (1)

The concept of TA is shown in Figure 2. TA-based navigation
does not require estimating and selecting the optimal cost-
minimizing path. Therefore, any path that reaches the goal could

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2023.944375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ishihara and Takahashi 10.3389/frobt.2023.944375

FIGURE 3
(A) Direct estimation model, (B) indirect estimation model, and (C) cost estimation model. The direct estimation model encoded the initial and goal
state images by splitting them into image patches, as in the study by Dosovitskiy et al. (2021), and decoded them into the TA using path τ. The indirect
estimation model first predicted the future state image and then predicted the TA with the predicted future image instead of path τ.

be selected as the candidate solution for the task. We expected this
feature to improve the task execution performance of a robot. In
the next subsection, we describe the proposed estimationmodel and
training strategy used to estimate the TA.

3.2 Estimation model

We propose two types of TA estimation models: direct and
indirect. The difference between these two models lies only in the
procedure of outputting the TA. The direct model is based on
a vision transformer, and it is trained to output the probability
pπ(sT = sgoal|sstart,τ) directly for actions in τ. In contrast, the
indirect estimation model consists of two components. Assuming
deterministic dynamics, the indirect estimation model used a
future state prediction model sfuture = fpred(τ, sstart) to predict the
future state, which is then used to estimate the achievability
pπ(sT = sgoal|sstart,τ) as pπ(sT = sgoal|sstart, sfuture).

3.2.1 Direct estimation model
The direct estimation model is a deep neural network model

based on a vision transformer (Dosovitskiy et al., 2021). Figure 3A)

shows the overview of the proposedmodel.The sstart and sgoal images
were 360° RGB images of size 120× 120. We first concatenated
these images along the color channels and split them into image
patches of 12× 12 pixels. Then, the split image patches were linearly
projected onto a 128-dimensional vector and added with learnable
1D positional encoding (as in the study by Dosovitskiy et al. (2021))
before encoding was performed using a transformer. We used the
two stacked transformer encoders, as presented by Dosovitskiy et al.
(2021), to encode the images. Each action in path τ = (a1,a2,…,an)
was also linearly projected onto 128 dimensions and added with
positional encoding (PE) that was generated using the sine and
cosine functions from the study by Vaswani et al. (2017), which are
expressed as

PEpos,2i = sin(pos/100002i/dmodel) ,

PEpos,2i+1 = cos(pos/100002i/dmodel) ,
(2)

where pos is the position, i is the dimension, and dmodel is the
dimension of the projected action. The output of the model
was n number of probabilities from pπ(sT = sgoal|sstart,a1) to
pπ(sT = sgoal|sstart,a1,…,an). For decoding, we used two stacked
transformer decoders. In addition, we used the Gaussian error

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2023.944375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ishihara and Takahashi 10.3389/frobt.2023.944375

FIGURE 4
Simulation environments. Megaweb (2015) (A) and AWS small house (B).

FIGURE 5
Reference paths 1 to 4 from the left (the shortest paths between the initial and goal states) in the “Megaweb 2015” environment. The blue circle and
yellow star denote the initial and goal positions, respectively.

linear unit (GELU) (Hendrycks and Gimpel, 2016) as the activation
function for the transformer encoder and decoder. We applied the
same setting used by Dosovitskiy et al. (2021) and Vaswani et al.
(2017) for other parameters of transformer models.

3.2.2 Indirect estimation model
Figure 3B shows the overall architecture of the indirect

estimation model. The future state image prediction model consists
of three blocks: the encoder, action fusion, and decoder blocks.
The encoder block converts the 360° RGB images of size 120× 120
into a feature vector henct using stacked convolution layers. We
used 64(6× 6), 128(4× 4), 128(4× 4), and 128(4× 4) kernels with a
stride value of 2 for the convolution layers. The action fusion block
combines henct with the action at time t (i.e., at) and generates a
feature vector to be decoded as a t+ 1 state image. We used action-
conditioned long short-term memory (AC-LSTM) Chiappa et al.
(2017) to combine the feature vector with the actions. AC-LSTM is
expressed as

vt =Wvhlstmt−1 ⊙W
aat ,

[hlstmt ,ct] = LSTM(h
enc
t ,vt,ct−1) ,

(3)

where LSTM is the conventional LSTM layer (Hochreiter and
Schmidhuber, 1997), Wv ∈ ℝ f× f , f denotes the number of factors

