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Abstract
Automated computational analysis of the vast chemical space is critical for numerous fields of
research such as drug discovery and material science. Representation learning techniques have
recently been employed with the primary objective of generating compact and informative
numerical expressions of complex data, for efficient usage in subsequent prediction tasks. One
approach to efficiently learn molecular representations is processing string-based notations of
chemicals via natural language processing algorithms. Majority of the methods proposed so far
utilize SMILES notations for this purpose, which is the most extensively used string-based
encoding for molecules. However, SMILES is associated with numerous problems related to
validity and robustness, which may prevent the model from effectively uncovering the knowledge
hidden in the data. In this study, we propose SELFormer, a transformer architecture-based
chemical language model (CLM) that utilizes a 100% valid, compact and expressive notation,
SELFIES, as input, in order to learn flexible and high-quality molecular representations.
SELFormer is pre-trained on two million drug-like compounds and fine-tuned for diverse
molecular property prediction tasks. Our performance evaluation has revealed that, SELFormer
outperforms all competing methods, including graph learning-based approaches and
SMILES-based CLMs, on predicting aqueous solubility of molecules and adverse drug reactions,
while producing comparable results for the remaining tasks. We also visualized molecular
representations learned by SELFormer via dimensionality reduction, which indicated that even the
pre-trained model can discriminate molecules with differing structural properties. We shared
SELFormer as a programmatic tool, together with its datasets and pre-trained models at https://
github.com/HUBioDataLab/SELFormer. Overall, our research demonstrates the benefit of using
the SELFIES notations in the context of chemical language modeling and opens up new
possibilities for the design and discovery of novel drug candidates with desired features.

1. Introduction

Traditional methods and techniques of drug discovery are expensive, resource-intensive, and
time-consuming, making it impractical to study numerous molecules and identify those that could be
developed into new drugs (Vamathevan et al 2019). Incorporating novel computational methods into
research and development pipelines is crucial, particularly in light of recent events that have highlighted the
need for prompt action against sudden disease outbreaks (Basu et al 2021). Molecules must be encoded and
stored using alphanumeric characters in order to be processed computationally. SMILES (Simplified
Molecular-Input Line-Entry System) is a notation for expressing the chemical structure of a molecule using a
standard string of linear characters (Wang et al 2019). Although SMILES is widely used and has proven
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useful in computational chemistry, it is insufficient to fully represent the complexity and properties of
molecules. Not every SMILES string corresponds to a valid molecular graph, thereby reducing the
representational space (Krenn et al 2020). In order to create a better notation for molecules, IUPAC designed
InchI, which has a canonical representation that assigns a unique string to each molecule. The InchI system
encodes additional information about molecular graphs, including mobile and immobile hydrogens.
However, InchI strings are difficult to comprehend, and their complex syntax makes their use in generative
modeling challenging (Krenn et al 2022). SELFIES is a novel method for representing molecular graphs as
character strings that permits the unique identification of any given molecule (Krenn et al 2020). SELFIES
can be used for multiple purposes, including the construction of molecular fingerprints, the calculation of
molecular similarity, and the detection of chemical reactions. SELFIES is human-readable and 100% robust,
meaning that every SELFIES string points to a valid molecule, making it more suitable for molecular
representation learning than SMILES (Krenn et al 2020). SELFIES have been utilized for drug
discovery-related tasks in multiple studies (Nigam et al 2021, Frey et al 2022).

Entities/objects (e.g. molecules) must be represented numerically to be utilized in the artificial
learning-based analysis. These representations can be manually crafted (i.e. created empirically using
pre-defined rules or descriptions) or automatically extracted in the context of machine learning.
Representation learning is concerned with automatically discovering meaningful data representations
(Bengio et al 2013). These representations are intended to capture the underlying structure and patterns in
the data. Some of the primary advantages of representation learning are that; (i) it can help reduce the
dimensionality of the data, making it easier to manipulate and interpret (Kopf and Claassen 2021); and (ii) it
generates generalized vectors that are potentially reusable in a variety of tasks, such as classification,
clustering, and generation (Unsal et al 2022). In recent years, numerous examples of representation learning
strategies have been published (Chuang et al 2020). Self-supervised learning is one example in which
representations are learned from large amounts of unlabeled data using pretext tasks such as predicting the
next token in an input sequence. These learned representations can then be fine-tuned for specific tasks, such
as object recognition or sentiment analysis, for which smaller amounts of labeled data is sufficient (AlBadani
et al 2022, Wang et al 2022a). Overall, representation learning has emerged as an important subfield of
artificial learning, as it improves performance and applicability across a broad range of tasks (Ericsson
et al 2022).

In recent years, transformers have become a widely used architecture for learning self-supervised text
representations in the field of natural language processing (NLP) (Vaswani et al 2017). Transformers
achieved state-of-the-art results on many NLP tasks, including machine translation, text summarization, and
question answering. The transformer is based on the concept of self-attention, which allows the model to
consider the intrinsic relationships between different words or tokens in a sentence or sequence (Kalyan et al
2021). This allows the transformer model to capture long-range dependencies in the data (Tay et al 2022).
The resulting encodings/embeddings are used as the learned representation of the given sequence (Vaswani
et al 2017). The transformer-based language modeling approach has a great deal of potential for
automatically learning the properties of molecules in large chemical libraries, which can then be used in
various steps of drug discovery and development. However, the majority of the proposed chemical language
models (CLMs) have a significant shortcoming in that they use SMILES notations to represent molecules.
Problems with SMILES-based representations can be listed as; (1) there are a number of ways to write the
same molecule in a non-canonical way, which decreases the uniqueness of molecular strings; (2) a valid
SMILES string might have invalid chemical properties such as exceeding the natural valency of an atom
(Wigh et al 2022); (3) SMILES cannot fully capture spatial information; and (4) SMILES alone may not be
sufficient to capture molecular characteristics since it lacks syntactic and semantic robustness (Krenn et al
2022, Li et al, 2022b). These issues suggest a new research direction that may produce CLMs with a greater
degree of generalizability. Therefore, we pose the following question: ‘Is it possible to obtain a better
molecular representation using a chemical language (i.e. a string notation) that is more expressive and
suitable for machine learning-based applications than SMILES?’

In this study, we propose a CLM that employs SELFIES representations of molecules in order to obtain
their concise, flexible, and meaningful representations for use in a variety of downstream molecular tasks in
drug discovery and development. We pre-trained our model, SELFormer, on∼2 million drug-like small
molecules in the ChEMBL database, within the framework of self-supervised learning, and evaluated the
quality of the output representations in various molecular property prediction-related benchmarks. We
provide the method as a programmatic tool, together with trained and ready-to-use models and
pre-calculated representation vectors for all ChEMBL molecules. We expect that SELFormer, along with the
obtained results, will be useful to computational chemistry researchers in order to facilitate the development
of effective solutions for the next generation of drug development.
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2. Related work

BERT (Devlin et al 2018) is the first major deep learning-based language model that utilizes the transformer
architecture. BERT uses two pre-training strategies: masked language modeling (MLM) and next sentence
prediction (NSP). In the MLM task, BERT masks 15% of the words in each input sequence by replacing them
with a [MASK] token. The model then attempts to predict the original values of these masked words based
on their semantic relationships with the non-masked words, which involves adding a classification layer on
top of the encoder output and calculating the probability of each word in the vocabulary using the softmax
function. The cross-entropy loss function only takes into account the prediction of the masked values,
ignoring the prediction of the non-masked values. NSP is a binary classification task in which BERT receives
sentence pairs as input and learns to predict whether the second sentence is the one that follows the first
sentence in the original input. BERT achieved state-of-the-art results on tasks such as question-answering
and language interference. MolBERT (Fabian et al 2020) is a CLM designed to learn high-quality and flexible
molecular representation using the BERT model and SMILES notations of molecules as the input language.
MolBERT is pre-trained with the Guacamole benchmark (Brown et al 2019) dataset which is curated from
ChEMBL (Gaulton et al 2017) consisting of∼1.6 million molecules. The model was fine-tuned and
evaluated on MoleculeNet benchmarking (Wu et al 2018) tasks, i.e. BACE, blood–brain barrier penetration
(BBBP), and HIV datasets for classification tasks, and ESOL, FreeSolv, and Lipo datasets for regression.
MolBERT was tested on three self-supervised tasks: (i) masked language modeling, (ii) predicting the
equivalence of two given SMILES inputs where the second SMILES can either be a synonymous permutation
of the first one or a SMILES selected from the training data randomly, and (iii) predicting physicochemical
properties of the given molecules. The authors found that MolBERT achieved high performance on virtual
screening and QSAR benchmarks.

