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Abstract
Molecular dynamics (MD) simulations are a cornerstone in science, enabling the investigation of a
system’s thermodynamics all the way to analyzing intricate molecular interactions. In general,
creating extended molecular trajectories can be a computationally expensive process, for example,
when running ab-initio simulations. Hence, repeating such calculations to either obtain more
accurate thermodynamics or to get a higher resolution in the dynamics generated by a fine-grained
quantum interaction can be time- and computational resource-consuming. In this work, we
explore different machine learning methodologies to increase the resolution of MD trajectories
on-demand within a post-processing step. As a proof of concept, we analyse the performance of
bi-directional neural networks (NNs) such as neural ODEs, Hamiltonian networks, recurrent NNs
and long short-term memories, as well as the uni-directional variants as a reference, for MD
simulations (here: the MD17 dataset). We have found that Bi-LSTMs are the best performing
models; by utilizing the local time-symmetry of thermostated trajectories they can even learn
long-range correlations and display high robustness to noisy dynamics across molecular
complexity. Our models can reach accuracies of up to 10−4 Å in trajectory interpolation, which
leads to the faithful reconstruction of several unseen high-frequency molecular vibration cycles.
This renders the comparison between the learned and reference trajectories indistinguishable. The
results reported in this work can serve (1) as a baseline for larger systems, as well as (2) for the
construction of better MD integrators.

1. Introduction

Computational physics and chemistry and in particular molecular dynamics (MD) simulations are
fundamental tools for the understanding of molecular systems [1–3]. According to the ergodic theorem, the
statistical information embedded in the MD generated trajectories is equivalent to performing
thermodynamical ensemble averages [1]. This is a valid statement for very long molecular trajectories,
meaning that generating predictive thermodynamical observables using ab initiomethodologies will demand
large computational resources. In order to reduce the computational load, a number of simulation
parameters can be tuned to considerably reduce the amount of costly electronic structure calculations. For
example, it is known that performing trustworthy thermodynamical averages from MD results requires the
use of non-correlated samples from the trajectory. This in turn allows dismissing intermediate steps in the
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simulations. Subsequently, if the MD integration time step is∆τ , then we can store samples every n step
(i.e.∆t= n ∗∆τ . Nevertheless, by doing so, valuable dynamical information is being dismissed, for example
subtle dynamical processes and fine correlations in the system.

The parameter∆τ in MD simulations represent a parameter that has to be chosen in a way to maximize
computational efficiency while keeping the precision required to generate physically meaningful results. On
one hand, the integration step∆τ has to be small enough to generate energy conservative dynamics and to
accurately sample high frequency modes. On the other hand, it also has to be large enough to reduce
unnecessary use of computational resources, which then could also lead to non-smooth trajectories and
important features could be overlooked.

Beyond the well known techniques developed within the field of statistical thermodynamics to discretize
and integrate Newton’s equations of motion [1], in recent years, innovative machine learning methods have
appeared to accelerate and improve MD simulations ranging from force fields learning [2, 4–22] to avoid
expensive ab initio evaluations, direct free energy sampling techniques [23–26] as well as new integrator
learning [27–31]. Additionally, extensive software has been developed coupling modern machine learning
models with MD techniques [32–34]. Each one of those approaches contributes to a different aspect of the
task of accelerating molecular simulations, notably with the learned integrator of equations of motion the
least studied up to now. This last area of trajectory and integrators’ learning is precisely the topic that we will
address in this article.

In this regard, some early attempts to replace conventional dynamic evolution methodologies were
developed first by introducing the concept of neural ordinary differential equations (NODEs) [28], and then
by modifying deep neural network (NN) architectures to include physical inductive biases. For example,
Greydanus et al [29] introduced Hamiltonian NNs (HNN) which approximate the Hamiltonian in classical
mechanics with a NN. Subsequently, they compute the velocity and acceleration by taking the partial
derivatives of the approximated Hamiltonian, q̇= ∂H/∂p and ṗ=−∂H/∂q. Then following this idea,
Cranmer et al [30] expanded on such approach by approximating the Lagrangian of the system introducing
Lagrangian NNs (LNN), which relies on computing the partial derivatives corresponding to velocity and
acceleration with the Lagrangian formalism. The architectural configuration of HNN’s and LNN’s endow the
models with the principle of energy conservation. Even though these methods give good results for ideal
systems, their energy conserving bias is then a limitation when describing realistic systems such as
thermostated molecular simulations.

Recently, more robust methodologies have been applied to overcome some limitations of analytically
biased models, for example, Tsai et al [23] used modern natural language processing models to predict the
probability distributions of dynamical systems allowing the direct calculation of thermodynamical
observables. Another important example was presented by Kadupitiya et al [27] where by means of
uni-directional recurrent neural networks (RNNs) they manage to forecast the positions and velocities for
low-dimensional systems. The methodologies above-mentioned, even though they have made considerable
advances in the field of MD simulations, are still missing a robust analysis of their applicability on realistic
scenarios and their interpolation accuracy.