(Chiappa et al., 2017), f = 2048, and the symbol ⊙ denotes the
Hadamard product. The decoder block decodes hlstmt into the next
state image via stepwise upsampling. The upsampling operation
performs the opposite operation of the encoder block. To predict
the m step future state, we used the predicted image as the input
of the prediction model m times.Using the predicted future state
image sfuture, we estimated the TA as pπ(sT = sgoal|sstart, sfuture). We
concatenated the sstart, sfuture, and sgoal state images along the
color channels and input them into the stacked convolution layers,
followed by the stacked liner layers. The stacked convolution layers
consisted of 32(6× 6), 32(4× 4), 32(4× 4), and 64(3× 3) kernels
with a stride value of 2. We used the rectified linear unit (ReLU)
as the activation function for the convolution layers. The linear
layers consisted of 2,048 and 1,024 hidden units with ReLU as the
activation function, and the last layer output the score to feed it to
the sigmoid function.

3.3 Model training procedure

Weused a sequence of state-action tuplesD = {(s1,a1), (s2,a2),… }
collected autonomously by the robot using path planner π to train
the future image prediction model and TA estimation model.
The state was a 120× 120 RGB image, and the action was the

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2023.944375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ishihara and Takahashi 10.3389/frobt.2023.944375

FIGURE 6
Reference paths 1 (A), 2 (B), 3 (C), and 4 (D) (the shortest paths between the initial and goal states) in the “AWS small house” environment. The blue
circle and yellow star denote the initial and goal positions, respectively.

translational and rotational velocities of the robot: (vx,vy,ω). We
used the modified version of RRT (RRT*) (Karaman and Frazzoli,
2011) as the path planner π and performed the following procedure
to collect the data in the environment:

1. m paths are planned in the environment using π
2. A path is randomly selected from the m planned paths, and the

path is followed until it ends
3. Step 1 is repeated

To plan random paths using RRT*, the tree was expanded until it
reached the timeout. We did not specify the goal configuration for
RRT* to generate the paths.

The training procedures we used for each model presented
in the previous subsections are presented in the subsequent
sections.

3.3.1 Estimation model training procedure
Because pπ(sT = sgoal|sstart,τ) is a binary classifier, we performed

maximum likelihood estimation for the model parameters. The
training data were labeled as follows:

1. A state is sampled from training data D, and the sampled state is
used as sstart.

2. A step number t (1 ≤ t ≤ T) is sampled, and the state t steps ahead
from sstart is used as sgoal.

3. (Direct estimationmodel) All the actions from 1 to t are labeled as
positive, and all the actions from t+ 1 to n are labeled as negative,
where n denotes the number of actions required to input into the
transformer model. (Indirect estimation model) A step number t′
(1 ≤ t′ ≤ T) is sampled, and the state t′ steps ahead from sstart is

used as sfuture. The action is labeled as positive if t′ is between 1
and t and labeled as negative otherwise.

In addition to the aforementioned labeling, we augmented the
training batch by swapping sstart and sgoal and labeling them as
negative. We used cross-entropy loss as the loss function. Adam
(Kingma and Ba, 2015) was used as the optimizer, and learning rates
of 2.0× 10−3 and 1.0× 10−4 were used for the direct and indirect
estimation models, respectively. For both models, the batch size was
set to 32, n was set to 100, and T was set to 1,500.

