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Abstract 
 
This paper presents the derivation and implementation of a block integrator for the solution of 
stiff and oscillatory first-order initial value problems of Ordinary Differential Equations 
(ODEs). The integrator was derived by collocation and interpolation of the combination of 
power series and exponential function to generate a continuous implicit Linear Multistep 
Method (LMM). The basic properties of the derived integrator were investigated and the 
integrator was implemented on some sampled stiff and oscillatory problems. From the results 
obtained, it is obvious that the block integrator gives better approximation than some existing 
ones. 

Keywords: Block Integrator, Exponential Function, Oscillatory, Power Series, Stiff. 
2010 AMS Subject Classification: 65L05, 65L06, 65D30 
 

1 Introduction 
 
This paper considers the numerical solution of stiff and oscillatory first-order differential 
equations of the form, 
 

    0 0' ( , ), ( ) , [ , ]y f x y y x y x a b= = ∈       (1) 

 

where 0x  is the initial point, 0y  is the solution at the initial point and f  is assumed to satisfy 

Lipchitz condition stated below. 
 

Theorem 1 [1]: Let ),( yxf  be defined and continuous for all points ),( yx  in the region D  

defined by ,a x b y≤ ≤ − ∞ < < ∞ , a and b finite, and let there exist a constant L  such 

that, for every 
∗yyx ,, such that ),(),( ∗yxandyx are both inD ; 
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 ∗−≤− ∗ yyLyxfyxf ),(),(      

   

Then, if 0y  is any given number, there exists a unique solution )(xy  of the initial value problem 

(1), where ( )y x  is continuous and differentiable for all ( , )x y in D . 

 
According to [2], equation (1) is used in simulating the growth of population, trajectory of 
particles, simple harmonic motion, deflection of a beam, etc. Few equations that are modeled in 
higher order differential equations are first reduced to systems of first-order before appropriate 
method of solution is applied.  Most often, these problems do not have a closed form solution; 
hence appropriate methods are adopted to solve such problems. Different methods have been 
proposed ranging from predictor-corrector methods to block methods. Despite the success 
recorded by the predictor-corrector method, its major setback is that the predictors are in reducing 
order of accuracy especially when the value of the step-length is high and moreover the results are 
at overlapping interval, [3]. Block methods which have advantage of being more efficient in terms 
of cost implementation, time of execution and accuracy was developed to cater for some of the 
setbacks of predictor-corrector methods, see [4,5,6,7,8] and [9]. 
 

Definition 1 [10]:  A differential equation is said to be stiff if  Re( ) 0, 1(1)i i mλ < = , where λ  

is the eigen value of the differential equation.  
 
Definition 2 [11]: A nontrivial solution (function) of an ODE is called oscillating if it does not 
tend either to a finite limit or to infinity (i.e. if it has an infinite number of roots). The differential 
equation is called oscillating, if it has at least one oscillating solution. 
 
In search for a method that gives better stability condition, we develop a block integrator for the 
solution of stiff and oscillatory differential equations using an approximate solution which 
combines power series with exponential function.   
 
2. Methodology 
 
2.1 Derivation Technique of the Block Integrator 
 
We consider an approximate solution that combines power series and exponential function of the 
form, 

1

0 0

( )
!

j jr s r s
j

j r s
j j

x
y x a x a

j

α+ − +

+
= =

= +∑ ∑      (2) 

 
Interpolation and collocation procedures are used by choosing interpolation point sat a grid point 
and collocation points r  at all points giving rise to s rξ = +  system of equations whose 
coefficients are determined by using appropriate procedures. The first derivative of (2) is given 
by, 
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0 1

' ( )
( 1)!

j jr s r s
j

j r s
j j

x
y x ja x a

j

α −+ − +
−

+
= =

= +
−∑ ∑      (3) 

 

where , j
ja α ∈ℜ  for 0(1)7j =  and ( )y x is continuously differentiable. Let the solution of 

(1) be sought on the partition 0:N a xπ = < 1x < 2x < . . . < nx < 1nx + < . . .< Nx = b , of the 

integration interval [ ],a b  with a constant step-size h , given by, 1n nh x x+= − , 0,1,...,n N= .
    