RoBERTa (Liu et al 2019) is a BERT-based model that introduces slight improvements over BERT.
RoBERTa utilizes dynamic token masking instead of BERT’s static token masking, meaning that different
tokens are masked in each epoch during training. RoBERTa also removed the NSP task, arguing that it may
have a negative effect on the performance by preventing models from learning long-range dependencies.
RoBERTa outperformed BERT on the majority of the NLP tasks that were evaluated. ChemBERTa
(Chithrananda et al 2020) is a model based on RoBERTa and SMILES notations of molecules. The authors of
the study investigated how the molecular property prediction performance of transformer-based
architectures varies with the size of the pre-training dataset, using masked token prediction as the
pre-training objective. The model was pre-trained on 77 million unique molecules curated from PubChem
(Kim et al 2023) and fine-tuned on MoleculeNet tasks (Wu et al 2018). The authors found that ChemBERTa
did not outperform the baseline models on most of the downstream tasks, although it did show
state-of-the-art performance on toxicity prediction (Tox21). They observed that masked language modeling
had a positive impact on downstream task performance. The authors improved the pre-training procedure
and achieved higher scores on the same benchmarking tasks in the new version of their model,
ChemBERTa-2 (Ahmad et al 2022).

Translating the InChI (Handsel et al 2021) is a method for predicting the IUPAC name of a chemical
from its standard International Chemical Identifier (InChI) using a sequence-to-sequence machine learning
model. In lieu of tokenizing the input and output into words or sub-words, this model analyzes the InChI
and predicts the IUPAC name character by character. The model achieved a 91% accuracy; however, its
results were less precise for inorganic compounds compared to organic molecules.

ChemFormer (Irwin et al 2022) is a transformer-based model based on the BART language model. While
the BERT model uses masked language modeling for pre-training, BART utilizes denoising of the corrupted
sequences by random tokens (Lewis et al 2019). The authors pre-trained their models on 100 million
SMILES strings curated from the ZINC database. ChemFormer was fine-tuned on downstream tasks such as
sequence-to-sequence, regression, synthesis, and retrosynthesis. While sequence-to-sequence tasks are
analogous to pre-training; lipophilicity, ESOL, and FreeSolv were used for regression experiments. The
synthesis-related task takes two reactants as input and predicts the outcome of the reaction, while the
retrosynthesis task was designed as its opposite. The authors reported competitive results against other
SMILES and graph-based models.

MolFormer (Ross et al 2022) is a CLM that creates molecular representations using SMILES strings of a
large molecule dataset curated from the ZINC and PubChem databases. MolFormer was trained with
1.1 billion molecules and then fine-tuned for several classification (e.g. BBBP, Tox21, ClinTox, HIV, BACE,
and SIDER) and regression (e.g. QM8, QM9, ESOL, FreeSolv, and lipophilicity) tasks. The model improves
on linear attention units (Su et al 2021) to speed up the training and lower the memory requirements. In the
linear attention unit, MolFormer utilizes rotary positional embeddings instead of absolute positional
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embeddings, which was previously proposed in the RoFormer (Su et al 2021) study. In return, MolFormer
attained improved convergence of the training loss and enhanced stability. MolFormer outperformed all
compared models on regression tasks and on half of the classification tasks. The authors concluded that large
CLMs perform better than geometric (i.e. graph-based) deep learning models and that, even though no
topological information has been fed to the model, it could still distill such knowledge. MolFormer is an
important step in creating a large language model; however, MolFormer’s large size may limit its accessibility,
especially considering the average user/lab. A similar transformer-based method trained via MLM on
1.1 billion molecules, X-MOL (Xue et al 2020), also demonstrated the potential of using large-scale
unlabelled data for the in silico drug development.

Regression transformer (RT) is a multitask language model that integrates an XLnet backbone and MLM
pre-training to leverage the advantages of autoregressive modeling within a bidirectional context (Born and
Manica 2023). When predicting properties for small molecules, proteins, and chemical reactions, RT exhibits
superior or comparable performance against conventional regression models. Notably, RT extends its
capabilities beyond property prediction and excels as a competitive conditional generative model that
seamlessly integrates these previously separate tasks without the need for task-specific adjustments.

Born et al (2023) presented an interpretable chemical language model (CLM) that combines attention
with multiscale convolutions, utilizing data augmentation. They extensively evaluated models built on
various molecular representations, including fingerprints, variations of SMILES and SELFIES, as well as
graph-based methods. The results showcased the superior performance achieved by incorporating
augmentation on the selected molecular representations, leading to the selection of augmented SMILES as
the preferred representation for all subsequent analyses. Their model demonstrated competitive predictive
performance across various molecular property prediction tasks, particularly the toxicity prediction. The
authors highlighted the significance of incorporating diverse architectural enhancements and data
augmentation techniques for improved performance and interpretability.

In addition to CLMs, there are methods for learning the representation of molecules that employ
molecular graphs. In this approach, atom and bond information are generally encoded as nodes and edges of
a molecular graph, respectively. In studies such as SchNet (Schütt et al 2017) and MGCN (Lu et al 2019),
graph representations were utilized to comprehend quantum interactions of small molecules, marking the
beginning of graph learning applications to small molecules.

D-MPNN (also known as ChemProp) is a graph-based deep learning model designed to produce
molecular embeddings as well as evaluate their properties based on supervised downstream tasks (Yang et al
2019). In this study, the authors developed directed message-passing neural networks (D-MPNN) by
enhancing the MPNN algorithm (Gilmer et al 2017) in order to generate embeddings based on the graph
representations of input molecules. The objective of the message-passing algorithm is to determine the
properties of the entire graph by aggregating data from connected nodes. ChemProp reported model
performance in terms of quantum mechanics, physical chemistry, biophysics, and physiology datasets in the
context of downstream classification and regression tasks. On each benchmark, ChemProp outperformed (or
competed with) its predecessors. The D-MPNN algorithm is a crucial step in the construction of meaningful
molecular graph embeddings. There are models that utilize the modified versions of the MPNN algorithm to
achieve similar goals, such as DimeNet (Gasteiger et al 2020) and GeomGCL (Li et al 2022a). While DimeNet
represents molecules based on atomic distances, GeomGCL utilizes both 2D and 3D information. GeomGCL
further improved its model with the addition of contrastive learning, which was reported to be beneficial in
the case of insufficient labeled data. In their study, Hu et al (2019) developed a new strategy for pre-training
GNNs at the level of both individual nodes and entire graphs simultaneously, and addressed the difficulties
of graph pre-training when task-specific labels are scarce. Other graph-based methods, GEM (Fang et al
2022), MolCLR (Wang et al 2022b), and Graph MVP-C (Liu et al 2021) employ approaches such as graph
isomorphism networks (GIN) (Xu et al 2018) or contrastive self-supervised learning (Oord et al 2018).
KPGT (Li et al 2022c) benefit from knowledge guided pre-training which leverages molecular descriptors
and fingerprints.

