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Abstract
Variational optimization of neural-network representations of quantum states has been
successfully applied to solve interacting fermionic problems. Despite rapid developments,
significant scalability challenges arise when considering molecules of large scale, which correspond
to non-locally interacting quantum spin Hamiltonians consisting of sums of thousands or even
millions of Pauli operators. In this work, we introduce scalable parallelization strategies to improve
neural-network-based variational quantumMonte Carlo calculations for ab-initio quantum
chemistry applications. We establish GPU-supported local energy parallelism to compute the
optimization objective for Hamiltonians of potentially complex molecules. Using autoregressive
sampling techniques, we demonstrate systematic improvement in wall-clock timings required to
achieve coupled cluster with up to double excitations baseline target energies. The performance is
further enhanced by accommodating the structure of resultant spin Hamiltonians into the
autoregressive sampling ordering. The algorithm achieves promising performance in comparison
with the classical approximate methods and exhibits both running time and scalability advantages
over existing neural-network based methods.

1. Introduction

Quantum many-body systems describe a vast category of physical problems at microscopic scales. In the
context of ab-initio quantum chemistry (QC), the central topic is to unravel the quantum effects determining
the structure and properties of molecules by solving the many-body time-independent Schrödinger equation
describing the interaction of heavy nuclei with orbiting electrons. However, the exponential complexity with
respect to the number of particles makes the analytical computations about the system impractical [1].

Classical strategies discretize the problem using a finite number of basis functions, expanding the full
many-body state in a basis of anti-symmetric Slater determinants. Because of the exponential scaling of the
determinant space, however, exact approaches that systematically consider all electronic configurations such
as the full configuration interaction (FCI) method, are typically restricted to small molecules and basis sets.
Coupled cluster (CC) techniques [2, 3] are approximate methods routinely adopted in QC electronic
calculations, however, the accuracy of CC is intrinsically limited in the presence of strong quantum
correlations, in turn restricting the applicability of the method to regimes of relative weak correlations.
Recently neural-network quantum state (NQS) methods [4, 5] have proven to be successful variational
ansatze for finding the ground state of molecular systems up to 30 qubits (Li2O). However, significant
scalability challenges of the NQS approach arise when considering molecules of larger scales. The scalability
issue stems from two sources, which we refer to as local energy parallelism and sampling parallelism. (i) The
complexity of the computation of local energy scales linearly with respect to the number of terms in the
molecular Hamiltonian, which induces out-of-memory (OOM) issues for larger problems. (ii) In order to
achieve satisfactory performance, one needs to sample exact and accurate configurations from the targeted
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distribution, which becomes expensive or even impossible for existing approaches such as Markov chain
Monte-Carlo (MCMC) in high dimensions.

In order to address local energy parallelism for large-scale molecules, we use an efficient tensor
representation of the second quantized spin Hamiltonian generated from chemical data so that the
computation of the local energy is efficiently supported by GPUs. We further employ identical copies of the
model across the computing units to generate only a few samples per unit and combine the independent
samples from all these units to construct an accurate expectation estimate. In addition, memory
consumption is reduced through gradient accumulation, which splits the batch of samples used for training
the model into several mini-batches of samples that can be distributed across the devices and processed
independently. The proposed parallelization scheme for large batch computation is particularly important
for chemical molecules with a large number of terms in their electronic Hamiltonian formulation, where the
calculation of local energy becomes prohibitive.

The basis of our approach to achieving sampling parallelism is our utilization of a wavefunction based on
Masked Autoencoder for Distribution Estimation (MADE) [6]. Using MADE as our base model enables the
development of a parallelization scheme based on [7]. Unlike restricted Boltzmann machines (RBMs) [8]
and NADE [9], which have formed the basis of previous ab-initio studies, MADE is known to be lightweight
and scalable to high-dimensional inputs. On the one hand, it overcomes the asymptotical convergence issues
of MCMC by using autoregressive sampling. On the other hand, it bypasses the inherently sequential nature
of neural autoregressive distribution estimator (NADE) with the minor additional cost of simple masking
operations. In addition, we further improve the performance of our model through the autoregressive
sampling of the state entries in an order that roughly matches the entanglement hierarchy among the
involved qubits. Our experiments demonstrate that the proposed algorithm effectively works for molecules
up to 76 qubits with millions of terms in its electronic Hamiltonian.

The paper is organized as follows. In section 2, we begin by summarizing the existing state-of-art in NQS
research as applied to ab initio QC. Section 3 provides mathematical details about the nature of the
Hamiltonians under consideration as well as stochastic approximation strategy based on neural networks.
The proposed NQS architecture is elaborated in section 4 and the parallel evaluation strategies are
subsequently detailed in section 5. Experimental results for molecules up to 76 qubits are described in
section 6, including ablative studies on the relevant factors controlling the performance of the algorithm.