In this article, we introduce a series of approaches to create time-super-resolution of MD trajectories
using a wide variety of NN–based methods. In particular, we focus on the family of bi-directional recurrent
neural networks to precisely address this issue in the formalism of learnable differential equations. Our
method is used to interpolate missing trajectory snapshots, thereby increasing the resolution of the
simulations in a post-processing manner. Hence, it allows enhancing on-demand the resolution of dynamical
properties such as vibrational spectra, better free energy surfaces (FESs), as well as more detailed animations.
Additionally, from applying our methodology to realistic molecular systems, we have found an insightful
trend (which may not come as a complete surprise): the higher the temperature of the system, the easier to
learn its dynamics is. This result supports the hypothesis that the Helmholtz free energy is less complex than
the underlying potential energy surface (PES). In other words, as the temperature increases, the dynamics of
the system becomes smoother. Which means that by combining MD simulations with our post-processing
super-resolution method, the computational cost as well as simulations times could be considerably reduced.

2. Methodology

2.1. Molecular dynamics
Performing MD simulations of a molecular system in practice requires discretizing in time Newtons’
equations of motion ä=m−1F. The Velocity-Verlet algorithm is a popular choice for this discretization given
a PES U= U(r) which defines the force field F=−∇rU acting on each atom. Hence, as a result, we obtain a
trajectory with the molecular time evolution or in other words, a time series of the atomic coordinates r and
momentum p: S = {xt = (rt,pt); t= i∆τ, i= 0, . . . ,NT}. Here x is known as a point in the phase space of
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the system. The discretization parameter∆τ has to be selected according to the system and the simulation
conditions. In fact, it is key to choose it much smaller than the fastest oscillation period in the system. Which,
due to the nature of chemical bonds, renders∆τ in the order of 0.1 to 1 fs for organic systems. Now, another
fundamental aspect to generate meaningful simulations is the length of the time series or the total simulation
time T= NT ∗∆τ , which in contrast to the selection of∆τ , has to be much larger than the slowest
oscillation in the system. According to the ergodic theorem, in order to fully recover the thermodynamical
properties of the system NT →∞, nevertheless in practice a careful selection of a finite value of these
parameters gives converged thermodynamic averages. Thereby, the selection of NT is a more abstract task
because it is tightly correlated to the type of system and the physical phenomena to be studied. For example,
studying light diatomic molecules could require simulation times on the order of tens of fs (NT ≈ 103), while
more interesting molecules containing a couple of dozens of atoms and a fluxional molecular structure
would require simulations on the order of ns (NT ≈ 107) [20, 35]. Keeping in mind that every integration
step during the MD simulation requires the explicit calculation of the potential energy and forces, which in
the case of electronic structure calculations such as density functional theory (DFT) can take on the order of
seconds, we can see the benefit on creating a methodology that helps to reduce the value ofNT without losing
accuracy. In a straightforward manner, this implies that we take larger integration steps in the simulation.

2.2. MD trajectory interpolation with NNs
In this article, we propose to employ machine learning algorithms to integrate Newton’s laws of motion
directly from the phase space vector representation of molecules. To that end, we train a machine learning
integrator to interpolate the phase space trajectory of the molecules over a finite time horizon. In general, r,
p ∈ R3N where N is the number of atoms in the molecular system, but for the sake of simplicity here we will
analyse the one dimensional case, r, p ∈ R and later generalize to 3N dimensions.

A time-dependent variable can be described by the differential equation ẋt = f(xt, t) for a general time
index t, which is derived from the phase space vector, which then has the discrete solution,

xt+∆t = xt +

ˆ t+∆t

t
f(xt ′ , t

′)dt ′. (1)

Now, instead of performing a ‘big’ jump by∆t, we would like to interpolate in between the two
subsequent phase space vectors xt+∆t and xt to achieve a higher resolution. Hence, we choose to integrate a
parameterized dynamics described by, ẋτ = fθ(xτ , τ) which has a higher temporal resolution τ between any
two subsequent states in the simulation xt (i.e. τ ∈ [t, t+∆t]). Thereby, two subsequent phase space vectors
in the coarse simulation separated by a time∆t takes the form,

xt+∆t = xt +

ˆ t+∆t

t
fθ(xτ , τ)dτ (2)

where the second term is the NN integrator that propagates the dynamics. To infer the correct set of
parameters θ of the integrator network, we have to optimize the scalar loss function,

L( fθ(xτ , τ), f(xτ , τ), t, t+∆t)

=
1

∆t

∥∥∥∥∥
ˆ t+∆t

t

[
fθ(xτ , τ)− f(xτ , τ)

]
dτ

∥∥∥∥∥
2

. (3)

The loss function is evaluated on randomly sampled sections of the trajectories in mini batches.