There are a few general issues with graph-based models that need to be addressed. Basic GNN methods
have limited expressive capabilities and do not perform well in graph isomorphism tests, e.g. the
1-Weisfeiler-Lehman test (Jin et al 2017). Higher-order GNNs (Morris et al 2019) were introduced to
overcome such difficulties. However, increased expressiveness comes at the expense of increased
computational requirements. Even though processing molecules in a three-dimensional plane improves
performance, it further elevates computational complexity and expense. In addition, large-scale, clean data
may not be readily available for 3D modeling. Finally, in some instances, it is reported that these models do
not generalize to large molecules (Ross et al 2022).
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3. Methodology

In SELFormer, we first trained a self-supervised transformer encoder-based CLM to learn high-dimensional
embeddings of molecules in our dataset. After that, we fine-tuned the pre-trained model in the context of
supervised learning for numerous molecular property prediction tasks by adding a classification or
regression head on top of the pre-trained model architecture. Below, we explain each of these steps in detail.
The overview of the SELFormer model for pre-training and fine-tuning is shown in figures 1(A) and (B),
respectively.

SELFormer is implemented using the Python programming language and the Hugging face Transformers
library (Wolf et al 2019), which provides a simple and consistent API for building, training, and deploying
state-of-the-art machine learning models. Molecules are shared in their SMILES notations in most of the
chemistry resources. Therefore, we converted SMILES notations to SELFIES representations using the
SELFIES API (Krenn et al 2020). To split the fine-tuning datasets into training, and test sets, we utilized the
scaffold splitter from the Chemprop library (Yang et al 2019).

3.1. Pre-training procedure
To pre-train SELFormer (figure 1(A)), we employed the ChEMBL dataset (Gaulton et al 2017) (version 30)
containing SMILES representations of 2084 725 drug-like bioactive compounds (small molecules). Prior to
pre-training, we conducted the SMILES to SELFIES conversion, which resulted in 2084 472 unique molecules
in their SELFIES notation. To speed up the conversion process, we parallelized the operation using the
Pandaral.lel (https://nalepae.github.io/pandarallel/) Python library. Byte-level byte-pair encoding (BPE)
(Radford et al 2019) is employed to tokenize the SELFIES notations of the ChEMBL dataset. While defining
special tokens, our tokenizer adopts the same approach as RoBERTa (Liu et al 2019), enclosing the tokens in
angle brackets and using lowercase letters (e.g.<mask>,<unk>, etc.). SELFormer is built on the RoBERTa
transformer architecture (Liu et al 2019), which utilizes the same architecture as BERT (Devlin et al 2018),
but with certain modifications that have been found to improve model performance or provide other
benefits. One such modification is the use of byte-level BPE (Radford et al 2019) for tokenization instead of
character-level BPE. Another one is that, RoBERTa is pre-trained exclusively on the MLM objective while
disregarding the NSP task.

To optimize our pre-trained models, we conducted a hyperparameter search using a subset of our
original training dataset, composed of 100 000 molecules (with a randomized 80–20 train-validation split).
Due to computational resource limitations, we followed a sequential approach, resulting in the training of
nearly 100 models as opposed to the thousands that would have been trained in a full grid search. In the first
hyperparameter search run, we evaluated the impact of the number of attention heads (4, 8, 12), number of
hidden layers (4, 8, 12), and learning rate (1× 10−1, 1× 10−3, 1× 10−5, 5× 10−5) while keeping batch size
and number of epochs constant. We selected the top-performing models based on validation loss values and
carried them forward to the second hyperparameter run, in which we varied the batch size (8, 16, 32) and the
number of epochs (5, 10, 25) on the best-performing models from the first run. Following the second run,
we recognized the interdependence between batch size and learning rate and conducted additional
experiments to optimize their relationship. We explored all combinations of learning rate (1× 10−1,
1× 10−3, 1× 10−5, 5× 10−5) and batch size (8, 16, 32), while keeping the other hyperparameters constant
and aligned with the best-performing model from the second run. Among the ones that performed best, we
selected two models to proceed with full-scale pre-training and subsequent fine-tuning. We conducted our
experiments on two NVIDIA A5000 GPUs. The total amount of pre-training time for the hyper-parameter
optimization tests was around 12 d.

3.2. Fine-tuning
We fine-tuned our models (figure 1(B)) on several molecular property prediction tasks using the
MoleculeNet (Wu et al 2018) benchmarking datasets of varying sizes including the BBBP, the Side Effect
Resource (SIDER), The ‘Toxicology in the 21st Century’ (Tox21), the ability to inhibit HIV replication (HIV)
and binding properties against the human beta-secretase 1 protein (BACE) datasets for classification tasks,
and the Free Solvation Database (FreeSolv), aqueous solubility (ESOL), Lipophilicity and the binding affinity
prediction (PDBbind) datasets for regression tasks. The details of the selected tasks/datasets are given in
table 1.

To be able to fine-tune the SELFormer model for the selected downstream task, we incorporated a
classification/regression head consisting of two linear layers on top of the pre-trained model (after the output
of the encoder). This module takes the embedding produced by the pre-trained (encoder) model as input,
and maps it to the corresponding output, a probability distribution over the target classes for the
classification tasks, or a continuous value for the regression tasks.

5
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Figure 1. The schematic representation of the SELFormer architecture and the experiments conducted. (A) The self-supervised
pre-training utilizes the transformer encoder module via masked language modeling for learning concise and informative
representations of small molecules encoded by their SELFIES notation. (B) The pre-trained model has been fine-tuned
independently on numerous molecular property-based classification and regression tasks.

3.2.1. Classification tasks
The BACE, BBBP, and HIV datasets were used for the binary classification task, while the SIDER and Tox21
datasets were employed for the multi-label classification task. The BACE dataset contains experimental
quantitative (i.e. IC50) and qualitative binding properties of a set of inhibitors of human beta-secretase 1
(BACE1) protein (Subramanian et al 2016). The dataset comprises 2D structures and binary labels for 1513
compounds. The BBBP dataset provides information on the blood-brain barrier (BBB) permeability
properties of over 2,039 compounds (Martins et al 2012), a crucial topic for developing drugs that target the
central nervous system. The HIV dataset is part of the Drug Therapeutics Program AIDS Antiviral Screen
(AIDS antiviral screen data—NCI DTP data—NCI Wiki) and includes over 41 127 compounds categorized
as confirmed inactive (CI), confirmed active (CA), or confirmed moderately active (CM) based on their
ability to inhibit HIV replication. MoleculeNet has further modified this dataset into binary classification as
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Table 1. Information about molecular property prediction tasks that were used in model fine-tuning.