3.3.2 Image prediction model training procedure
We trained the image prediction network by minimizing the

sum of the mean squared error via K-step prediction (Oh et al.,
2015). The latter is expressed as

1
2K
∑
t

K

∑
k=1
‖s(i)t+k − fpred ( ̂s

(i)
t+k−1,a

(i)
t+k−1)‖

2
, (4)

where ̂s(i)t+k denotes the k-step prediction for the ith training data
starting from time t. The loss was propagated for 150,000 iterations
per prediction step K, which was increased stepwise, starting from
1 up to 9 in increments of 2 (i.e., 1, 3, 5, 7, and 9 steps). We used
the Adam optimizer (Kingma and Ba, 2015) with a learning rate of
1.0× 10−4 forK = 1 and 1.0× 10−5 for the other values ofK.The batch
size was set to 4. Furthermore, as in the study by Oh et al. (2015), we
unrolled the network through 10 steps and propagated the error for
10 predicted frames when the prediction step was K = 1, in which
the reference image was provided as an input instead of the network
output.

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2023.944375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ishihara and Takahashi 10.3389/frobt.2023.944375

FIGURE 7
Estimation results along reference paths 1 (A), 2 (B), 3 (C), and 4 (D) in the “Megaweb 2015” environment. The larger the T, the longer the distance that
could be predicted. However, a large T resulted in an unstable estimation.

4 Experiments

4.1 Empirical evaluation of the cost
estimation model

4.1.1 Cost estimation model
For the experiment, we trained the cost estimation model

shown in Figure 3C. The model’s architecture is identical to the
indirect estimation model’s architecture. The model’s convolution
layer consists of 32(6× 6), 32(4× 4), 32(4× 4), and 64(3× 3) kernels
with a stride value of 2. The linear layers consist of 2,048 and 1,024
hidden units, and it output the cost, which is the estimated number
of timesteps required tomove from sstart to sgoal.We usedReLUas the
activation function for each layer except for the last linear layer, and
we trained this network using the dataset mentioned in the previous
section.We focused on the steps between the two states in the dataset
to train the cost estimation network without explicitly providing
the cost as a label. Specifically, we randomly sampled two states in
the dataset, st1 and st2 (0 ≤ t1 ≤ t2 ≤ T), and computed the difference
between their timesteps as Δt = t2 − t1. This Δt was the cost to move
between states st1 and st2 . Because the data were collected along the

path generated by the asymptotically optimal path planner RRT*,
we assumed that this timestep difference was almost the optimal
cost-minimizing path between the states.We trained the network by
minimizing the loss function that represents themean squared error
computed using N randomly sampled pairs of states in the dataset.
This loss function is expressed as

1
N

N

∑
n=1
‖Δt(n) − fcost (s

(n)
t1
, s(n)t2 )‖

2
, (5)

where fcost is the modeled cost function, Δt(n) is the distance in steps,
and s(n)t1 and s(n)t2 are the two states in the nth sample. We trained
the network over 1 M iterations using the Adam optimizer with a
learning rate of 1.0× 10−3 for the first 0.1 M iterations and a learning
rate of 1.0× 10−4 for the remaining iterations. The batch size N was
set to 32.

4.1.2 Evaluation results of the trained model
We used Toyota’s Human Support Robot (HSR), a common

robotics platform developed for researchers (Yamamoto et al.,
2018), simulated in Gazebo (Koenig and Howard, 2004), an open-
source 3D dynamic multi-robot environment simulator. We also

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2023.944375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ishihara and Takahashi 10.3389/frobt.2023.944375

FIGURE 8
Estimation results along reference paths 1 (A), 2 (B), 3 (C), and 4 (D) in the “AWS small house” environment. The larger the T, the longer the distance that
could be predicted. However, a large T resulted in an unstable estimation.

used the “Megaweb 2015” (Toyota Motor Corporation, 2015) and
“AWS small house” (AWS RoboMaker, 2022) world as the simulation
environment. Both are publicly available environments and are
not specially designed for our experiment. Figure 4 presents an
overview of both environments.The “Megaweb 2015” environment’s
size is 7.0 m × 7.0 m, and it contains 12 objects. The dimension
for the “AWS small house” is 20.0 m × 10.0 m, and 87 objects
are available in the environment. We collected the training data
for approximately 2 h in each environment and trained the cost
estimation model for each environment with three different values
of T (defined as the maximum number of steps between sampled
states during the training): 500, 1,000, and 1,500 for “Megaweb
2015” and 1,000, 2,000, and 3,000 for “AWS small house.”Therefore,
the larger the T, the longer the distance that could be predicted.
To evaluate the cost estimation model, we defined reference paths
shown in Figures 5, 6 and compared the estimation quality of the
estimationmodel to the ground truth value.Each reference path was
generated using the RRT* path planner.The estimation results of the
trained models are shown in Figures 7, 8. The figure demonstrates
that, in both environments, for the model trained with a small T
value, the estimation failed for steps larger than T but was stable