Then, substituting (3) in (1) gives, 
 

11
1

0 1

( , )
( 1)!

j jr s r s
j

j r s
j j

x
f x y ja x a

j

α −+ − +
−

+
= =

= +
−∑ ∑      (4) 

Now, interpolating (2) at point , 0n sx s+ =  and collocating (4) at points , 0(1)6n rx r+ = , leads to 

the following system of equations,  
 

AX U=         (5) 
where  

0 1 2 3 4 5 6 7[ ]TA a a a a a a a a=   

1 2 3 4 5 6[ ]T
n n n n n n n nU y f f f f f f f+ + + + + +=  

and  
2 2 3 3 4 4 5 5 6 6 7 7

2 3 4 5 6

3 2 4 3 5 4 6 5 7 6
2 3 4 5 2

3 2
2 3 4 5 2 1

1 1 1 1 1 1

1 1
2! 3! 4! 5! 6! 7!

0 1 2 3 4 5 6
2! 3! 4! 5! 6!

0 1 2 3 4 5 6
2

n n n n n n
n n n n n n n

n n n n n
n n n n n n

n
n n n n n n

x x x x x x
x x x x x x x

x x x x x
x x x x x x

x
x x x x x x

X

α α α α α αα

α α α α αα α

αα α +
+ + + + + +

 
+ + + + + + + 

 

 
+ + + + + + 

 

+ +

=

4 3 5 4 6 5 7 6
1 1 1 1

3 2 4 3 5 4 6 5 7 6
2 3 4 5 2 2 2 2 2 2

2 2 2 2 2 2

3 2 4 3
2 3 4 5 2 3 3

3 3 3 3 3 3

! 3! 4! 5! 6!

0 1 2 3 4 5 6
2! 3! 4! 5! 6!

0 1 2 3 4 5 6
2! 3

n n n n

n n n n n
n n n n n n

n n
n n n n n n

x x x x

x x x x x
x x x x x x

x x
x x x x x x

α α α α

α α α α αα α

α αα α

+ + + +

+ + + + +
+ + + + + +

+ +
+ + + + + +

 
+ + + + 
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+ + +
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3 3 3
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2 3 4 5 2 4 4 4 4 4

4 4 4 4 4 4

3 2 4 3 5 4
2 3 4 5 2 5 5 5

5 5 5 5 5 5
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+ + + +
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+ +  
  

 
  + + + + + +    

 

Solving (5), for ' , 0(1)7ja s j =  and substituting back into (2) gives a continuous linear 

multistep method of the form:  
6

0
0

( ) ( ) ( )n j n j
j

y x x y h x fα β +
=

= + ∑       (6) 

where the coefficients of ny  and n jf + are given by, 
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0

7 6 5 4 3 2
0

7 6 5 4 3 2
1

7 6 5 4 3 2
2

7 6 5 4
3

1

1
(12 294 2940 15435 45472 74088 60480 )

60480
1

(3 70 651 3045 7308 7560 )
2520
1

(60 1330 11508 48405 98280 75600 )
20160

1
(15 315 2541 9765 17

3780

t t t t t t t

t t t t t t

t t t t t t

t t t t

α

β

β

β

β

=

= − + − + − +

= − − + − + −

= − + − + −

= − − + − + 3 2

7 6 5 4 3 2
4

7 6 5 4 3 2
5

7 6 5 4 3 2
6

780 12600 )

1
(60 1190 8988 32235 55440 37800 )

20160
1

(3 56 399 1365 2268 1512 )
2520
1

(12 210 1428 4725 7672 5040 )
60480

t t

t t t t t t

t t t t t t

t t t t t t

β

β

β











− 

= − + − + − 

= − − + − + −


= − + − + −


       (7) 

 

where ( )nt x x h= − . Evaluating (6) at 1(1)6t =   gives a block scheme of the form: 

 
(0) ( ) ( )m n n mA hd hb= + +Y Ey f y F Y                     (8) 

where [ ] [ ]1 2 3 4 5 6 5 4 3 2 1,
T T

m n n n n n n n n n n n n ny y y y y y y y y y y y+ + + + + + − − − − −= =Y y  

[ ] [ ]1 2 3 4 5 6 5 4 3 2 1( ) , ( )
T T

m n n n n n n n n n n n n nf f f f f f f f f f f f+ + + + + + − − − − −= =F Y f y  

 

(0)

1 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1
,

0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 1

A

   
   
   
   

= =   
   
   
   
   

E
,  

19087
0 0 0 0 0

60480
1139

0 0 0 0 0
3780
137

0 0 0 0 0
448
286

0 0 0 0 0
945
3715

0 0 0 0 0
12096
41

0 0 0 0 0
140

d

 
 