2.2.1. Bi-directional interpolation
The coarse simulation xt provides a trajectory at discrete time steps∆t, from which the learned intermediate
dynamics fθ(xτ , τ) reconstructs the missing trajectory segment at a higher resolution (see figure 1(B)). This
means obtaining xτ , where τ ∈ {t, t+∆τ, . . . , t+(n− 1)∆τ, t+∆t} and∆τ/∆t gives the enhanced
resolution. The coarse trajectory at time steps xt and xt+∆t thus provides the initial and the final condition
for the dynamics fθ(xτ , τ).

Now, for better error control we can make use of the fundamental property of time reversibility of
Newtons’ equations. We obtain the same trajectory if we start from the initial conditions x0 and get to the
final state xT and if we start from xT and propagate the system backwards in time to x0. With the provision of
the initial condition xt and the final condition xt+∆t, we can compute the forward

⇀
x τ and backward

↼
x τ

trajectories for τ ∈ {t, t+∆t} (see figure 1),

⇀
x τ = xt +

ˆ τ

t
fθ(xs, s)ds (4)
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Figure 1. Interpolation of the trajectory using a bi-directional NNs. (A) Linear combination of the forward
⇀
x τ (red) and

backward
↼
x τ (blue) solutions allows for better control of the error by using the information of both the initial and the final

condition, x(ti) and x(tf), respectively. λτ is the mixing parameter defined by equation (6). (B) Graphical description of the
interpolation process by combining the forward and backward predictors. (C) Loss function.

↼
x τ = xt+∆t −

ˆ τ

t+∆t
fθ(xs, s)ds. (5)

The interpolation of the two trajectories is achieved via the interpolation parameter
λτ ∈ [0,1], τ ∈ [0,∆t],

λτ =

´ τ
s=0 s ds

∆t
(6)

which is monotonically increasing for the duration τ ∈ [0,∆t] and is designed to shift the weight from the
forward trajectory to the backward trajectory over the course of the interpolation. The interpolated
trajectory can then be recovered via,

xτ = (1−λτ )
⇀
x τ +λτ

↼
x τ . (7)

This equation was inspired by the very insightful concept of thermodynamic integration from the FES
computation’s toolbox [1]. The interpolation is visualized in figure 1, which highlights the shifting
interpolation parameter λτ .

2.2.2. NN integrators
In order to assess which NN architecture is the most suitable to interpolate MD trajectories, we considered
four NN integrators: neural ODEs, HNNs, recurrent NNs and long short-term memory (LSTM) [36]. A
pictorial description of the considered architectures is presented in figure 2.

2.2.2.1. Differential architectures
The most accessible approach to modelling the approximate dynamics f θ is by directly computing the
differentials with a fully-connected NN. The Euler discretization is often sufficient for convergence but more
sophisticated, adaptive solvers are applicable such as Runge-Kutta and Dormand-Prince solvers for
differential equations [37]. In order to be applicable to deep NNs trained with the backpropagation
algorithms, these solvers require the use of the adjoint sensitivity method, which backpropagates an adjoint
quantity as a surrogate gradient through time [28]. The adjoint sensitivity method backpropagates the error
through adaptive solvers with a constant memory cost, which is highly suitable for adaptive solvers with
potentially large number of evaluations. Once the adjoint is backpropagated to all evaluations, the gradients
of the parameters θ can be obtained and gradient descent training is eligible.

Newton’s equation for dynamical systems can be generalized into the Hamiltonian mechanics
framework. The canonical coordinate positions rt and momentum pt can be obtained through the partial
derivatives of the HamiltonianH(rt,pt). HNNs [29] predict an approximate HamiltonianHθ ≈H
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Figure 2. (A) The information flow in a bi-directional integrator, which is trained to interpolate the differential equation that
governs the MD. The same NN differential equation is utilized to predict the solution from the initial condition [r0,p0] at t= 0
forward in time and from the final condition [r3,p3] at t= 3 backward in time. Subsequently, the forward and backward solution
is interpolated with λτ to obtain the interpolated values. (B) The HNN architecture which uses partial derivatives of the network
output in the forward pass. (C) The information propagation of LSTM NNs and the inner dynamics of each LSTM cell consists of
aggregating the input information x with the memory cell c and computing the output h. (D) NODEs use NNs in black box
adaptive ODE solvers. (E) RNN model architecture showcasing how the NN integrators propagate and aggregate information
through time in their hidden state h.

parameterized as a deep NN and compute the time derivatives ṙt and ṗt during the forward pass. In terms of
functional analysis, one has to be careful in using an architecture which is differentiable at least twice, since
the network is trained through backpropagation which requires a second differentiation of the model. In
practice, this amounts to using continuously differentiable activation functions such as tangent hyperbolic or
sigmoid and refrain from using piece-wise linear activation functions such as rectified linear units. By virtue
of their construction, Hamiltonian networks exhibit energy conserving properties, such that the total energy
of a dynamical system remains constant. This is of interest for energy-based systems such as MD, in which
energy is shifted between potential and kinetic energy but never lost.