2. Related work

Variational Monte-Carlo and autoregressive quantum states. The idea of utilizing NQSs to overcome the
curse of dimensionality in high-dimensional VQMC simulations was first introduced by Carleo and Troyer
[10], who concentrated on RBMs applied to two-dimensional quantum spin models. However, RBM relies
on approximate sampling procedures like MCMC, whose convergence time remains undetermined, which
often results in the generation of highly correlated samples and deterioration in performance. Such sampling
approximations can be avoided by using autoregressive models [11] that estimate the joint distribution by
decomposing it into a product of conditionals by the probability chain rule, making both the density
estimation and generation process tractable. To this end, Larochelle and Murray [9] proposed NADE as
feed-forward architectures. MADE [6] improves the efficiency of models with minor additional costs for
simple masking operations. Sharir et al [12, 13] and Hibat-Allah [14] introduced NQSs based on the
autoregressive assumption inspired, respectively by PixelCNN [15] and recurrent neural networks, and
demonstrated significantly improved performance compared to RBMs.
Application in QC.Many approximate methods specific to the QC problem [16, 17] have been

discovered by researchers. The Hartree–Fock (HF) approximation treats each electron in the molecule as an
independent particle that moves under the influence of the Coulomb potential due to the nuclei, and a
mean-field generated by all other electrons. It calculates the expansion coefficients of the linear combination
of atomic orbitals. Configuration interaction methods [18] use a linear combination of configuration state
functions built from spin orbitals to restrict the active space to configuration strings. CC approaches [2, 3]
construct multi-electron wavefunctions using the exponential cluster operator to account for electron
correlation, but cannot parameterize arbitrary superpositions and occasionally lead to unphysical solutions.
Choo et al [4] proposed an RBM-based NQS variational ansatz, leveraging the power of artificial neural
networks that have recently emerged in the more general context of interacting many-body quantum matter
[10]. This approach provides a compact, variational parameterization of the many-body wave function.
Barrett et al [5] subsequently proposed a novel autoregressive NQS architecture for ab-initio QC based on
NADE [9] with hard-coded pre-and post-processing that enables exact sampling of physically viable states.
These advances ultimately allow their approach to scale to systems up to 30 qubits, surpassing what was
previously possible using RBMs, while still falling short of large-scale applications. Empirically, we have
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found that the approach of [5] encounters significant scalability challenges in generalizing to molecular
systems of yet larger size.

3. Problem formulation

We will work under the assumption of the so-called Born-Oppenheimer approximation [19], which treats
the nuclei as fixed point charges. Indeed, the specification of a molecular geometry implicitly assumes such
an approximation. When the positions of the nuclei are specified, the electronic structure problem can be
restated as finding the ground eigenstate of the electronic Hamiltonian operator and consequently the
ground state electronic energy becomes a parametric function of atomic positions. Here, the molecule’s
electronic Hamiltonian is commonly represented using the second-quantization formalism, with a chosen
basis of atomic orbitals which describe the wave function of electrons in the molecule. In order to identify
the Hamiltonian for a compound, we start by fetching the information required to build the target molecule
object, then employ established solvers to compute the second-quantized Hamiltonian and store the result in
a string format.

In the second-quantized formulation, the Hamiltonian is represented as a complex conjugate-symmetric
(Hermitian) matrix H of side length 2n where n represents the number of orbitals, and the basic problem is
to determine the ground energy of H and a description of an associated eigenvector. Since storage and
manipulation of such matrices is prohibitive, a common practice is to exploit the fact that H admits an
efficient description in terms of superpositions of tensor products of 2× 2 matrices drawn from the set
{σ0,σ1,σ2,σ3}, where

σ0 =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (1)

In fact, any Hermitian matrix H ∈ C2n×2n admits a unique decomposition of the form

H=
∑

p∈{0,1,2,3}n
αpPp (2)

where Pp := σp1 ⊗ ·· ·⊗σpn denotes a tensor product of Pauli matrices, and the real-valued coefficients
entering the sum are determined by the formula αp =

1
2n tr(HPp). Since each matrix Pp is row-sparse with

exactly one nonzero entry per row, the number of nonzero entries per row of H is bounded by the number of
nonzero coefficients K entering the above sum, which could be as large as 4n for typical matrices. The
matrices of relevance to QC are far from typical, however, and consequently enjoy a high level of row
sparsity, which will be a crucial property in our subsequent algorithm development.