for steps shorter than T. In contrast, the estimation model trained
with a large T value was unstable for all the steps. This was because
for larger T values, more incorrectly labeled training data could be
generated (Figure 1). To correctly train the model, collecting a large
amount of training data and accurately labeling data during training
is necessary. However, we assumed that meeting such requirements
would be unrealistic in real-world robotic applications.

4.2 Navigation experiment

To demonstrate the effectiveness of the proposed metric, we
conducted a navigation experiment using the navigation algorithm
shown in Algorithm 1.

The navigation algorithm generated multiple paths using the
RRT* path planner (Karaman and Frazzoli, 2011) and selected a
path that either minimizes or maximizes the predicted metric (i.e.,
cost or TA). We set the number of samples M in the navigation
algorithm to 32 in the experiment.The experimentwas conducted in
the same environment and with the same HSR robot demonstrated
in Figure 4. We used the same dataset mentioned in the previous

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2023.944375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ishihara and Takahashi 10.3389/frobt.2023.944375

FIGURE 9
Simulated robot trajectories in the “Megaweb 2015” environment. (A) Conventional cost estimator trained using T = 500. (B) Conventional cost
estimator trained using T = 1,000. (C) Conventional cost estimator trained using T = 1,500. (D) DVMPC. (E) Proposed task achievability (indirect
estimation model). (F) Proposed task achievability (direct estimation model). The blue circle and yellow star denote the initial and goal positions,
respectively.

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2023.944375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ishihara and Takahashi 10.3389/frobt.2023.944375

FIGURE 10
Simulated robot trajectories in the “AWS small house” environment. (A) Conventional cost estimator trained using T = 500. (B) Conventional cost
estimator trained using T = 1,000. (C) Conventional cost estimator trained using T = 1,500. (D) DVMPC. (E) Proposed task achievability (indirect
estimation model). (F) Proposed task achievability (direct estimation model). The blue circle and yellow star denote the initial and goal positions,
respectively.

section to train the models. The robot’s maximum translational
and rotational speed was set to 0.2 m/s and 0.5 rad/s, respectively.
Following the experiment described in the previous section, we
defined four combinations of initial and goal positions and evaluated
the navigation performance of the robot. In addition, considering
the stochasticity of the RRT* path planner, we conducted 10
navigation trials for each combination of initial and goal positions.
We chose two navigation methods as baseline algorithms. One
algorithm is the deep visual model predictive control (DVMPC)
(Hirose et al., 2019a) algorithm, one of the state-of-the-art visual
path-following algorithms.Theother isAlgorithm 1, executed using

a conventional cost estimator. As in our algorithm, DVMPC uses
360° images as input. However, DVMPC uses the Ricoh THETA S
camera (Ricoh Company, Ltd, 2022) to capture 360° camera angles.
Therefore, we simulated the Ricoh THETA S camera by placing two
360° cameras on the front and back sides of the robot.

Figure 9 illustrates the navigation trajectory of the robot in
the “Megaweb 2015” environment. Figure 9 demonstrates that the
navigation based on the cost estimation succeeded only when the
distance between the initial and goal positions was short. DVMPC
succeeded only with paths that did not require large changes in its
orientation. In contrast, Figure 9 shows that the navigation based

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2023.944375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ishihara and Takahashi 10.3389/frobt.2023.944375

1: Observe initial state s and set the goal state

to sgoal

2: while ϵ < fcost(s,sgoal) do

3: Sample M collision-free paths τ1,…,τM with

the planner π

4: for i = 1 to i ≤ M do

5:  Compute the input sequence u1:T,i to follow

τi

6:  Compute cost cτi = fcost(sgoal, fpred(τi,sstart)) or

TA pτi = pπ(sT = sgoal|sstart,τi)