 
 
 
 
 
 =  
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2713 15487 586 6737 263 863

2520 20160 945 20160 2520 60480
94 11 332 269 22 37

63 1260 945 1260 315 3780
81 1161 34 729 27 29

56 2240 35 2240 280 2240
464 128 1504 58 16 8

315 315 945 315 315 945
725 2125 250 3875 235 275

504 4032 189 4032 504 120

b

− − −

− −

− −

=
−

−
96

54 27 68 27 54 41

35 140 35 140 35 140

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

3. Analysis of Basic Properties of the Block Integrator 
 
3.1 Order of the Block Integrator 
 
Let the linear operator { }( );L y x h  associated with the block (8) be defined as, 

{ } (0)( ); ( ) ( )m n n mL y x h A Y Ey hdf y hbF Y= − − −        (9) 

Expanding (9) using Taylor series and comparing the coefficients of h  gives,  
 

{ } 2 1 1
0 1 2 1( ); ( ) '( ) ''( ) ... ( ) ( ) ...p p p p

p pL y x h c y x c hy x c h y x c h y x c h y x+ +
+= + + + + + +      (10) 

 
Definition 3 [12]:The linear operator L  and the associated continuous linear multistep method (6) 

are said to be of order p if 0 1 2 1... 0 0.p pc c c c and c+= = = = = ≠  1pc +  is called the error 

constant and the local truncation error is given by, 
 

( 1) ( 1) 2
1 ( ) ( )p p p

n k p nt c h y x O h+ + +
+ += +      (11) 

For our block integrator, 
 

{ } [ ]

1

2

3

4

5

6

1 0 0 0 0 0 1 19087 2713

60480 252

0 1 0 0 0 0 1

0 0 1 0 0 0 1

( );

0 0 0 1 0 0 1

0 0 0 0 1 0 1

0 0 0 0 0 1 1

n

n

n

n

n

n

n

y

y

y

L y x h y h

y

y

y

+

+

+

+

+

+

    
    
    
    
    
    
    
    

= − −    
    
    
    
    
    
    
    
     

15487 586 6737 263 863

0 20160 945 20160 2520 60480
1139 94 11 332 269 22 37

3780 63 1260 945 1260 315 3780
137 81 1161 34 729 27 29

448 56 2240 35 2240 280 2240
286 464 128 1504 58 16 8
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3715 725 2125 250 3

12096 504 4032 189

− − −
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− −

−

1

2
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Expanding (12) in Taylor series gives: 
 

1
' 1

0 0

1
' 1

( ) 19087 2713 15487 586 6737 263 863
(1) (2) (3) (4) (5) (6)

! 60480 ! 2520 20160 945 20160 2520 60480

(2 ) 1139 94 11 332
(1) (2) (3)

! 3780 ! 63 1260 945

j j
j j j j j j j j

n n n n
j j

j j
j j j j j
n n n n

h h h
y y y y

j j

h h h
y y y y

j j

+∞ ∞
+

= =

+
+

 − − − − + − + − 
 

− − − + +

∑ ∑

0 0

1
' 1

0 0

1
' 1

269 22 37
(4) (5) (6)

1260 315 3780

(3 ) 137 81 11 34 729 27 29
(1) (2) (3) (4) (5) (6)

! 448 ! 56 2240 35 2240 280 2240

(4 ) 286 46

! 945 !

j j j

j j

j j
j j j j j j j j

n n n n
j j

j j
j j
n n n n

h h h
y y y y

j j

h h h
y y y y

j j

∞ ∞

= =

+∞ ∞
+

= =

+
+

 − + − 
 

 − − − + + − + − 
 

− − −
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0 0

1
' 1

0 0

4 128 1504 58 16 8
(1) (2) (3) (4) (5) (6)

315 315 945 315 315 945

(5 ) 315 725 2125 250 3875 235 275
(1) (2) (3) (4) (5) (6)

! 12096 ! 504 4032 189 4032 504 12096
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j j

j j
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n n n n
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= =
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+
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∑
1

' 1

0 0

0

0
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0

0

(6 ) 41 54 27 68 27 54 41 0(1) (2) (3) (4) (5) (6)
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j j
j j j j j j j j
n n n n

j j

h h h
y y y y

j j

+∞ ∞
+

= =

 
   
   
   
   
   
   
   
   

=   
   
   
   
   
   
   
    − − − + + + + +    

  

∑

∑ ∑

  (13) 

 
Hence, 
 

[ ]
0 1 2 3 4 5 6 7

8

0,

0.010( 03) 0.006( 03) 0.08( 03) 0.006( 03) 0.009( 03) 0.001( 03)
T

c c c c c c c c

c

= = = = = = = =

= − − − − − − −
  
Therefore, the block integrator is of order seven. 
 