Beyond the assumption of row-sparsity, additional features of H can be determined from the structure of
the constituent Pauli strings p, which in turn depend on the choice of encoding map from the chemical
Hamiltonian to the qubit representation. Efficient qubit encoding maps are an active field of research, and
the most common examples in usage are Jordan–Wigner [20] and Bravyi–Kitaev [21], which are equivalent
isospectrally. In this work, we will adopt the Jordan–Wigner encoding because of its simplicity and the fact
that it has shown success in prior work on VMC applied to ab-initio QC [4, 5]. In the particular case of
Jordan–Wigner transformation, we point out that many of the tensor factors of terms appearing in the
sum (2) are the identity matrix and are moreover organized in a hierarchical structure.

Following the standard neural-network variational Monte Carlo procedure, we postulate a family of trial
wavefunctions whose complex amplitudes relative to the standard basis are computed by the output of a
neural network, parametrized by variational parameters θ ∈ Rd. Thus, given a function of the form

f : {0,1}n ×Rd −→ C (3)

which is differentiable in the second argument, we define an associated family of trial quantum states |fθ〉,
which are differentiably parametrized by θ ∈ Rd, as follows

|fθ〉 :=
∑

x∈{0,1}n
f(x,θ)|x〉 (4)

where |x〉 := |x1〉⊗ · · · ⊗ |xn〉 is a shorthand to denote the standard basis vectors for C2
n
. In this work,

following [5], we assume that the function f is chosen in such a way that |fθ〉 is unit-normalized for all
θ ∈ Rd, and that exact sampling from the probability distribution πθ := |f(·,θ)|2 is computationally
tractable. Using the unit vector (4) as a trial vector in the Rayleigh quotient for H, we obtain a differentiable
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objective function L : Rd −→ R, which upper bounds the minimal eigenvalue λmin(H) as a consequence of
the Rayleigh–Ritz principle,

L(θ) := 1

2
〈 fθ|H|fθ〉 (5)

and whose value can be estimated at the Monte Carlo rate using the following estimator

L(θ) = 1

2
E[lθ(x)] , lθ(x) :=

〈x|H|fθ〉
f(x,θ)

, x∼ πθ (6)

where lθ is referred to as the local energy. Minimization of L is performed using stochastic gradient-based
optimization techniques. In particular, the gradient of L can be estimated at the Monte Carlo rate using,

∇L(θ) = ReE [(lθ(x)1− b)σθ(x)] , σθ(x) :=
∇θf(x,θ)

f(x,θ)
, x∼ πθ (7)

where b ∈ Rd×d is an arbitrary baseline matrix that can be set to b= E[lθ(x)].
Equation (7) demonstrates that an integral component of the algorithm is the computation of the local

energy, which is required both to perform stochastic gradient updates of the model and to estimate the value
of the objective function. The computational complexity of computing the mapping x 7−→ lθ(x) for a
minibatch of size B is evidently O(BK) where recall that K denotes the number of terms in the Hamiltonian
expansion (2). Despite the fact that the sparsity parameter satisfies K� 4n, the computation of local energy
still suffers from severe OOM issues in practice since 4n can be extraordinarly large even for modestly sized
molecules. For example, in the case of Methanol with n= 28 orbitals we have 4n ≈ 7.2× 1016 while
K= 52887. This implies that for Methanol, given a modest batch size B= 1024, the local energy needs a
forward pass of 54M samples of input size 28. This computational bottleneck is inevitable as large batch sizes
are essential to ensure the precision of the Monte-Carlo approximation of the energy objective in
equation (6), which directly influences the performance of the algorithm. Therefore, efficient sampling and
local energy computation become the key issue for scaling the neural-network variational approach to large
compounds.

4. Autoregressive modeling of molecular quantum states

Motivated by the fact that solving high dimensional molecular quantum systems is still a difficult problem
with existing variational techniques, we consider the base model from Zhao et al [7], which was shown to be
capable of solving quantum systems of very high dimensions. Adaptation of this work to chemistry problems
involves generalizing from real-valued to complex-valued wave functions, as well as adjusting the sampling
process to handle larger numbers of configurations and accommodate domain priors. In addition, following
[5], we enforce constraints necessary to ensure that the generated samples correspond to physical electronic
states.
Architecture. Since the ground state of the targeted problem is in general complex-valued, we consider

the complex generalization of the model in [7] by splitting the output of the wave function into modulus and
phase parts, learned by two sub-models separately as follows

Modulus sub-model: Input
[B,N]−−−→ MaskedFC1 [B,h]−−→ ReLU
[B,h]−−→ MaskedFC2 [B,N]−−−→ Sigmoid [B,N]−−−→ Output,

Phase sub-model: Input
[B,N−2]−−−−→ MaskedFC1 [B,h]−−→ ReLU [B,h]−−→ MaskedFC2 [B,4]−−→ Output.