2.2.2.2. Recurrent architectures
RNNs extend feed-forward NNs through recurrent connections through time. They offer the ability to
explicitly model time dependent relationships by incorporating the neuron activations of the previous time
step. LSTM networks are recurrent architectures that resolve some important issues on general RNNs by
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using memory cells that can selectively read and write to them. LSTM’s are widely used in modelling time
series and provide a remedy for the vanishing and exploding gradient problem of classical RNN’s due to
excessive or miniscule eigenvalues in the recurrent weight matrices [38].

Whereas Ordinary Differential Networks and Hamiltonian Networks are considered Markovian in the
sense that they only use the current state xt of the dynamical system to predict the time derivative ẋt, RNNs
and LSTMs are capable of modelling long-distance dependencies through their hidden states in memory
cells. In the next section, we analyse in detail the performance of these two different approaches, as well as
their bi-directional variants on the task of trajectory reconstruction.

2.3. NN architectures and optimization
The networks were trained to predict the change in the 3N position and 3N momentum of every atom for a
total input and output dimensions of 6N where N is the number of atoms in the respective molecule. For all
networks we employed a standardized number hidden layers and the number of neurons in the hidden layers
was chosen as a integer multiple of the input dimension. For our experiments we chose five hidden layers and
a multiple of 5 which resulted i.e. for a molecule of N = 10 atoms in 10× 3× 2= 60 input features and
60× 5= 300 neurons per hidden layer.

The NNs were trained on predicting entire trajectories of varying length. For each mini-batch a
sub-trajectory of length∆t with n time steps was sampled and the first value was used as the initial condition
for the integration of the differential equation. For bi-directional models, the final time step was used for the
backward integration. The recurrent architectures such as RNN and LSTMs allowed for a trajectory as the
initial respectively final condition. This gave better results but made an unfair comparison vis-a-vis the
NeuralODE and HNNmodels which by design can only take a single time step as their respective initial
condition.

The optimization was done on mini-batches of 200 samples with the default parameters of the ADAM
optimizer [39]. Furthermore, a plateau learning rate scheduler was employed which halved the learning rate
every epoch if the criterion had not improved every epoch by a minimum of 0.001 until a minimal learning
rate of 0.00001 was reached with a patience of three epochs. The validation samples were sampled from the
final 10% of the training data set by the same subtrajectory sampling as described above.

In order to speed up the training and inference speed in bi-directional models, the integration both
forward and backward in time was combined into a single combined mini-batch. The NNs predicted the
forward and backward integration in a single evaluation and the backward integration was appropriately
prepared by reversing the momentum in time.

The experiments were done on the extended-MD17 database [8, 40]. This consists in a set of MD
simulations carried out for nine molecules with different levels of fluxionality computed at the DFT level of
theory using the PBE functional together with the Tkatchenko-Scheffler dispersion correction scheme
[41, 42]. These molecules are shown in figure 3. This database is available at the quantum-machine website.
The length of the trajectories range from 100 000 time steps to almost 1 000 000 time steps with a step size of
one femtosecond. The position and momentum was normalized by subtracting the centre of the molecule at
each time step and rescaling the momenta such that they were standard normally distributed. The original
characteristics was easily recovered by reversing the normalization.

3. Results and discussion

3.1. Training and validation of the model
The general goal of this study is to establish the applicability of the presented methodologies on realistic
dynamics from physico-chemical simulations. To this end, we have selected the well established
extended-MD17 dataset [8, 35] which contains middle-sized molecules with various dynamical complexities.
In this section, we analyse the performance of the bi-directional approaches (i.e. LSTM, RNN, HNN, and
NODE) compared to their uni-directional counterparts while considering different resolution for the
interpolation tasks. These results are shown in figure 3.

3.1.1. Uni- vs bi-directional NNs
Common methods for sequence and trajectory learning are usually deployed using the natural arrow of time,
nevertheless it has been demonstrated in other areas of machine learning, such as language modelling
[43–45], that bi-directional learning substantially improve the results. Here, we exploit the regularity of the
physical trajectories and local time reversal symmetry by using bi-directional versions of the architectures
shown in figure 2. In order to directly show the benefit of this approach, in figure 3 we compare the
performance of the two approaches for all the molecules from the extended-MD17 dataset [8]. From this
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Figure 3. Performance comparison of uni- and bi-directional models over multiple integration lengths∆t on the
extended-MD17 dataset [8, 35]. Uni-directional and bi-directional methods are represented by empty and full symbols,
respectively. The considered interpolation resolutions are 5, 10, and 20 in femtoseconds.

figure, we can quickly see that using bi-directional NNs can boost the accuracy of the model by up to two
orders of magnitude. This reveals that including both directions of the arrow of time goes beyond simply
duplicating the amount of data. Instead, this strongly encodes the trajectory’s regularity in the model, which
results in a more accurate description without increasing the number of parameters in the architecture.
Additionally, we can see that this phenomenon is not architecture specific, since all the tested NNs obtained a
similar increase in accuracy and similar learning curves when considering bi-directionality. Additionally,
such behaviour is also independent of the interpolation resolution.