3.2 Zero Stability 
 
Definition 4 [12]: The block integrator (8) is said to be zero-stable, if the roots , 1,2,...,sz s k=  

of the first characteristic polynomial ( )zρ  defined by 
(0)( ) det( )z zρ = −A E  satisfies 1sz ≤  

and every root satisfying 1sz ≤  have multiplicity not exceeding the order of the differential 

equation. Moreover, as 0,h →  ( ) ( 1)rz z zµ µρ −= −  where µ  is the order of the differential 

equation, r  is the order of the matrices 
(0) andA E , see [13] for details.  

 
For our block integrator, 
 

1 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1
( ) 0

0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 1

z zρ

   
   
   
   

= − =   
   
   
   
   

       (14) 
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5
1 2 3 4 5 6( ) ( 1) 0, 0, 1z z z z z z z z zρ = − = ⇒ = = = = = = . Hence, the block integrator is 

zero-stable. 
 
3.3 Consistency 
 
The block integrator (8) is consistent since it has order 7 1p = ≥ . 
 
3.4 Convergence 
 
The block integrator is convergent by consequence of Dahlquist theorem below. 
 
Theorem 2 [14]: The necessary and sufficient conditions that a continuous LMM be convergent 
are that it be consistent and zero-stable.  
 
3.5 Region of Absolute Stability 
 
Definition 5 [15]: Region of absolute stability is a region in the complex z  plane, where 
z hλ= . It is defined as those values of z  such that the numerical solutions of   'y yλ= −  

satisfy 0jy as j→ → ∞  for any initial condition. 

 
We shall adopt the boundary locus method to determine the region of absolute stability of the 
block integrator. This is achieved by substituting the test equation, 
 

  'y yλ= −         (15) 

 
 into the block formula gives (8). This gives, 
 

(0) ( ) y ( ) ( ) ( )m n n mw w h y w h wλ λ= − −A Y E D BY    (16) 

Thus, 
(0) ( ) ( )

( )
( ) ( )
m n

n m

Y w y w
h w

y w Y w

 −= − + 

A E
D B

        (17) 

 

since h  is given by ih h and w eθλ= = . Equation (17) is our characteristic/stability 
polynomial. For the block integrator, equation (17) is given by, 
 

( )

6 5 6 5 6 5 4 5 6

3 6 5 2 5 6 6 5 6 5

1 1 7 7 29 29
( )

7 7 10 10 15 15

7 7 25 25
3 3

2 2 6 6

h w h w w h w w h w w

h w w h w w h w w w w

     = − − − + − −     
     

   − + − − − + + −   
   

      (18)   

  
This gives the stability region shown in the figure below. 
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Fig. 1. Showing Region of Absolute Stability of the Block Integrator 

 
According to [12], stiff algorithms have unbounded RAS. Thus, from Fig. 1 above, the extended 
block integrator is suitable for solving stiff problems. Also, [10] said that the stability region for 
L-stable schemes must encroach into the positive half of the complex z plane. Thus, the block 
integrator is L-stable.    
    

4. Numerical Experiments 
 
We shall evaluate the performance of the block integrator on some challenging stiff and 
oscillatory problems which have appeared in literature and compare the results with solutions 
from some methods of similar derivation. The following notations shall be used in the tables 
below; 
 

ERR- |Exact Solution-Computed Solution| 
ERO- Error in [16] 
ERA- Error in [17] 
ERS- Error in [18] 
 

4.1 Numerical Examples 
 
Problem 1: 
 
Consider the highly stiff ODE 
 

2' 10( 1) , (0) 2y y y= − − =       (19) 
which has the exact solution, 

  
1

( ) 1
1 10

y x
x

= +
+

      (20) 
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This problem was earlier discussed by [10], he showed that many predictor-corrector and block 
methods become unstable with this problem, including the hybrid methods. However, the newly 
derived block integrator is used for the integration of this problem within the interval 
0 0.1x≤ ≤ . Authors in [16] solved this stiff problem by adopting a new 2-point block method 
with step size ratio at 1r = . Authors in [18] also solved problem 1 by applying a self-starting 
block integrator. 
 