The modulus model predicts n conditional probabilities for each configuration, and the phase model
predicts the phases for each of the four configurations that are identical in the first n− 2 entries, which is a
n− 2 dimensional vector being fed as the input. Here B is the batch size, n is the number of dimensions, h is
the hidden layer size and MaskedFC is the masked fully connected layer, which removes the connections in
the computational path of MADE. The outputs of modulus sub-model are the conditional probabilities
{πi(xi|xi−1, . . . ,x1)}ni=1, which together define a joint probability function π : {0,1}n −→ [0,∞) for input
strings x. Normalization follows automatically from the autoregressive assumption,

π(x) =
n∏

i=1

πi(xi|xi−1, . . . ,x1) . (8)
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On the other hand, we model the phase ϕ : {0,1}n −→ [0,2π) of the wavefunction directly by feeding the
input x into a two-layer MLP. It follows that the complex logarithm of the model output f(x,θ) can be
written in a computationally tractable form as

f(x,θ) = eiϕ(x)
n∏

i=1

√
πi(xi|xi−1, . . . ,x1), (9)

log f(x,θ) = iϕ(x)+
1

2

n∑
i=1

logπi(xi|xi−1, . . . ,x1) (10)

where θ ∈ Rd denotes the concatenation of parameters describing the neural networks ϕ and π.
Sampling. Standard autoregressive sampling techniques such as NADE [9] have a sequential nature that

updates a batch of randomly initialized states entry by entry following a pre-fixed order. In practice, this
approach is highly inefficient as the sampled batch usually contains repeated samples. Instead, we keep track
of a sample buffer throughout the sampling process, associated with a counter storing the number of
occurrences for each sample in the buffer. We start with a buffer containing only one random initialized
sample. At each of the n iterations, we first double the size of the buffer by alternating±1 value for existing
samples at a fixed entry. Then, we update the counter for all samples in the buffer through Bernoulli
sampling with probabilities computed by forward pass. Finally, we eliminate the samples in the batch that
have the lowest numbers of occurrences in the counter, to avoid the exponential growth of the buffer size.

In addition, as a consequence of the Jordan–Wigner encoding, many of the tensor factors appearing with
high qubit index are given by the identity factor, which leads to the expectation that high index qubits are
comparatively less correlated compared to those with at low indices. Motivated by this observation, in an
effort to ease the training of the model we performed autoregressive sampling in a reversed order beginning
with the nth qubit.
Constraints. Recall that the unconstrained model assigns nonzero probability mass to all 2n possible

bit-strings representing possible states of a multi-electron system. However, in quantum chemistry problems
we considered, only ne ⩽ n out of the n single-electron spin-orbitals are occupied with electrons, and the net
charge C of the molecular system determines the number of unpaired electrons. It follows that the numbers
of electrons with up-spins and down-spins n↑,n↓ respectively should satisfy

n↑ + n↓ = ne, n↑ − n↓ = C. (11)

This corresponds to applying Hamming weight constraints to the bit-strings, which effectively reduces the
total number of candidate samples from 2n to

(n/2
n↑

)(n/2
n↓

)
, which significantly reduces the complexity of the

problem. We adopted techniques from similar work [5, 14] to enforce the constraints. Define the hamming
weight constraint of the configuration x ∈ {0,1}n to be

n/2∑
i=1

x2i−1 = n↑,

n/2∑
i=1

x2i = n↓, (12)

where the even and odd indices correspond to the up-spin and down-spin electrons in the orbitals. The idea
to enforce the constraint in the autoregressive sampling process is to assign nonzero probabilities only to
samples that satisfy equation (12), for which the sufficient and necessary condition is that the kth entry xk
must satisfy

n↑ − (n/2−dk/2e)⩽
⌈k/2⌉∑
i=1

x2i−1 ⩽ n↑, n↓ − (n/2−dk/2e)⩽
⌈k/2⌉∑
i=1

x2i ⩽ n↓, (13)

for all k ∈ 1,2, . . . ,N. Condition (13) can be enforced at every iteration k during the sampling process by
introducing the following modified probability distribution,

π̂(xk = 1|xk−1, . . . ,x1) =



1, if
∑⌈k/2⌉

i=1 x2i−1 < n↑ − (n/2−dk/2e)
1, if

∑⌈k/2⌉
i=1 x2i < n↓ − (n/2−dk/2e)

0, if
∑⌈k/2⌉

i=1 x2i−1 ⩾ n↑

0, if
∑⌈k/2⌉

i=1 x2i ⩾ n↓

π(xk = 1|xk−1, . . . ,x1), o.w.,

(14)

which has the property that for any x violating the constraints, we have π̂(xk = x|xk−1, . . . ,x1) = 0 and
π̂(xk = 1− x|xk−1, . . . ,x1) = 1. The modified probabilities are still normalize to one by design.
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Figure 1. Local energy computational paradigm. The Hamiltonian is parsed into an operator matrix and a coefficient vector, from
which incidence matrices F{1,2},F{2,3} ∈ {0,1}K×n are extracted for subsequent calculation of the local energy. This
formulation provides significant computational speed-up for molecular Hamiltonian with a huge number of terms.