Dataset Type of the task Content # of compounds Metric

BBBP Binary classification Binary labels on blood–brain
barrier permeability

2039 ROC-AUC

HIV Binary classification Binary labels on the ability to
inhibit HIV replication

41 127 ROC-AUC

BACE Binary classification Binary labels on human-secretase 1
(BACE1) binding properties

1513 ROC-AUC

SIDER Multi-label
classification

Classification of drug side-effects
into 27 system organ classes

1427 ROC-AUC

Tox21 Multi-label
classification

Qualitative toxicity measurements
on 12 targets

7831 ROC-AUC

ESOL Regression Aqueous solubility of common
small molecules

1128 RMSE

FreeSolv Regression Hydration free energy of small
molecules in water

642 RMSE

Lipophilicity Regression Experimental octanol/water
distribution coefficient of
compounds

4200 RMSE

PDBbind Regression Binding affinity data for
bio-molecular complexes

11 908 RMSE

inactive (CI) and active (CA and CM) compounds. Finally, the SIDER dataset is a collection of marketed
drugs and their associated adverse drug reactions (Kuhn et al 2016). MoleculeNet has classified the side
effects of 1427 approved drugs into 27 categories based on the Medical Dictionary for Regulatory Activities
classification system (MedDRA). Additionally, we included the Tox21 dataset, which contains qualitative
toxicity measurements for 7831 compounds and can be used for multi-label classification on 12 different
targets. To train the models on classification tasks, we utilized cross-entropy (equation (1)) as our loss
function. To assess the performance of the models, we calculated the area under receiver operating
characteristic curve (ROC), and the area under the precision-recall curve (PRC). On one axis, ROC and PRC
curves plot the same metric, True Positive Rate/Recall (equation (2)), while differing in the metric plotted on
the other axis, with ROC using false positive rate (equation (3)) and PRC using precision (equation (4))

L(y, ŷ) =− 1

N

N∑
i

M∑
c=1

yiclog log (ŷic) (1)

where, N is the number of observations,M is the number of classes, yic is the binary value indicating whether
the class label c is the correct classification for the observation i and, ŷic is the predicted (softmax) probability
that the observation i is of class c

TPR=
TP

TP + FN
(2)

FPR=
FP

FP + TN
(3)

Precision=
TP

TP + FP
(4)

where TP, TN, FP and FN is the number of true positive, true negative, false positive and false negative
predictions, respectively.

3.2.2. Regression tasks
ESOL, FreeSolv, Lipophilicity, and PDBbind datasets were utilized for regression-based evaluation of
SELFormer. The ESOL dataset contains aqueous solubility data for 1128 compounds along with their
chemical structures (Delaney 2004). FreeSolv, provided by the Free Solvation Database (Mobley and Guthrie
2014) includes experimental and calculated hydration-free energy values of small molecules in water. These
values are obtained from molecular dynamics simulation-based alchemical free energy calculations. The
Lipophilicity dataset, curated from the ChEMBL database, provides experimental results of octanol/water
distribution coefficients for 4200 compounds, which is a critical property for drug molecules, associated
to both solubility and membrane permeability. The PDBbind dataset, from the PDBbind database
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(Wang et al 2004), contains experimentally measured binding affinity values for biomolecular complexes,
together with 3D Cartesian coordinates of both ligands and their target proteins derived from experimental
measurements. MoleculeNet utilizes the “refined” and “core” subsets of the PDBbind database after careful
processing to eliminate data artifacts. Mean squared error loss (equation (5)) was employed as the loss
function for fine-tuning the models on regression tasks. To evaluate the performance of the models, we
calculated Root Mean Square Error (RMSE) (equation (5)) score

RMSE=
√
MSE=

√√√√ 1

N

N∑
i=1

(yi − ŷi)
2 (5)

where; N is the number of observations, yi is the true value of observation i, and yˆi is the predicted value of
observation i.

For each dataset, we prepared both random and scaffold split datasets. For both, we assumed 80%, 10%,
and 10% train, validation, and test split, respectively. We utilized the scaffold splitter from the Chemprop
library (Yang et al 2019), which divides molecules based on their molecular scaffold, by ensuring that the
molecules containing the same scaffold do not appear in more than one split. By partitioning structurally
distinct molecules into separate subsets, scaffold splitting provides a more challenging and robust evaluation
of a model’s learning ability than random splitting (Wu et al 2018).

4. Results and discussion

4.1. Pre-training and optimization
To optimize the pre-training procedure we gradually explored hyperparameters by focusing on different
combinations, using a random subset of 100 000 molecules from the ChEMBL dataset, as detailed in
section 3.1. First, we explored the impact of attention heads, hidden layers, and learning rate via random
search, which led to the selection of the top performing hyperparameter values based on validation losses.
Second, we examined the effect of batch size and the number of epochs on our top performing models, and
found that larger batch sizes and lower number of epochs led to poor performance. We selected two
best-performing models with optimal values in terms of the number of attention heads, hidden layers, batch
size, and learning rate (table 2). We named the model with fewer trainable parameters SELFormer-Lite, and
the larger one, just SELFormer (the default model). Finally, we trained these two models with the full
ChEMBL pre-training dataset and calculated their validation loss values as 0.328 and 0.306 for
SELFormer-Lite and SELFormer, respectively. Additional experiments conducted on the pre-trained models
are presented in section 4.3. The pre-trained models are publicly accessible at https://github.com/
HUBioDataLab/SELFormer for further utilization.

4.2. Fine-tuning onmolecular property prediction
With the aim of training molecular property prediction models, we fine-tuned the pre-trained SELFormer
model on both classification and regression-based tasks, as described in section 3.2.

4.2.1. Classification tasks
With the aim of assessing SELFormer’s generalizability and robustness, we calculated its performance on
classification-based molecular property prediction tasks using both scaffold and random split datasets. Then,
we compared it with the existing CLMs and graph-based molecular representation learning methods. Our
evaluation results on the scaffold and random split datasets are presented in tables 3 and 4, respectively.

SELFormer demonstrated high performance especially in two of the selected classification tasks. On
SIDER, which is a multi-label classification task concerning drug side effects, SELFormer outperformed all
existing approaches, achieving a 10% increase in the overall ROC values compared to the best competitor,
MolCLR (tables 3 and 4). On BBBP, a binary classification task for predicting brain-blood barrier
permeability, SELFormer outperformed all existing approaches except CLM and KPGT (SELFormer’s results
are comparable to both CLM and KPGT on this task). It is quite likely that the use of SELFIES
representations in our models enhanced the performance in both the SIDER and BBBP tasks as a result of
accurately capturing subtle structural differences between molecules (Krenn et al 2022), which can have a
significant effect on the resulting molecular property value. Furthermore, SELFIES simplifies the
representation of stereochemistry compared to the SMILES notation, which in turn reduces the complexity
of the input data and facilitates model training. This can be particularly relevant for the prediction tasks
related to drug adverse reactions, in which stereochemistry can play an important role. These findings also
indicate the advantages of using SELFIES notation for high-throughput drug discovery and molecular design
applications.
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Table 2. Hyperparameter configurations of the chosen SELFormer models.

SELFormer-Lite SELFormer

Batch Size 16 16
Attention Heads 12 4
Hidden Layers 8 12
Learning Rate 5× 10−5 5× 10−5

Weight Decay 0.01 0.01
Epoch 100 90

# of parameters 58 307 360 86 658 848

Table 3. Classification-based molecular property prediction task (i.e. BACE, BBBP, HIV, Tox21 and SIDER) performance results of
SELFormer and competing methods, on scaffold split datasets. Scores are given in terms of the area under receiver operating
characteristic curve (ROC) metric (higher is better). Best scores for each task are shown in bold (multiple methods are marked if the
difference in-between is less than %1). Scores were not available for the method-task combinations that are denoted with ‘—’. Results for
D-MPNN are taken from Fang et al (2022), and results for Hu et al, MGCN, GCN, GIN, and SchNet are taken fromWang et al (2022b).
The HIV result provided for ChemBERTa-2 was adopted from Chithrananda et al (2020), which is the previous study of the same
authors (i.e. ChemBERTa), as there were no results provided in the ChemBERTa-2 article.