3.1.2. Bi-LSTM performance
Now, comparing the different bi-directional methods, we can see that RNNs (i.e. RNN and LSTM) always
perform better than neural ODE based approaches. This is due to the fact that recurrent based NNs are more
robust against noise, as will be the case when dealing with thermostated MD simulations. Furthermore,
figure 3 shows that the Bi-LSTM architecture (see figure 2) gives more consistent results across molecular
structures with different complexities compared to the rest of the architectures, reaching interpolation errors
of up to one order of magnitude lower. This advantage of Bi-LSTMs over other architectures could be related
to the fact that LSTM cells propagate information more efficiently and keep track of the many subtleties in
the molecular trajectories for longer periods of time. It is worth to remark that the accuracies reached by
Bi-LSTMs in real space (i.e. coordinates) range on the order of 10−3 Å, which in practical terms is
indistinguishable from the reference trajectory. Given these results, from now on, we will focus our analysis
only on Bi-LSTM networks.

3.1.3. Molecular complexity and degrees of freedom
As an additional observation, we have noticed that molecules with higher complexity (e.g. larger number of
rotors and/or higher fluxionality) generate more intricate trajectories that render the reconstruction process
more challenging. This is only evident for the cases of paracetamol, ethanol and aspirin, nevertheless, there
are cases where the correlation between interpolation accuracy and molecular morphology is non-intuitive.
For example, even though the keto-MDA molecule (see figure 3) presents a complex PES with two rotors as
main degrees of freedom [46], the reconstruction precision of its trajectory is similar to benzene and uracil,
molecules that have no rotors and are formed only by an aromatic ring. Furthermore, the best accuracy
reached by the Bi-LSTMmodel was for salicylic acid, a molecule that has two rotors coupled by a complex
hydrogen bond where the proton is dynamically being transferred between the two functional groups.

The physical interpretation of these results is that the reconstruction process occurs on the FES of the
molecular system, which means that the molecule is moving on its FES instead of the PES. Hence, moving on
the molecular FES at a given temperature can result on non-trivial behaviour originated from the entropic
contributions. Thereby, a molecular system containing complex interaction such as salicylic acid which has a
H–bond can generate a smoother dynamics compared to uracil or naphthalene (see figure 3 for molecular
structure reference).
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The insight behind these results is that, for the considered molecules, thermal fluctuations considerably
reduce the dynamical complexity of molecular systems with high fluxionality. Thereby, simplifying the
learning process.

3.2. Achieving super-resolution inMD trajectories
In the previous section, we have demonstrated that Bi-LSTMs are a suitable architecture for trajectory
learning of realistic molecular simulations. In this section, we continue analysing what it implies to
reconstruct molecular trajectories, but now from the vibrational point of view, first from the normal
frequencies framework and then from the real dynamics perspective.

One of the key aspects in trajectory interpolation is the time resolution that can be achieved by the
model. Given that the MD17 dataset has integration steps of 1 fs, here the task was to skip a number of
frames n for each molecule and then reconstruct the missing fragments on the trajectory. Hence, for this
dataset,∆τ = 1 fs and∆t= n fs. In this regard, figure 3 shows the performance of all the models for∆t= 5,
10 and 20 fs. Let’s analyse the results for each value of∆t in the context of its physical implications for the
vibrational normal modes (i.e. harmonic analysis). As a reference, the fastest atomic oscillation periods in
paracetamol and in benzene are≈9.3 and≈11 fs, respectively [32]. Such vibrations are mainly due to fast
oscillations of the hydrogen atoms in the molecule. Hence, sampling a trajectory every 5 fs in the context of
molecular vibrations means that we are skipping half the period of the fastest oscillation in the molecule,
which implies that, at most, the model has to interpolate half of the oscillation cycle. This fact is reflected on
the validations errors shown in figure 3. More challenging cases are sampling molecular trajectories every 10
and 20 fs, given that in these two cases the model has to reconstruct at least one full period (in the case of
∆t=10 fs). Furthermore, the most interesting resolution to analyse in more detail is∆t=20 fs, given that in
such case the model has to reconstruct at least one full cycle of all the molecular oscillations with frequencies
larger than≈1600 cm−1. Which in the case of the benzene molecule, there are eight out of 30 normal modes
with frequency values larger than such value (i.e. ~27% of the normal modes). More interestingly, six of
them have oscillation periods of≈10 fs, meaning that the∆t=20 fs model has to reconstruct two full
oscillations periods for the six vibrational modes using as inputs only the initial and final states (i.e. (rt,pt)
and (rt+21,pt+21)). In the supporting information, we have animated such example for the toluene molecule
case, where the true dynamics is represented by blue atoms and the interpolated dynamics appears in red. As
expected from figure 3, the dynamics is practically indistinguishable.