Algorithm 1. Parallel tensor computation of local energy (presented for batch size 1).

Input: Bit string x ∈ {0,1}n, coefficient vector, incidence matrices F{1,2},F{2,3} ∈ {0,1}K×n

Output: Local energy
Compute {xp} ∈ {0,1}K×n as {xp}= X⊕ F{1,2}, where X ∈ {0,1}K×n is the K-fold replication of x
Compute amplitudes f(x) ∈ C and { f(xp)} ∈ CK

Compute {⟨x|Pp|xp} ∈ CK using equation (16)
Evaluate the sum in equation (15)

5. Parallelization

We parallelize the training by distributing the input batch across the GPUs, where the model parameters are
replicated on each GPU, which handles a portion of the full batch. During the backward pass, gradients from
each node are averaged. Locally within each process, we tensorize the entire computational pipeline so that
the computation of local energies is fully GPU-supported.

5.1. Tensorized computation of local energy
The form of the local energy has the property that it can easily be parallelized, which becomes increasingly
important with increasing molecular system size since the Hamiltonian can potentially involve a large
number of terms. We implemented an efficient tensor representation of the second quantized spin
Hamiltonian generated from chemical data, which capitalizes on the fact that the matrix corresponding to an
arbitrary product of Pauli operators Pp is extremely sparse. In particular, for each row index x ∈ {0,1}n there
is exactly one column index xp ∈ {0,1}n, for which the corresponding matrix entry 〈x|Pp|xp〉 is nonzero3. If
we denote the subset of Pauli strings with nonzero coefficient by S= {p ∈ {0,1,2,3}n : αp 6= 0}, then the
local energy simplifies to

lθ(x) =
∑
p∈S

αp〈x|Pp|xp〉
f(xp,θ)

f(x,θ)
. (15)

The goal now is to efficiently compute equation (15), in which the number of summands K= |S| is very
large. The idea, depicted in figure 1, is to extract the key information required to perform the computation
from the molecular Hamiltonian and store the information as tensors that directly support GPU
computation. To this end, we constructed a string parser that computes an Operator Matrix along with
coefficients. For Pauli string, we track the indices of Pauli σ1,σ2,σ3 operators as tensors, which are later
utilized to compute xp and the corresponding matrix element 〈x|Pp|xp〉.

In practice, xp is computed by flipping the bits of x based corresponding to the locations of σ1 and σ2 in
Pp. To improve the efficiency, we collect the indices of σ1,σ2 operators prior to the training and only keep a

3 The formula for the associated matrix entry in terms of x is given in [4].
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buffer of unique flippings and their corresponding number of occurrences. This approach can effectively
reduce the input size to the forward pass by removing the repeated samples, which is particularly helpful for
large-sized problems. The matrix element 〈x|Pp|xp〉 admits the formula

〈x|Pp|xp〉= 〈x|σp1 ⊗ ·· ·⊗σpn |xp〉= (−i)r
∏

k:pk∈{2,3}

(−1)xk (16)

where r is the number of occurrences for the σ2 operator, i.e. r=
∑n

k=11{pk=2}. Similar to before, the indices
of σ2,σ3 operators are collected prior to the training, and the product can be calculated by the Hadamard
product between the indices and x, followed by the production of all entries. Note that all computations in
this subsection can be performed in parallel for all terms with GPU.

5.2. Parallel algorithm implementation
In applications such as QC, the Hamiltonian of even the smallest molecules contain thousands of terms,
which leads to severe OOM issues for the existing VMC platforms. Our proposed pipeline tensorizes the
information in the molecular Hamiltonian to maximize memory efficiency. In addition, the computation of
local energy is conducted term-wise with no interaction between the terms, which motivates embarrassingly
parallel algorithms for Hamiltonians consisting of a large number of terms. We take a step toward addressing
the bottleneck by applying our sampling parallelization strategy to this problem, where we use identical
copies of the model across the computing units to generate only a few samples per unit and combine the
independent samples from all these units to construct an accurate expectation estimate. In addition, we
remove the replicated configurations as described in the previous section before the forward pass locally for
each GPU to save more memory.