Model type Model name BACE BBBP HIV Tox21 SIDER

Text-based

SELFormer (ours) 0.832 0.902 0.681 0.653 0.745
MolBERT 0.866 0.762 0.783 — —
ChemBERTa-2 0.799 0.728 0.622 — —
CLM 0.861 0.915 0.813 0.795 0.619

Graph-based

D-MPNN 0.809 0.710 0.771 0.759 0.570
Hu et al 0.859 0.708 0.802 0.787 0.652
MolCLR 0.890 0.736 0.806 0.798 0.680
GraphMVP-C 0.812 0.724 0.770 0.744 0.639
GEM 0.856 0.724 0.806 0.781 0.672
MGCN 0.734 0.850 0.738 0.707 0.552
GCN 0.716 0.718 0.740 0.709 0.536
GIN 0.701 0.658 0.753 0.740 0.573
SchNet 0.766 0.848 0.702 0.772 0.539
KPGT 0.855 0.908 — 0.848 0.649

Table 4. Classification-based molecular property prediction task (i.e. BACE, BBBP, HIV, Tox21 and SIDER) performance results of
SELFormer, on random split datasets. Scores are given in terms of the area under receiver operating characteristic curve (ROC) metric
(higher is better). Best scores for each task are shown in bold.

Model type Model name BACE BBBP HIV Tox21 SIDER

Text-based
SELFormer (Ours) 0.836 0.863 0.714 0.641 0.745
X-MOL 0.872 0.962 0.798 — —
CLM — — — 0.858 0.659

Graph-based D-MPNN 0.878 0.913 0.816 0.845 0.646

It is also important to make a direct comparison between SELFormer and ChemBERTa-2, where the
latter utilizes the same architecture as SELFormer (i.e. RoBERTa) but SMILES representations of molecules
instead of SELFIES. SELFormer outperformed ChemBERTa-2 on BACE and BBBP tasks, and ChemBERTa
on the HIV task, with an average of 12% improvement (table 3). As also displayed in table 3, when compared
with another text-based method on scaffold split datasets, SELFormer outperformed MolBERT on BBBP
with an 18% improvement (MolBERT was not tested on SIDER or Tox21 tasks). MolBERT demonstrated a
slight improvement over SELFormer on the BACE task, while on the HIV task, it clearly outperformed
SELFormer, possibly due to its incorporation of two supplementary pre-training objectives that consider
molecular properties. In the future, extending pre-training with domain-specific objectives can also improve
the SELFormer’s scores. On the other hand, CLM benefits from the use of SMILES augmentation, which led
to better results as observed particularly in the BBBP and HIV tasks.

On scaffold split-based BACE, BBBP, and SIDER tasks, SELFormer mostly dominated graph-based
approaches (e.g. with an average of 20% improvement over D-MPNN). The exceptions were for MolCLR,
GEM, and KPGT especially considering the tasks of BACE, HIV and Tox21, the superior performance of
which can be attributed to their pre-training on larger datasets, such as the entire ZINC (Irwin et al 2012)
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Table 5. Regression-based molecular property prediction task (i.e. ESOL, FreeSolv, Lipophilicity, and PDBbind) performance results of
SELFormer and competing methods, on scaffold split datasets. Scores are given in terms of the root mean squared error (RMSE) metric
(lower is better). Best scores for each task are shown in bold. Scores were not available for the method-task combinations that are
denoted with ‘—’.

Model type Model name ESOL FreeSolv Lipophilicity PDBbind

Text-based
SELFormer (Ours) 0.682 2.797 0.735 1.488
ChemBERTa-2 — — 0.986 —

MolCLR 1.110 2.200 0.650 —
Hu et al 1.220 2.830 0.740 —
D-MPNN 1.050 2.082 0.683 1.397

MGCN 1.270 3.350 1.110 —
Graph-based GEM 0.798 1.877 0.660 —

SchNet 1.050 3.220 0.910 —
KPGT 0.803 2.121 0.600 —
GraphMVP 1.029 — 0.681 —
GCN 1.430 2.870 0.850 —
GIN 1.450 2.760 0.850 —

and PubChem (Kim et al 2023) databases, and higher number of trainable model parameters. Similarly, there
exist a few SMILES-based CLMs, such as MolFormer (Ross et al 2022), that were trained on extensive
datasets (i.e. 1.1 billion molecules). MolFormer achieved superior performance with a 0.937 ROC value on
the BACE task, establishing a new state-of-the-art. MolFormer’s performance is not fairly comparable to
SELFormer, a model trained on∼2 million molecules. Nevertheless, on the SIDER task, SELFormer
outperformed MolFormer (i.e. the ROC values of 0.745 and 0.690, respectively), again highlighting the
benefits of employing the SELFIES notation. On the other hand, SELFormer was outperformed by all
graph-based approaches on HIV and Tox21 datasets. This may be explained by the fact that these datasets are
relatively larger, which prevented us from exploring a sufficiently large hyperparameter space. Increasing the
size of SELFormer and exploring larger hyperparameter spaces by allocating more resources for fine-tuning
can improve the model’s performance.

Table 4 presents the evaluation results on the randomly split datasets for all classification tasks. The
performance of SELFormer on random split datasets is typically higher than that on scaffold split datasets
due to the presence of training and test fold molecules that are similar to each other. Wu et al (2018)
recommend random splitting for Tox21 and SIDER. Due to this, it is especially important to take the random
split results into account when analyzing these two tasks. Table 4 reveals that, similar to the scores on scaffold
split, SELFormer reported a better performance on the random split SIDER dataset, compared to the other
methods.

4.2.2. Regression tasks
SELFormer was also fine-tuned on selected regression-based molecular property prediction tasks in the
MoleculeNet benchmark (i.e. ESOL, FreeSolv, Lipophilicity, and PDBbind). These tasks are evaluated based
on both scaffold and random split versions of the given datasets. In table 5, the RMSE-based performance of
SELFormer is listed with one CLM (i.e. ChemBERTa-2) and multiple graph-based methods, for the scaffold
split. SELFormer outperformed all other methods on the ESOL dataset achieving more than a 15%
improvement over the RMSE score of the best competitor (i.e. GEM). SELFIES has the ability to successfully
express functional groups and aromatic systems, both of which affect the aqueous solubility of molecules
(Wang et al 2007, Bergström and Larsson 2018). On FreeSolv and Lipophilicity tasks, SELFormer
outperformed nearly the half of the graph-based models (i.e. Hu et al, GCN, GIN, MGCN, and SchNet) and
dominated by the other half (i.e. D-MPNN, GEM, KPGT, GraphMVP-C, and MolCLR). ChemBERTa-2 was
the only text-based (i.e. chemical language) model that could be compared with SELFormer. On the
Lipophilicity prediction task, SELFormer outperformed ChemBERTa-2.

In table 6, SELFormer was compared with both language models and graph-based methods on the
random split datasets (it is advised by Wu et al (2018) that ESOL, FreeSolv, and Lipophilicity datasets should
be evaluated considering the randomly split versions). While RT, like SELFormer, takes SELFIES as input,
MolBERT, Chemformer, and X-MOL were trained using SMILES representations. X-MOL also had the
advantage of being trained on a much larger dataset composed of 1.1 billion molecules curated from the
ZINC database. Again, SELFormer outperformed all methods on the ESOL dataset while reporting more or
less comparable results on the other tasks. Despite the fact that both models utilized SELFIES, SELFormer
consistently outperformed RT across all tasks, most likely due to differences in model architecture and
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Table 6. Regression-based molecular property prediction task (i.e. ESOL, FreeSolv, Lipophilicity, and PDBbind) performance results of
SELFormer and competing methods, on random split datasets. Scores are given in terms of the root mean squared error (RMSE) metric
(lower is better). Best scores for each task are shown in bold. Scores were not available for the method-task combinations that are
denoted with ‘—’.