In order to visualize this analysis, in figure 4 we present the reconstructed trajectory for the benzene
molecule using the Bi-LSTM architecture for∆t=20 fs, and we show its dynamics in terms of its main
internal degrees of freedom: interatomic distances, angles and dihedral angles. In this figure, the blue curve is
the ground truth and the red dashed line represents the predicted dynamics. A quick glance over the plot
shows that, even though the∆t=20 fs case in figure 3 is the one that gives the largest error, such accuracy still
corresponds to an excellent agreement between the reference trajectory and the ML prediction.

As mentioned before, the fastest oscillation in a molecule are due to hydrogen atoms oscillations, which
in the benzene case it can be tracked by plotting the interatomic distance dC-H (figure 4 top panel). Here, the
measured oscillation period from the signal is≈11 fs, slightly larger than the normal mode value. The origin
of this red shift is the fact that at finite temperatures the system visits the anharmonic region of the PES,
which then generate slower oscillations. As a reference, a green rectangular window is used in figure 4 to
show examples of interpolated intervals of trajectories. Hence, in the case of dC-H we can clearly see that the
method is successfully reconstructing two full cycles of the variable, rendering indistinguishable the
comparison to the reference trajectory. Another important internal variable is the first neighbour
carbon-carbon distance dC-C (second panel in figure 4). dC-C oscillation period is in general considerably
slower, but because such interatomic distance is part of many anharmonically-coupled vibrational modes, it
can create apparent high-frequency diatomic oscillations (as short as≈9 fs). Here, despite the complex
dynamics of this internal variable, the model manages to faithfully recover its behaviour. Now, in order to
incorporate a highly non-linear and weakly correlated interatomic distance, we considered two opposite
hydrogen atoms, dH-H (third panel in figure 4). In principle, this variable should amplify small errors in the
reconstructed trajectory, nevertheless the results are still in excellent agreement.

Another important aspect in molecular fluctuations is the analysis of internal shearing deformations as
well as out of plane deformations, which represent a global mechanical property of the system. These
mechanical deformations can be analysed by measuring shearing angles and dihedral angles, as shown in the
lower half of figure 4. The oscillations in these variables are considerably slower compared to interatomic
distance fluctuations, but they can contain highly anharmonic contributions, making them a good measure
for reconstruction accuracy. Again, here the interpolation accuracy of the model is very high, which makes
the predicted trajectories indistinguishable from the reference curve. In fact, the MAE reconstruction
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Figure 4. Analysis of the benzene dynamics and its interpolation for the 20 fs interpolation case. The six internal variables
displayed are representative feature of the molecule, including interatomic distances (in Å), internal angles (in degrees), and
dihedral angles (in degrees) (represented in red, green and blue in the left-most molecular structure, respectively). The true
dynamics is displayed by the blue curve and the predicted results are given by the dashed red lines. In grey dotted lines we show
some relevant periods for some variables, and in a green window we represent the 20 fs interpolation interval.

accuracy of the Bi-LSTMmodel for the benzene molecule’s trajectory is ~10−4 Å, a value that is close to the
accuracy of the actual numerical integrators such as the Verlet algorithm.

The results obtained in this section show that the methods presented here, and in particular Bi-LSTMs,
give excellent trajectories’ reconstruction accuracies, rendering their predictions indistinguishable from full
ab-initioMD results. Hence, this allows to confidently use these techniques in a diverse range of applications
such as data augmentation, super-resolution generation, or even storage capacity reduction. In the next
section, we use Bi-LSTMs to extract some physical insights from learning trajectories at different
temperatures, where we demonstrate that we can faithfully recover its molecular FES.

3.3. Physical insights from the reconstruction process: application to keto-MDA as case of study
The keto-MDA molecule is a challenging molecule given that it presets a wide variety of interactions that
generate a PES with strong electrostatic interactions but also regions with particle-in-a-box behaviour
[40, 46]. Hence, such intricate energy landscape generates interesting dynamics from which, for example,
force field reconstruction is not a straightforward task and requires the use of sophisticated ML
methodologies [6, 9, 19, 47]. Interestingly, there is evidence that the force field learning process gets easier
when the temperature of the generated training data gets lower [46], given that, in general, they explore
smaller regions of the configurational space.