In more detail, recall that the energy expectation is approximated as the following double sum

〈fθ|H|fθ〉
〈fθ|fθ〉

≈ 1

B

B∑
i=1

∑
p∈S

αp〈xi |Pp|xpi 〉
f(xpi ,θ)

f(xi,θ)
. (17)

We distribute the BK summands in the above sum across L GPUs in order to perform the forward and
backward passes of the model with a mini-batch size of BK/L. Locally, each GPU has access to the necessary
ingredients required to compute the corresponding partial sums of size BK/L. We compute local gradients
with forward and backward passes within each GPU and update the model parameters with the averages of
local gradients obtained by averaging over BK/L elements. In addition, we use gradient accumulation [22],
splitting the batch into several mini-batches before a single update to avoid potential OOM issues for
molecules with larger sizes.

6. Experiments

We now investigate the performance of our algorithm and the running time efficiency of the proposed
parallelization paradigm. We first demonstrate our main results by comparing our algorithm with HF and
CC with up to double excitations (CCSD) baselines, where our performance is either on par or superior to
the classical approximate methods over a wide list of chemical molecules. Our performance is also close to
the ground truth FCI energies up to molecular systems with 28 qubits, where the results for larger molecules
become increasingly hard to obtain. We then perform ablation studies to examine our algorithm over various
aspects. First, we show that increasing batch size improves the performance, at the cost of increased
algorithmic complexity. On the other hand, our parallelization strategy can effectively reduce the running
time, achieving near-optimal weak scaling. Our proposed sampling trick also improves the performance of
our model by a noticeable margin. At last, we show that our model architecture exhibits superior running
time efficiency compared against RBM [4] and NADE [5].

6.1. Experimental set-ups
Given a target molecule ID, we fetch its corresponding PubChem compound identifier (CID) from the
official PubChem website [23]. CID is recognized by PubChemPy, a software that provides a way to interact
with PubChem in Python, allowing depiction and retrieval of chemical properties, such as the geometry of
atoms, number of unpaired electrons, total charge, etc. The mapping from second-quantized Hamiltonian to
interacting spinning model is done by transforming fermion operators into qubit operators with
Jordan–Wigner [20] using OpenFermion-Psi4 [24]. Note that these solvers can also be used to estimate the
ground state energies including HF, CCSD, and FCI. The whole data processing pipeline is automatic
without further human interference.
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Table 1. Best molecular ground-state energies obtained by different methods as described in the main text over five trials. Molecules
have been sorted according to the number of qubits used in the Jordan–Wigner representation. In addition, the numbers (N↑,N↓) up-
and down-spin electrons and the number K of terms in the Hamiltonian are reported. Our method exhibits superior performance in
comparison with classical approximate methods such as HF and CCSD and comes close to the FCI ground truth, which is only available
up to molecules of size 28 qubits.

Name MF n N↑ +N↓ K HF Energy CCSD Ours FCI

Hydrogen H2 4 1+ 1= 2 15 −1.066 108 64 −1.101150 −1.101150 −1.101 150
Lithium Hydride LiH 12 2+ 2= 4 631 −7.767 362 13 −7.784 455 −7.784460 −7.784 460
Water H2O 14 5+ 5= 10 1390 −74.964 4475 −75.015 409 −75.015511 −75.015 530
Methylene CH2 14 5+ 3= 8 2058 −37.484 6329 −37.504 411 −37.504419 −37.504 435
Beryllium Hydride BeH2 14 3+ 3= 6 2074 −14.443 2411 −14.472 713 −14.472922 −14.472 947
Ammonia NH3 16 5+ 5= 10 4929 −55.454 7926 −55.520 931 −55.521037 −55.521 150
Methane CH4 18 5+ 5= 10 8480 −39.726 5817 −39.806 022 −39.806170 −39.806 259
Diatomic Carbon C2 20 6+ 6= 12 2239 −74.248 3215 −74.484 727 −74.486037 −74.496 388
Fluorine F2 20 9+ 9= 18 2951 −195.638 041 −195.661086 −195.661 067 −195.66 108
Nitrogen N2 20 7+ 7= 14 2239 −107.498 967 −107.656 080 −107.656763 −107.660 206
Oxygen O2 20 9+ 7= 16 2879 −147.631 948 −147.747 738 −147.749 953 −147.750 235
Lithium Fluoride LiF 20 6+ 6= 12 5849 −105.113 709 −105.159 235 −105.165270 −105.166 172
Hydrochloric Acid HCl 20 9+ 9= 18 5851 −455.135 968 −455.156189 −455.156189 −455.156 189
Hydrogen Sulfide H2S 22 9+ 9= 18 9558 −394.311 379 −394.354 556 −394.354592 −394.354 623
Formaldehyde CH2O 24 8+ 8= 16 20 397 −112.354 197 −112.498 567 −112.500944 −112.501 253
Phosphine PH3 24 9+ 9= 18 24 369 −338.634 114 −338.698 165 −338.698186 −338.698 400
Lithium Chloride LiCL 28 10+ 10= 20 24 255 −460.827 258 −460.847 580 −460.848109 −460.849 618
Methanol CH4O 28 9+ 9= 18 52 887 −113.547 027 −113.665485 −113.665485 −113.666 485
Lithium Oxide Li2O 30 7+ 7= 14 20 558 −87.795 5672 −87.885 514 −87.885637 —
Ethylene Oxide C2H4O 38 12+ 12= 24 137 218 −150.927 608 −151.120 474 −151.120486 —
Propene C3H6 42 12+ 12= 24 161 620 −115.657 941 −115.885 123 −115.886571 —
Acetic Acid C2H4O2 48 16+ 16= 32 461 313 −224.805 400 −225.050896 −225.042 9767 —
Sulfuric Acid H2O4S 62 25+ 25= 50 1235 816 −689.262 656 −689.498 410 −689.505237 —
Sodium Carbonate CNa2O3 76 26+ 26= 52 1625 991 −575.016 102 −575.299 810 −575.299820 —