Model type Model name ESOL FreeSolv Lipophilicity PDBbind

Text-based

SELFormer (Ours) 0.386 1.005 0.674 1.437
MolBERT 0.531 0.941 0.561 —
Chemformer 0.633 1.230 0.598 —
X-MOL 0.578 1.108 0.596 —
RT 0.690 1.030 0.740

Graph-based

D-MPNN 0.555 1.075 0.555 1.391
SS-GNN — — — 1.181
OnionNET — — — 1.278
FP-GNN — — — 1.296

Table 7. The ablation study results. Performance of pre-trained and fine-tuned (for 25 and 50 epochs) SELFormer models on
classification-based molecular property prediction tasks, using the random split datasets. Results are presented in terms of the area
under receiver operating characteristic curve (ROC) and the area under the precision-recall curve (PRC) metrics (higher is better). Best
scores for each task are shown in bold.

Model name BACE BBBP HIV Tox21 SIDER

ROC PRC ROC PRC ROC PRC ROC PRC ROC PRC

SELFormer-Lite-pretrain 0.682 0.744 0.686 0.914 0.575 0.401 0.500 0.533 0.718 0.831
SELFormer-Lite-finetune-25 0.787 0.824 0.826 0.949 0.705 0.463 0.645 0.409 0.708 0.816
SELFormer-Lite-finetune-50 0.773 0.811 0.829 0.950 0.703 0.476 0.650 0.407 0.717 0.819

SELFormer-pretrain 0.699 0.750 0.727 0.925 0.600 0.419 0.523 0.436 0.723 0.831
SELFormer-finetune-25 0.796 0.830 0.857 0.958 0.703 0.472 0.641 0.423 0.699 0.806
SELFormer-finetune-50 0.774 0.813 0.863 0.960 0.714 0.503 0.678 0.489 0.711 0.814

training methodology. SELFormer benefits from large-scale self-supervised pre-training followed by
fine-tuning a regression head, while RT relied on training a model based on classification loss (Born and
Manica 2023).

On the random split version of the PDBbind dataset, the performance of the SELFormer model was
compared against the graph-based models: D-MPNN, SS-GNN (Zhang et al 2022), OnionNET (Zheng et al
2019), and FP-GNN (Cai et al 2022). SELFormer demonstrated comparable performance to these models.
Graph-based methods may have an advantage in predicting binding affinities due to their strategy of
representing molecules from a geometric perspective, which may better capture their interaction-related
properties.

4.3. Ablation study
We conducted an ablation study to investigate the impact of model fine-tuning on downstream prediction
performance by comparing the predictive capabilities of two pre-trained models, SELFormer and
SELFormer-Lite. We utilized randomly split versions of both the classification- and regression-based
molecular property prediction datasets to measure model performances. The training time of the fine-tuned
models was restricted by limiting the number of training epochs to 25 and 50, over a fixed set of
hyperparameters (i.e., learning rate= 5× 10−5, train batch size= 16, weight decay= 0), to yield a basic and
fair comparison between different models. In order to calculate the prediction performance of the
pre-trained models without fine-tuning, we applied a one-pass learning (i.e., a single epoch training).

The results are presented in tables 7 and 8, for classification and regression tasks, respectively. Our
findings revealed that SELFormer consistently outperformed SELFormer-Lite, comparing both their
pre-trained and fine-tuned versions against each other. Fine-tuning provided a significant improvement for
most of the datasets. Interestingly, we observed that the base (pre-trained) models performed better than
their fine-tuned counterparts on the SIDER task, which may be due to the hyperparameters not being
optimal for this task. Especially in some of the tasks (e.g., BACE and Lipophilicity) 25-epoch training
provided a slightly better performance compared to 50 epochs. Based on these results, we proceeded with
fine-tuning experiments on a wider hyperparameter search space using the SELFormer model, as it
demonstrated a clear superiority over SELFormer-Lite considering most of the molecular property prediction
tasks. The results provided in section 4.2. belong to the abovementioned wider hyperparameter search.
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Table 8. The ablation study results. Performance of pre-trained and fine-tuned (for 25 and 50 epochs) SELFormer models on
regression-based molecular property prediction tasks, using the random split datasets. Results are presented in terms of the Root Mean
Square Error (RMSE) metric (lower is better). Best scores for each task are shown in bold.

Model name ESOL FreeSolv Lipophilicity PDBbind

RMSE RMSE RMSE RMSE

SELFormer-Lite-pretrain 1.691 3.124 1.086 1.515
SELFormer-Lite-finetune-25 0.429 1.142 0.725 1.396
SELFormer-Lite-finetune-50 0.380 1.012 0.698 1.450

SELFormer-pretrain 1.357 3.192 1.021 1.482
SELFormer-finetune-25 0.407 1.054 0.674 1.473
SELFormer-finetune-50 0.386 1.005 0.711 1.437

Figure 2. Selected use-case molecules from three molecular property-based datasets of; (A) the blood–brain barrier penetration
(BBBP), (B) the Side Effect Resource (SIDER); and (C) aqueous solubility (ESOL).

4.4. Use-case analysis
We evaluated the biochemical significance of our findings by analyzing molecular property predictions of
selected molecules from downstream analysis datasets, including BBBP, SIDER, and ESOL, in which
SELFormer demonstrated a high performance. As use-cases for each task, we chose extensively studied
molecules with a high number of publications without considering the SELFormer prediction outcome
(figure 2).

BBBP is a binary classification-based molecular property prediction task comprising the ability of
compounds to permeate the BBB. The BBB serves as a selective barrier between the blood circulation and the
extracellular fluid of the brain, posing a formidable challenge to the development of drugs that target the
central nervous system. We selected two compounds with known effects on the nervous system: fentanyl and
bromocriptine. SELformer predicted fentanyl and bromocriptine as positive and negative, respectively, in the
BBBP task. Fentanyl, a potent opioid agonist that is indicated for short-term analgesia and is known to cross
the BBB (Schaefer et al 2017). Additionally, the positive BBB permeability property of fentanyl was also
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predicted with high probability (0.9901) by admetSAR (https://go.drugbank.com/drugs/DB00813), an
open-source database that collects and curates absorption, distribution, metabolism, excretion, and toxicity
(ADMET)-associated property data from published literature (Cheng et al 2012). On the contrary,
bromocriptine, a dopaminergic receptor agonist used to treat galactorrhea due to hyperprolactinemia and
early Parkinson’s disease, was predicted to have negative BBB permeability by admetSAR with a probability
of 0.9845 (https://go.drugbank.com/drugs/DB01200), which was also predicted as negative by SELFormer.