Problem 2: 
 
Consider the Prothero-Robinson oscillatory ODE, 
 

' ( sin ) cos , 1, (0) 0y L y x x L y= − + = − =     (21) 
 
with the exact solution, 
 

  ( ) siny x x=                      (22) 

 
Authors in [17] solved this problem by adopting a generalized rational approximation method via 
Pade approximants with step number 6k = . 1r = . Authors in [18] also solved problem 2 by 
applying a self-starting block integrator. 
 

Table 1. Showing the results for stiff problem 1 
 

x             Exact solution            Computed solution      ERR                       ERS                 ERO 
0.0100  1.9090909090909092   1.9090909868074991 5.222834e-008   3.414671e-006   1.07e-03 
0.0200  1.8333333333333335   1.8333334606188648 8.727145e-008   2.749635e-006   2.38e-03 
0.0300  1.7692307692307692   1.7692307604778971 1.069875e-008   1.342943e-006   2.21e-03 
0.0400  1.7142857142857144   1.7142857127875963 8.987150e-008   9.090648e-006   5.36e-03 
0.0500  1.6666666666666665   1.6666666243797619 4.712423e-008   7.969685e-006   7.53e-03 
0.0600  1.6250000000000000   1.6250000175525943 1.808182e-008   6.994886e-006   9.00e-03 
0.0700  1.5882352941176470   1.5882352922979736 1.602002e-008   6.270048e-006   9.98e-03 
0.0800  1.5555555555555556   1.5555555882520038 1.429167e-008   6.017101e-006   1.06e-02 
0.0900  1.5263157894736841   1.5263157601947504 1.283029e-008   5.411308e-006   1.10e-02 
0.1000  1.5000000000000000   1.4999999213542157 1.159479e-008   4.880978e-006   1.12e-02 

 
Table 2. Showing the Results for Prothero-Robinson Oscillatory Problem 2 

_____________________________________________________________________________ 
x  Exact solution             Computed solution   ERR                ERS                 ERA 
0.1000  0.0998334166468282      0.0998334166468182  1.822016e-014    3.703180e-012    2.0e-11 
0.2000  0.1986693307950612      0.1986693307950227  2.271482e-014    6.102036e-012    3.0e-11 
0.3000  0.2955202066613396      0.2955202066613424  4.241108e-014    1.733789e-012    1.0e-10 
0.4000  0.3894183423086505      0.3894183423086136  1.364169e-014    1.115490e-012    2.0e-10 
0.5000  0.4794255386042030      0.4794255386042274  6.502551e-014    2.226122e-011    1.0e-10 
0.6000  0.5646424733950355      0.5646424733950910  9.103963e-014    5.567768e-012    2.0e-10 
0.7000  0.6442176872376911      0.6442176872376195  1.951339e-014    7.511613e-012    1.0e-10 
0.8000  0.7173560908995228      0.7173560908995716  7.155093e-014    1.253389e-011    2.0e-10 
0.9000  0.7833269096274835      0.7833269096274592  5.921081e-014    1.501860e-012    3.0e-10 
1.0000  0.8414709848078966      0.8414709848078846  8.457038e-014    1.803588e-011    3.0e-10 
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4.2 Discussion of Results 
 
 

We have considered two numerical examples in this paper. The first problem (which is stiff) was 
solved by authors in [16] where they applied 2-point block method with step-size ratio at 1r =  
while the second problem (which is oscillatory) was solved by authors in [17] where they adopted 
generalized rational approximation method via Pade approximants with step number 6k = . We 
solved the two problems using the new block integrator developed. Tables 1 and 2 above showed 
that the block integrator gives better results than the existing ones. 
 

4. Conclusion 
 
We have presented a block integrator for the solution of stiff and oscillatory first-order ordinary 
differential equations. Our aim was to construct highly stable block integrator which is 
computationally more efficient than many of the existing numerical integrators for stiff and 
oscillatory problems. The approximate solution (basis function) adopted in this paper produced a 
block integrator with L-stable stability region. This made it possible for the block integrator to 
perform well on stiff and oscillatory problems. The block integrator proposed was found to be 
zero-stable, consistent and convergent. The block integrator was also found to perform better than 
some existing methods in view of the numerical results obtained. 
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