We train the model over 10 K iterations with Adam optimizer [25] by default at a learning rate of
1× 10−3 with standard decay rates for the first- and second-moment estimates of β1 = 0.9 and β2 = 0.99,
respectively; no learning rate scheduler is applied. The batch size for the number of unique samples is fixed to
be 1024 throughout our experiments unless specified otherwise. For scalability experiments, each GPU is
distributed with a constant mini-batch sizemB, and the effective batch size ismB× L, where L is the total
number of GPUs available. All experiments in this work use a single set of hyperparameters and identical
training procedures, and the results are the best energies obtained across exactly 5 seeds. Throughout the
experiments, the timing benchmarks are performed on Tesla V100-SXM2-16GB and Intel(R) Xeon(R) CPU
@ 2.30GHz processors on Google Cloud Platform.

6.2. Performance benchmark
We report the performance of our implementation over a wide variety of molecules in table 1. The molecules
are sorted according to the number of qubits in their Jordan–Wigner representation. We consider HF and
CCSD energies as classical baseline approximate methods to compare against. The FCI ground truth energy
is also provided for smaller molecules for reference.

Our model exhibits consistently strong performance on all molecules considered. In particular, the
computed energies match the ground-truth FCI result closely on all molecules with up to 20 electrons and 28
spin-orbitals and out-perform other approximate methods on the majority of the molecules we considered.
Notice that as the size of the molecule increases, the number of terms in the electronic Hamiltonian
formulation also grows quickly, which leads to severe computational issues such as running time and
memory consumption. As a result, our proposed algorithm is capable of scaling up to system size with 76
qubits of which the electronic Hamiltonian is consisted of 1.6 million terms, and achieves state-of-the-art
performance.

6.3. Ablation studies
In this section, we perform ablation studies to test the effectiveness of the ingredients in our contribution. We
start by validating the fact that increasing batch size is capable of improving the performance for larger-scale
problems, which justifies the motivation of our parallelization scheme that enables large-batch training for
large molecules. We also examine our proposed reverse sampling trick by comparing the performance with
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Figure 2. Left: the performance of our algorithm with increasing batch size for different molecules. The relative performance
score is obtained by normalizing the estimated energy with respect to the corresponding FCI ground truth. Better performance is
obtained by training with larger batch sizes, and the improvements become substantial for larger molecules. Right: demonstration
of near-optimal weak scaling obtained by running the algorithm on the C2 molecule for 103 iterations with different batch sizes
up to 4096 and reporting the time elapsed in seconds. Upon distributing the batch over multiple GPUs, the running time is
significantly reduced. In addition, the running times for the training with a fixed batch size per GPU are close across different
settings.

different sampling orders. Finally, we tried different model architectures under the same training framework;
our model achieves the overall best running time efficiency in comparison with RBM [4] and NADE [5].
Parallelization. As discussed in section 3, the total number of input samples for the forward pass

required to compute the local energy scales with the number of terms K in the Hamiltonian and with the
batch size B, which leads to a heavy computational bottleneck as both of these factors increase. However, a
sufficiently large batch size is essential to guarantee the performance of the algorithm for molecules of larger
sizes. This claim is validated in the left panel of figure 2, where we train our model with batches of varying
sizes for various molecules. Since the ground state energies for different molecules differ from each other, we
report the performance relative the FCI ground truth.