SIDER is a multi-label classification task of grouping drug side-effects into 27 classes based on the
affected system organ. We assessed the performance of SELFormer on this task by examining verapamil, a
well-studied calcium channel blocker that is prescribed for angina, arrhythmia, and hypertension (https://go.
drugbank.com/drugs/DB00661). The results demonstrate that SELFormer predicted several system organ
classes associated with verapamil’s side-effects, including infections, infestations, respiratory and
gastrointestinal disorders. The SIDER database reports that verapamil commonly causes infections,
constipation, and upper respiratory tract infections, with frequencies ranging from 2.4% to %12.1, which are
all related to system organ classes predicted by SELFormer (http://sideeffects.embl.de/drugs/2520). Cardiac
failure and pulmonary oedema are other reported frequent side-effects related to vascular, respiratory,
thoracic and mediastinal disorders which were also correctly predicted by SELFormer. One of the classes
predicted by SELFormer for verapamil was ‘metabolism and nutrition disorders’, which was evaluated to be a
false-positive prediction based on the annotations of this molecule in SIDER. Calcium channel blockers have
been reported to inhibit insulin release, and some studies have shown reversible hyperglycemia in patients
with maturity onset diabetes mellitus treated with these drugs. Also, short-term administration of calcium
channel blockers to individuals with normal glucose tolerance was reported to result in a significant glucose
intolerance (Russell 1988). These findings suggest that verapamil may have metabolic effects beyond its
known side-effects, although additional studies are needed to confirm their clinical relevance and
mechanisms. The ability of SELFormer to predict such potential side-effects across multiple system organ
classes demonstrates the model’s high generalization ability for drug side-effect prediction.

The ESOL dataset is a regression task that aims to predict the solubility of compounds in water based on
their chemical structures. Aqueous solubility is a key property for drug discovery and molecular design as it
affects drug absorption, distribution, metabolism, and excretion in the body. We selected two compounds,
metronidazole and progesterone, to evaluate SELFormer on ESOL. Metronidazole is an antibiotic from the
nitroimidazole class, commonly used to treat gastrointestinal infections, trichomoniasis, giardiasis, and
amoebiasis (Dingsdag et al 2018, Hernández Ceruelos et al 2019). The measured log solubility of
metronidazole reported in the ESOL dataset was 10.321 g l−1 at 25 ◦C (Delaney 2004), while SELFormer
predicted a value of 6.659 g l−1, which represented a 35% deviation from the measured value. Progesterone is
a vital hormone for endometrial receptivity, embryo implantation, and successful pregnancy, and is also used
in contraceptive preparations to prevent ovulation and fertilization and in other formulations to support
pregnancy (Cooper et al 2022). For progesterone, the measured log solubility in the ESOL dataset was
0.012 g l−1, and SELFormer predicted a value of 0.028 g l−1. Although SELFormer did not achieve
particularly high performance on the use-cases we evaluated for the ESOL dataset, it is worth noting that
aqueous solubility calculations are not always precise, leading to varying reported values across different
databases. For instance, the reported aqueous solubility of metronidazole in DrugBank is 5.92 g l−1 (https://
go.drugbank.com/drugs/DB00916), which is more consistent with SELFormer’s prediction than with the
ground truth value in the ESOL dataset.

4.5. Visualization of the embedding space
Dimensionality reduction techniques are frequently employed to visually explore the distribution of points
in a dataset, based on their features, with the aim of conducting qualitative evaluations. Here, we investigated
the molecular representations produced by SELFormer via uniform manifold approximation and projection
(UMAP), which is a general purpose manifold-learning-based dimensionality reduction method (McInnes
et al 2018).

Due to the simplicity of visual examination and comparison between two groups, we created UMAP
embeddings for the molecules in our binary classification-based molecular property prediction tasks (i.e.
BACE, BBBP, and HIV). For each task, we constructed one embedding using the representations obtained
from the pre-trained model, and another one using the representations obtained from the fine-tuned model.
The same set of molecules were employed for the pre-trained and fine-tuned embeddings of the same task.
The embeddings are given in figure 3.

The molecules of the BACE task were visualized using the whole dataset since it is relatively small
(i.e. composed of 1513 data points). The two groups in figure 3(A) represent the active and inactive
molecules against the human beta-secretase 1 (BACE1) protein. In both pre-trained and fine-tuned model
embeddings, active and inactive molecules are separated from each other, although some inactive molecules
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Figure 3. Visualization of SELFormer representations (via UMAP projection) considering the pre-trained (left) and task specific
fine-tuned (right) SELFormer models trained on classification-based molecular property prediction benchmarks: (A) inhibitors
of human beta-secretase 1 (BACE), (B) the blood–brain barrier penetration (BBBP), (C) the ability to inhibit HIV replication
(HIV), (D) Toxicology in the 21st Century (Tox21), and (E) the side effect resource (SIDER).

appear to be scattered throughout the area occupied by active molecules; however, in the fine-tuned model,
two groups are slightly more linearly separable, which indicates that the fine-tuning process improved the
representation power of SELFormer in the BACE task.

The BBBP dataset was embedded in figure 3(B), with the two groups representing molecules that can
penetrate the BBB and the ones that cannot. The dataset in the BBBP task is not well balanced between
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classes, as there is a higher number of molecules that can penetrate the brain-blood barrier. In pre-trained
model embeddings, two classes are roughly separated into the two sides of the plane. Also, fine-tuning slightly
improved the clustering of the non-penetrable molecules by bringing their two clusters closer to each other.

The HIV dataset contains∼41 000 molecules making it the largest classification dataset SELFormer
models were fine-tuned on. This dataset is extremely unbalanced with only∼1400 positive (active) and
∼39 600 negative (inactive) data points. For HIV active molecules, both pre-trained and fine-tuned model
embeddings formed numerous clusters, a few of which were large and contained most of the members of the
group (figure 3(C)). This result shows that the models were able to capture a certain amount of structural
similarity between HIV active molecules. There were small clusters of inactive molecules in the embeddings
as well; however, they did not cluster well, probably due to their high number and diversity. As an overall
evaluation, UMAP embeddings indicate SELFormer was able to learn the distinction between small
molecules across multiple types of molecular properties, even only with pre-training. Additionally,
fine-tuning causes a slight improvement. It is also important to note that, assessing the magnitude of
improvement over 2D visualizations may not be ideal, since the dimension size is not sufficient to fully
express the features learned by the model.

For the embeddings of molecules in the Tox21 and SIDER datasets, preprocessing steps were employed,
mainly to address the inherent challenges of representing multi-class and multi-label data on the 2D plane.
For Tox21, the molecules with multiple positive labels, or without any positive labels, were eliminated,
resulting in a dataset comprising 1393 molecules. These molecules possess single positive labels distributed
across 12 distinct Tox21 classes. The Tox21 dataset consists of two main groups/panels: the nuclear receptor
panel (NR) and the Stress Response panel (SR). In the UMAP plots, we colored molecules according to their
Tox21 classes (i.e. the sub-groups of SR and NR) in a way to improve visual perception. As observed in
figure 3(D) (left), using the pre-trained SELFormer model, we were able to distinguish between the SR and
NR panels. The SR group molecules, represented by a blue palette, are positioned on the left side of the
UMAP plot, while the NR group molecules, represented by a red palette, are embedded on the right side.
Furthermore, by fine-tuning the SELFormer model on Tox21 (figure 3(D), right side), it was possible to
achieve a greater discrimination between the sub-groups of SR and NR.

In SIDER, there is a high degree of overlap between classes, due to the fact that a significant proportion of
molecules exhibited multiple positive labels. To address this problem, we utilized a simple inter-class pairwise
similarity function and calculated the ratio of shared molecules between each pair of classes in a manner
similar to the Jaccard index. Using this function, we eliminated all classes (and their associated molecules)
that have a similarity score of 0.8 or greater against all other classes. In addition, among the remaining
molecules, those with more than three class assignments were eliminated. These criteria were adopted to
ensure a substantial level of dissimilarity between selected samples. In the end, we obtained a total of 1170
positive assignments/labels across 11 side effect classes. The UMAP embedding in the left side of figure 3(E)
shows the pretrained model embedding for SIDER. Although there are overlaps between classes, the
pretrained model can be considered successful in differentiating side effect classes in general. On the other
hand, the fine-tuned SELFormer model (figure 3(E), right side) exhibited an enhanced ability to distinguish
side effect classes. A few examples of improvements over the pre-trained model can be given as the separation
between the molecules that are associated with; (i) the reproductive system and breast disorders (gold color)
and cardiac disorders (light blue color), and (ii) eye disorders (green color) and cardiac disorders (light blue
color). Notably, for both Tox21 and SIDER, obtaining visually striking clusters from the 2D embeddings of
molecules remained challenging, despite the aforementioned data preprocessing steps, due to the multi-class
and multi-label characteristics of these tasks.