From the statistical point of view, the MD trajectories at a given temperature sample the configuration
space in such a way that the molecular FES can be estimated by∼ ln P(θ1,θ2) where P(θ1,θ2) is the
integrated configurational probability density, and θ1 and θ2 are the main degrees of freedom of the system
(see figure 7). In general, the FES is known to get smoother as we increase the temperature due to entropic
effects. This is represented in figure 6, where we can see that as the temperature increases, the curved regions
of the FES get smoother until they progressively flatten. This also means that the molecular trajectory in
phase space becomes more stable, and hence it should be easier to reconstruct. In order to get some insights
about this effect as well as to further validate the performance of our models, we have run three simulations
of the keto-MDA molecule at different temperatures (100, 300 and 500 K) using a pretrained sGDML
model [32] and analysed the generated trajectories. In table 1, we summarize the results for the learning
procedure for the three temperatures.
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Table 1. Experimental results for evaluating the influence of varying training integration time Ttr of the Bi-LSTM architecture on (A)
inter-atomic distances and (B) velocity field. This was done for the keto-MDA molecule as a case of study for simulations run at three
different temperatures. The interatomic distances and velocity field were normalized to follow the first two moments of a standard
normal distribution.

(A) Interatomic distances [10−3 Å]

Temperature [K] Ttr =5 Ttr =10 Ttr =20

100 0.259 0.930 3.287
300 0.417 1.500 5.321
500 0.501 1.801 6.399

(B) Velocity field [10−3 Å fs−1]

Temperature [K] Ttr =5 Ttr =10 Ttr =20

100 11.7100 38.390 132.700
300 11.320 36.820 127.210
500 10.380 33.070 113.60

Figure 5. Comparison of between the interpolated (yellow) and ground truth (blue) trajectories for keto-MDA molecule. (A)
Interatomic distance histogram and (B) speed histogram. The interpolation was done with a Bi-LSTM integrator with∆t= 10.
The bottom panels provide the difference between the two curves.

3.3.1. Phase-space histograms
The frameworks presented in this study work on phase space, (r, p), meaning that during the reconstruction
task the trajectory and the velocity field are recovered. The velocity field refers to the atomic velocities.
Hence, here, we analyse Bi-LSTM’s predictive power in terms of physically meaningful distributions from
MD simulations by examining the speed and interatomic distances distributions. In previous sections, we
have focused on spacial accuracy for trajectory reconstruction (up to ~10−4 Å), but another important
aspect is to recover an accurate velocity field. In table 1, we report the interpolation accuracy for both of
these variables, displaying an excellent agreement with the reference data. In particular, in figure 5 we show
the explicit comparison of the reconstructed probability distributions for the interatomic pair distance
distribution function, h(r), and the speed distribution function for the case of keto-MDA’s trajectory at
300 K. From figures 5 and 7 and from table 1, we can see that the acquired velocity field precision is
maintained for the three different temperatures.

3.3.2. Temperature dependent learning
It is worth noticing that the temperature has indeed an effect during the learning process. From the
dynamical point of view, we know that the FES depends on the temperature, meaning that the trajectory
generated will follow different patterns and statistically sample differently the phase-space. A pictorial
representation of this effect is shown in figure 6. Figure 7 shows this effect for the keto-MDA molecule,
where the left panels show the sampling for the different temperatures and the right panels show the pair
distance distribution.
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Figure 6. Pictorial representation of the effect of the temperature on the FES (dotted lines) and its underlying PES (black
continuous line). Here, the FES is shown at three different temperatures (T1 < T2 < T3) to show how increasing the temperature
generates smoother surfaces.

Figure 7. The distribution of interatomic distances d[Å] of keto-MDA at 100, 300 and 500 K. The predicted distribution of
interatomic distances is shown in red and the target distribution is shown in blue. The distributions become less multi-modal as
the temperature increases.

From here, we can see how the pair distance distribution function evolves from a multimodal histogram
at 100 K to a less complex function as the temperature increases. In terms of trajectory reconstruction, from
table 1, we can quickly see that when increasing the temperature of the reference data, the accuracy in the
interatomic distances marginally decreases but the accuracy of the velocity field reconstruction considerably
increases. Furthermore, in the case of the Bi-LSTMmodel with∆t= 20, the prediction accuracy increases
roughly by a factor of 4 when training on data generated at 500 K relative to the 100 K case.

In a broader picture of the physical problem, these results tell us that the generated dynamics at higher
temperatures are smoother even though the atomic speeds are higher. This is actually because the molecular
system spends more time in anharmonic regions, which then generates the well-known frequency red shift of
most of the vibrational frequencies [35]. In other words, increasing the system’s temperature reduces the
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Figure 8. Sampling generated fromMD using (A) the sGDML force field trained on DFT (MD17 database [8]) for the keto-MDA,
(B) and its interpolation generated using bi-directional LSTMmodels for∆t= 20 fs and∆t= 80 fs shown in the upper and
bottom rows, respectively. (C) Difference between the reference and the interpolated trajectories.

oscillation periods and generates larger oscillation amplitudes, thereby reducing the complexity of the
learning problem.