To examine the effectiveness of our parallelization scheme, in the right panel of figure 2 we illustrate the
running time as a function of batch size for C2 molecule using 103 iterations. We observe that the running
time scales inversely with respect to the number of GPUs. In particular, doubling the number of GPUs
roughly corresponds to half the time usage. We conducted additional experiments by saturating the memory
on each GPU and observe that the running time for different numbers of GPUs remains constant, indicating
that our approach achieves near-optimal weak scaling.
Reverse order sampling.We proposed to perform autoregressive sampling in a reversed order to improve

the training. To examine the effectiveness of this approach as well as the impact of the sampling order on QC
problems in general, we perform ablation studies on the sampling order. In table 2, we employ three different
sampling orders: forward sampling from 1 to n, reverse sampling from n to 1, and random sampling by any
pre-determined order between 1 to n. The results illustrate that reverse sampling indeed improves the
performance effectively as it achieves the best results consistently across the list of molecules.
Model architecture. Our model architecture offers significant parallelization advantages compared to

existing architectures based on RBM and NADE. Despite the sequential nature of both MCMC and
autoregressive sampling, the latter can be executed on GPUs in a straightforward fashion and moreover
exhibits superior running time efficiency. In addition, the distribution of the MCMC samples only converges
to the distribution of interest asymptotically, whereas autoregressive sampling yields exact samples under a
known number of iterations. NADE [9] requires n forward passes through the network to evaluate the
probability, with n submodules for each entry. The main disadvantage of NADE is its sequential nature in its
forward pass, which contributes to running time as the input dimension grows. In addition, computation
with NADE is slower in practice compared to MADE even in low dimensions, especially for the model of
high depth, due to its multi-module architectural design. In table 2, we directly compare the time taken for
NADE and MADE to run for 3× 104 iterations, using a custom implementation of NADE based on the
publicly available source code [5]. In addition, we measure the time taken for each architecture to reach the
performance of CCSD for each molecule. We did not include the results for RBM because the running times
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Table 2. Ablation study on reverse sampling and time efficiency tests over different architectures. NADE refers to our custom
implementation of the neural autoregressive density estimation proposed for QC in [5].

Molecule H2 H2O NH3 C2 N2 O2 HCL

Energy Ablation study on the sampling order

Forward −1.101150 −75.015 449 −55.515 394 −74.4849 249 −107.634 908 −147.723 681 −454.927 860
Reverse −1.101150 −75.015511 −55.521037 −74.4860377 −107.656763 −147.749953 −455.156189
Random −1.101150 −75.014 553 −55.519 741 −74.4851 979 −107.606 417 −147.732 876 −455.012 498

Running time (s) Running time for 30 K iterations

NADE 303.76 1087.52 4474.94 4574.30 2959.28 2821.60 1593.21
MADE 282.64 838.60 3188.31 2922.25 2295.90 2122.21 1112.70

Hitting time (s) Hitting time to the CCSD performance

NADE 117.28 352.78 2007.14 1754.10 1029.64 824.37 489.88
MADE 100.14 364.32 782.46 827.41 986.27 648.27 186.38

Figure 3.We report our performance on different molecules for 5 trials in the form of a box plot. For illustration purposes, we
divide the results for all molecules by the corresponding FCI ground truths, so that the reported value is normalized with a
maximum value of 1. In addition, we directly cite the numbers in table 1 from [5] and mark them in the form of red dots in the
figure for comparison purposes. We notice that for certain molecules, the performance of our method fluctuates due to different
random seeds. Nevertheless, competitive results can be obtained after a sufficient number of trials.

for RBM for 30 K iterations are exceedingly large, e.g. about four hours for H2 molecule, and therefore the
direct comparison results against the other two architectures have no practical interest. We also directly cite
the numbers from table 1 in [5] and compare the results with ours in figure 3 for a sanity check.

7. Conclusions

We proposed a scalable parallelization strategy to improve the VMC algorithm in the application of ab-initio
QC. Our local energy parallelism enables the optimization for Hamiltonians of more complex molecules and
our autoregressive sampling techniques out-perform the CCSD baseline and exhibit an advantage against
other neural-network based algorithms in terms of running time efficiency and scalability. We further
improve the performance of our model through the sampling order of the state entries to match the
entanglement hierarchy among the molecule qubits. Our algorithm effectively works for molecules up to 76
qubits with millions of terms in its electronic Hamiltonian. It would be of significant interest to undertake
systematic comparison of the results obtained here to continuum methods based on first quantization [26],
especially in the regime n� ne necessary for extrapolation to experimental data.
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