7: end for

8: if Cost is computed then

9:  τ* = argminτicτi
10: else

11:  τ* = argmaxτipτi
12: end if

13: Follow τ* and observe the next state snext

14: s← snext

15: end while

Algorithm 1. Navigation algorithm.

on TA succeeded in all the navigation scenarios. In addition, the
navigation trajectory computed using the direct estimation model
was smoother compared to that of the indirect estimation model.
This was because the direct estimation model output the probability
with a single forward computation of the network, and the robot
was controlled with a shorter interval. Furthermore, even though
the proposed metric did not guarantee the optimality of the path,
the path generated by TA was identical to the shortest route to
the goal (Figure 5). There are two possible reasons for this result.
First, the navigation algorithm selected a path using TA, which was
generated by the optimal path planner RRT*. Second, high TA states
were concentrated around optimal cost-minimizing paths because
the training data were sampled using RRT*. Figure 10 illustrates
the navigation trajectory of the robot in the “AWS small house”
environment. From Figure 10, because the “AWS small house”
environment is larger than the “Megaweb 2015” environment, we
can find that navigation based on the cost estimation failed in
most of the tasks. In addition, as in “Megaweb 2015”, DVMPC has
succeeded only with paths that do not require large changes in
orientation. We found that once DVMPC diverges from a reference
path, it cannot recover from divergence and fails following the path.
Please check the Supplementary Appendix for further comparison
results between DVMPC and our proposed algorithm. In contrast,
the navigation based on TA with the indirect model did not
succeed navigating, but navigation based on TA with the direct
model succeeded in all the navigation scenarios. We confirmed that
navigation based onTAwith a directmodel has a success rate of 70%,
even though the goal position was selected at random in the “AWS
small house” environment. Additional experimental results can also
be found in Supplementary Appendix. These experimental results
verify the effectiveness of the proposed approach and the instability
of cost estimation-based navigation.

5 Conclusion and future research
directions

In this research, due to the strong demand for image-based
technologies that can easily enable multiple robotic agents to be
managed and controlled visually, we studied an evaluation metric
for the action selection of image-based robot navigation algorithms.
In previous research, the optimal cost to move between two states,
such as the shortest distance or time, was used to select robot actions
in image-based path-planning algorithms. To estimate the optimal
cost-minimizing path using images, a deep neural network-based
model is widely used. In this study, we empirically demonstrated
that when an estimator is trained with randomly collected trajectory
data, the accuracy of the optimal cost-minimizing path estimation
depends on themaximum predicted distance. In general, navigation
algorithms based on inaccurate estimators fail to navigate a robot
when the goal state is at a large distance from the initial state.
To overcome this issue, we proposed task achievability as an
alternative cost metric for evaluating robot actions in image-based
path-planning algorithms. To estimate the TA, we proposed a
direct approach and an indirect approach. The direct approach
estimated the TA by training a vision transformer-based model,
which output themetric directly from the input images.The indirect
approach first predicted a future state image according to the
planned path and then used the predicted future state image to
estimate the TA. Through navigation experiments conducted in a
simulated environment resembling a living room, we demonstrated
that path planning using our new metric succeeded in navigating
the robot, even when conventional cost estimation-based and visual
path-following approaches failed. Especially, the direct approach
robustly worked among different environments and achieved a 70%
navigation success rate on average.

However, in our experiment, the navigation of the robot was not
smooth, and oscillations were observed. We will work on this issue
in our future work. Possible approaches could be as follows:

• Applying filtering methods such as the Kalman filter to smooth
the velocity input
• Generating navigation paths taking into consideration both the
position and velocity of the robot
• Improving the estimator’s accuracy to avoid selecting incorrect
navigation paths

This will be one of the directions to take the study forward.
Improving the estimator’s robustness and accuracy against
real images, lighting conditions, and new environments will
also be a future research direction. Furthermore, applying
the proposed metric to other robotic actions, such as
manipulation tasks, and showing the effectiveness of the approach
with such tasks is also an interesting future research work
direction.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2023.944375
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ishihara and Takahashi 10.3389/frobt.2023.944375

Author contributions

All authors contributed to the study conception and design.
Material preparation, data collection, experiments, and analysis
were performed by YI. The manuscript was written by YI, and all
authors commented on each version of the manuscript. All authors
contributed to the article and approved the submitted version.