To evaluate the pre-trained SELFormer model from a drug discovery perspective, we generated a UMAP
projection and 2D visualization (figure 4) of a large-scale molecule dataset based on compound-target
interactions (i.e. bioactivity data) obtained from the ChEMBL database v29. The specific aim behind this
analysis was to observe whether it is possible for SELFormer to distinguish molecules based on their
functional/interaction related properties (i.e. grouping them based on their target proteins’ families), which
is a highly difficult task due to the fact that molecules with dissimilar structures can interact with different
members of a large protein family, and can even bind to the same region on a particular protein in some
cases. The dataset we used for this experiment contains small molecule ligands (inhibitors) of proteins from
five different protein families which are transferases, proteases, oxidoreductases, membrane-receptors, and
ion-channels. While gathering this dataset, we only included the molecules with an experimentally measured
bioactivity value of pChEMBL> 6 (i.e. IC50< 1uM) in single target-based binding assays. For the UMAP
embedding, we randomly selected 10 000 inhibitor molecules from each protein family and eliminated
molecules that are recorded to be bioactive against multiple families. Only the pre-trained SELFormer
model’s representations were used in this UMAP analysis, as we did not have a model fine-tuned for this task.
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Figure 4. Visualization of SELFormer representations (via UMAP projection) of drug-like molecules from ChEMBL, grouped
into high level protein families of their known targets (i.e. transferases, proteases, oxidoreductases, membrane-receptors, and
ion-channels). The pairwise scaffold similarities between sample molecules (shown with dark gray colored numbers) that are
embedded close to each other indicates the model’s ability to construct informative molecular representations.

In figure 4, it can be seen that molecules formed numerous small clusters, some of which are homogeneous
and some are heterogeneous considering the protein families of their targets. This is most probably due to
apparent structural similarities between molecules. Oxidoreductase inhibitors are clustered into several
groups and located abundantly at the left hand side of the plane. Whereas, most of the protease inhibitors are
located at the right-bottom side of the plot, again in several small clusters. Transferases group contains kinase
inhibitors which are diverse in both structure and function, and this is reflected as scattered red dots all over
the embedding plane. A similar situation applies for the membrane receptor inhibitors.

We selected sample molecules from two highly homogenous clusters (mostly composed of
oxidoreductase and protease inhibitors, respectively) and one heterogeneous cluster (composed of inhibitors
from all protein families) for further analysis. We calculated pairwise Bemis–Murcko scaffold-based (Bemis
and Murcko 1996) Tanimoto similarities between selected molecules that are close to each other in the
UMAP embedding space. Selected oxidoreductase inhibitors had a scaffold similarity of 0.51, whereas the
similarity between selected protease inhibitors was 0.42. Moreover, three molecules from the heterogeneous
cluster had a mean scaffold similarity of 0.33. Their Kekule representations also indicate the structural
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resemblance (figure 4). We also calculated inter-cluster similarities for the same clusters, which are far away
from each other on the embedding plane. The mean pairwise scaffold similarities between the members of
cluster pairs was found as; oxidoreductase vs. protease: 0.18± 0.04, oxidoreductase vs. heterogeneous:
0.22± 0.06, and protease vs. heterogeneous: 0.25± 0.08. These results demonstrate that SELFormer can
accurately capture structural relationships, as structurally similar molecules are placed adjacently and
dissimilar molecules are embedded to distant points (in different clusters) on the 2D plane. We observed that
even the heterogeneous cluster have structurally similar members and the heterogeneity mostly originates
from the low correlation between structural and target interaction-related similarities. One probable
explanation for the low correlation is that most of the drug candidate molecules have been screened against
only one target, or a few targets from the same family. As a result, it is possible that they interact with the
members of the other protein family as well (of course, this is not known presently), which would change the
grouping patterns in our embedding. Overall, distinct target protein family-based clusters could not be
observed mainly due to missing data and the high difficulty of this task. Nevertheless, SELFormer could
capture a certain amount of functional information mostly in relation to structural similarities.

5. Impact and future directions

In this study, we introduced SELFormer, a new method for learning the representation of the chemical space
that leverages the SELFIES notations of molecules and the transformer architecture. Our evaluation of
SELFormer’s performance on classification and regression-based molecular property prediction tasks
revealed that it performs well and surpasses existing approaches on multiple tasks, such as predicting drug
side effects, brain-blood barrier permeability, and aqueous solubility. However, larger datasets such as HIV
and Tox21 presented challenges in our study mainly due to the requirement to explore large hyperparameter
spaces. Comparison of SELFormer to existing language modeling-based approaches demonstrates the
advantages of SELFIES notation over SMILES in molecular property prediction, including capturing diverse
and complex molecular structures, simplifying stereochemistry representation, and thereby improving
model accuracies.

The results of the ablation study suggest that careful fine-tuning of models can significantly improve
performance in molecular property prediction. We further visualized the performance of the pre-trained and
fine-tuned SELFormer models on binary classification-based tasks by generating UMAP embeddings. The
results showed that SELFormer was able to learn the distinction between small molecules across different
molecular properties, even only with pre-training. Fine-tuning the pre-trained models yielded a slight
improvement in 2D embeddings. An additional UMAP projection and visualization for a dataset based on
compound-target interactions demonstrated that SELFormer was able to capture a certain amount of
functional (bioactivity related) information, although distinct target protein family-based inhibitor molecule
clusters could not be observed.

Considering the size of our pre-training dataset and the total number of trainable parameters in the
model (i.e. 2 million molecules and∼86 million parameters, respectively), it is possible to state that
SELFormer is not a ‘large model’. Nevertheless, it performed well on the respective supervised prediction
tasks. We suggest that pre-training the SELFormer model with larger molecule datasets, such as the entire
ZINC database (Irwin et al 2012) and enlarging the model by increasing the number of learnable parameters
could lead to even better results, although additional experiments are needed to confirm this.

An interesting direction for molecular representation learning is the development of multi-modal models
in which the structural data is processed together with other types of molecular information such as natural
language-based text (from articles and other types of documents), and functional annotations (e.g.
bio-interactions against targets, ontological associations, indications, etc.). Recent studies have integrated
SMILES notations of molecules into: (i) textual descriptions (Liu et al 2022), and (ii) clinical semantic
information (Wen et al 2023) to generate multi-modal molecule representations. To further enhance
molecular understanding and representation learning within these models, an interesting experiment would
involve the utilization of SELFIES in place of SMILES. Furthermore, biomedical knowledge graphs, such as
the ones provided by the CROssBAR system (Doğan et al 2021), in which target protein interactions,
signaling/metabolic pathway associations, and phenotype (Doğan 2018) and disease indications of drugs and
bioactive compounds are represented, would be an intriguing type of data structure to leverage in this regard.

Overall, the SELFormer model exhibited high potential in molecular representation learning, which can
translate well into improvements in high-throughput drug discovery and molecular design. With further
exploration and optimization, SELFormer, or SELFIES-based representation models in general, could serve
as a powerful and persistent alternative to SMILES-based CLMs for encoding and analyzing complex
molecular structures.
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