3.3.3. FES reconstruction
To complement the results from the previous sections, here we correlate those results to the FES. The FES can
be estimated by integrating the probability distribution generated by the molecular trajectories, hence
smoother trajectories in principle should lead to less complex FES as shown in figure 7. Now, this actually
has a beneficial connection to the learning problem, because given the previous analysis, we can accurately
reconstruct the molecular FES from a reduced amount of data or sparse trajectories. In order to corroborate
such accuracy, in figure 8 we show a comparison between the reference and Bi-LSTM-predicted
configurations’ sampling for the keto-MDA molecule for its main degrees of freedom i.e. the two aldehyde
dihedral angles. As mentioned before, the accuracy in trajectory reconstruction is ~10−4 Å, hence renders
the differences between the two FES barely noticeable.

3.3.4. Testing the limits of the methodology: larger interpolation intervals
In order to assess the accuracy of the Bi-LSTMmodels as a function of the sampling frequency, in figure 9 we
show their different models with an interpolation capacity of 5, 20 and 80 fs, where the resolution of the
training data is 1 fs. This means that during training, the 80 fs model for example, was trained using time
series sampled every 80 fs, given the initial and final conditions, the model will predict the intermediate 78
points in the series. If we analyse the information encoded in a time series sampled every 80 fs, we can clearly
see that the training data set only contain information regarding molecular oscillations with frequencies of
~500 cm−1 at most, and the rest of the spectrum is not explicitly embedded in the data. The frequency
spectrum shown to each model during the training process is highlighted in red in figure 9. From this figure
we obtain that in the three cases, the reconstructed vibrational spectrum is indistinguishable from the
ground truth calculations (see bottom plot in each of the panels), despite the wide variability of the
interpolation parameter. Nevertheless, in the 80 fs case (inset in figure 9(C)), we can appreciate that some
slight deviations start to appear.

These results immediately bring up the question of how the model can still reconstruct very high
frequencies when these are not explicitly given. The answer lies on the memory cells of the LSTM
architectures. It does not matter that high frequencies are not shown to the model, since in each pass of the
training process, the model is getting different configurations that sample the high frequency normal modes.
Hence, by keeping in memory all that information, the model can infer the existence of all the vibrations in
the system.
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Figure 9. Reconstruction of the vibrational density of states (VDOS) using the interpolation intervals: (A) 5 fs, (B) 20 fs, and (C)
80 fs. In panel (1) are the ground truth VDOS (yellow), the predicted VDOS (blue), and the VDOS obtained from the training
data (shaded red). In Panel (2) is the differences between the ground truth and predicted VDOSs.

From the results in this section and the previous one, we obtain that bi-LSTMmodels not only manage
to accurately reconstruct the spacial components of the trajectories, but also the velocity field. Thereby,
ensuring their application to reconstruct the phase-apace dynamics as well as the physical properties such as
free energies and vibrational spectra.

4. Conclusions

In this work we have introduced a series of bi-directional NN integrators (i.e. NODE, HNN, RNN and
LSTM) to increase the resolution of MD trajectories for a variety of molecular systems. An extensive
validation process of these models on the MD17 dataset and different interpolation resolutions were
presented (see figure 3). Here, we found that the Bi-LSTMmodel is the better performing method generating
more stable results across all the extended-MD17 dataset and better accuracies, reaching errors as low as
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10−4 Å. These errors render the interpolated and ground truth trajectories indistinguishable. The overall
higher performance of Bi-LSTM networks is due to the robustness against noisy (thermostated) reference
data, as well as their capacity to retain long time correlations’ during the learning process.

Beyond the machine learning task of high dimensional trajectory interpolation, by varying the
temperature of the reference data used for training the models, we obtained important physical insights
regarding the dynamical behaviour of molecular systems. There is evidence in the literature that learning
molecular force fields (i.e. the underlying PES) gets more complicated as the temperature of the training data
increases. Contrasting this behaviour, here we have observed that trajectory interpolation becomes easier as
the temperature increases. The origin of such different temperature-dependent learning behaviour is the fact
that the trajectories generated by MD simulations effectively move on the Helmholtz FES due to entropic
contributions. Additionaly, going from low to high temperatures progressively pushes the FES’ landscape to
deviate from the underlying PES, reducing its complexity as the temperature increases. From these results we
can summarize that the temperature of MD databases have opposite effects on learning the potential and
FESs. Additionally, we found that Bi-LSTMs have the remarkable property of being able to learn the full
spectrum of molecular vibrational frequencies (harmonic and anharmonic) even though this information is
not explicitly shown during the training process. This capability is due to their memory cells.

From the results obtained in this work, we have evinced the great learning capacity of Bi-LSTMs on the
reconstruction of realistic high dimensional molecular behaviour. This opens up a new set of applications for
the family of RNNs on post-processing MD results. Furthermore, the results here presented can be used to
set the stage for robust extrapolation techniques, either by using it as a data enhancement method for
forecasting or as the basis for numerical propagator.
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