Funding

This work was supported by the Core Research for Evolutional
Science and Technology (CREST) of the Japan Science and
Technology Agency (JST) under Grant JPMJCR19A1.

Conflict of interest

The authors declare that the research was conducted in
the absence of any commercial or financial relationships

that could be construed as a potential conflict of
interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can
be found online at: https://www.frontiersin.org/articles/
10.3389/frobt.2023.944375/full#supplementary-material

References

AWS RoboMaker (2022). Aws robomaker small house world. Available at: https://
github.com/aws-robotics (Accessed March 13, 2022).

Cabinet Office, Government of Japan (2019). Moonshot research and development
program. Available at: https://www8.cao.go.jp/cstp/english/moonshot/top.html
(Accessed October 30, 2021).

Chaplot, D. S., Salakhutdinov, R., Gupta, A., and Gupta, S. (2020). “Neural
topological slam for visual navigation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13-19 June
2020.

Chebotar, Y., Hausman, K., Lu, Y., Xiao, T., Kalashnikov, D., Varley, J., et al. (2021).
“Actionable models: Unsupervised offline reinforcement learning of robotic skills,” in
Proceedings of the 38th international conference on machine learning. Editors M. Meila,
and T. Zhang (PMLR), 139, 1518–1528.

Chiappa, S., Racaniere, S., Wierstra, D., and Mohamed, S. (2017). “Recurrent
environment simulators,” in International Conference on Learning Representations,
Toulon, France, April 24-26, 2017.

Codevilla, F., Müller, M., López, A., Koltun, V., and Dosovitskiy, A. (2018). “End-to-
end driving via conditional imitation learning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA), Brisbane, Australia, 21 May 2018 – 25May 2018,
4693–4700. doi:10.1109/ICRA.2018.8460487

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
et al. (2021). “An image is worth 16x16 words: Transformers for image recognition at
scale,” in International Conference on Learning Representations, Vienna, Austria, May
3-7, 2021.

Ebert, F., Finn, C., Lee, A. X., and Levine, S. (2017). “Self-supervised visual planning
with temporal skip connections,” in Proceedings of the 1st Annual Conference onRobot
Learning, Mountain View, California, USA, November 13-15, 2017, 344–356.

Eysenbach, B., Salakhutdinov, R. R., and Levine, S. (2019). “Search on the
replay buffer: Bridging planning and reinforcement learning,” in Advances in Neural
Information Processing Systems 32, Vancouver, BC, Canada, 8-14 December 2019,
15220–15231.

Hendrycks, D., and Gimpel, K. (2016). Bridging nonlinearities and stochastic
regularizers with Gaussian error linear units. CoRR abs/1606.08415.

Hirose, N., Sadeghian, A., Xia, F.,Martin-Martin, R., and Savarese, S. (2019a). Vunet:
Dynamic scene view synthesis for traversability estimation using an rgb camera. IEEE
Robotics Automation Lett. 4, 2062–2069. doi:10.1109/LRA.2019.2894869

Hirose, N., Xia, F., Martin-Martin, R., Sadeghian, A., and Savarese, S. (2019b).
Deep visual mpc-policy learning for navigation. IEEE Robotics Automation Lett. 4,
3184–3191. doi:10.1109/lra.2019.2925731

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780. doi:10.1162/neco.1997.9.8.1735

Ishihara, Y., and Takahashi, M. (2021). Image-based action generation method
using state prediction and cost estimation learning. J. Intelligent Robotic Syst. 103, 17.
doi:10.1007/s10846-021-01465-4

Kahn, G., Villaflor, A., Ding, B., Abbeel, P., and Levine, S. (2018). “Self-
supervised deep reinforcement learning with generalized computation graphs
for robot navigation,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, QLD, Australia, 21-25 May 2018, 5129–5136.
doi:10.1109/ICRA.2018.8460655

Karaman, S., and Frazzoli, E. (2011). Sampling-based algorithms for optimal motion
planning. Int. J. Rob. Res. 30, 846–894. doi:10.1177/0278364911406761

Kingma, D. P., and Ba, J. (2015). “Adam: A method for stochastic optimization,” in
International Conference on Learning Representations, San Diego, CA, USA, May 7-9,
2015.

Koenig, N., andHoward, A. (2004). “Design and use paradigms for gazebo, an open-
source multi-robot simulator,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sendai, Japan, 28 September 2004 - 02 October 2004, 2149–2154.

Kumar, A., Gupta, S., Fouhey, D., Levine, S., and Malik, J. (2018). “Visual memory
for robust path following,” in Advances in Neural Information Processing Systems 31,
Montréal, Canada, 3-8 December 2018, 765–774.

LaValle, S. M. (2006). Planning algorithms. USA: Cambridge University Press.

Oh, J., Guo, X., Lee, H., Lewis, R. L., and Singh, S. (2015). “Action-conditional video
prediction using deep networks in atari games,” in Advances in Neural Information
Processing Systems 28, Montreal, Quebec, Canada, December 7-12, 2015, 2863–
2871.

Pathak, D., Mahmoudieh, P., Luo, G., Agrawal, P., Chen, D., Shentu, Y., et al. (2018).
“Zero-shot visual imitation,” in ICLR, Vancouver, BC, Canada, April 30 - May 3, 2018.

Ricoh Company, Ltd (2022). Ricoh theta. Available at: https://theta360.com/en/
about/theta/s.html (Accessed March 13, 2022).

Shah, D., Eysenbach, B., Kahn, G., Rhinehart, N., and Levine, S. (2020). Ving:
Learning open-world navigation with visual goals.

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2023.944375
https://www.frontiersin.org/articles/10.3389/frobt.2023.944375/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2023.944375/full#supplementary-material
https://github.com/aws-robotics
https://github.com/aws-robotics
https://www8.cao.go.jp/cstp/english/moonshot/top.html
https://doi.org/10.1109/ICRA.2018.8460487
https://doi.org/10.1109/LRA.2019.2894869
https://doi.org/10.1109/lra.2019.2925731
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s10846-021-01465-4
https://doi.org/10.1109/ICRA.2018.8460655
https://doi.org/10.1177/0278364911406761
https://theta360.com/en/about/theta/s.html
https://theta360.com/en/about/theta/s.html
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ishihara and Takahashi 10.3389/frobt.2023.944375

Terasawa, R., Ariki, Y., Narihira, T., Tsuboi, T., and Nagasaka, K. (2020). “3d-
cnn based heuristic guided task-space planner for faster motion planning,” in
2020 IEEE International Conference on Robotics and Automation (ICRA), Paris,
France, 31 May 2020 - 31 August 2020, 9548–9554. doi:10.1109/ICRA40945.2020.
9196883

Toyota Motor Corporation (2015). Toyota shifts home helper robot r&d
into high gear with new developer community and upgraded prototype.
Available at: https://global.toyota/en/detail/8709541 (Accessed March 13,
2022).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Advances in neural information processing systems.

Editors I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
et al. (London: Curran Associates, Inc.).

Yamamoto, T., Terada, K., Ochiai, A., Saito, F., Asahara, Y., and Murase, K. (2018).
“Development of the research platform of a domestic mobile manipulator utilized for
international competition and field test,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS),Madrid, Spain, 01-05October 2018, 7675–7682.
doi:10.1109/IROS.2018.8593798

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L., et al. (2017). “Target-
driven visual navigation in indoor scenes using deep reinforcement learning,” in 2017
IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29
May 2017 - 03 June 2017, 3357–3364. doi:10.1109/ICRA.2017.7989381

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2023.944375
https://doi.org/10.1109/ICRA40945.2020.9196883
https://doi.org/10.1109/ICRA40945.2020.9196883
https://global.toyota/en/detail/8709541
https://doi.org/10.1109/IROS.2018.8593798
https://doi.org/10.1109/ICRA.2017.7989381
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

