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Abstract: The present study evaluated the removal efficiency of two dyes, Congo red (CR) and
malachite green (MG), using either fresh or dry fungal biomass of two species of Trichoderma (T. virens
and T. viride) and activated carbon. After 24 h, the CR removal efficiency obtained with fresh biomass
was higher than that obtained with activated carbon. For the MG dye, the average removal with
activated carbon (99%) was higher than those obtained with dry and fresh biomass of T. viride and
T. virens. Experimental results for fresh and dry fungal biomass showed a good correlation with
Langmuir isotherms. The adsorption rates of CR and MG by of T. virens and T. viride can be more
appropriately described using the pseudo-second-order rate. We found an adsorption capacity of
81.82 mg g−1 for T. virens with MG dye. Results show that fresh or dry biomass of T. virens can
represent a simple and cost-effective alternative for removing industrial dyes such as CR and MG.

Keywords: industrial dyes; T. virens; T. viride; fresh fungal biomass; dry fungal biomass

1. Introduction

Synthetic dyes released from textile, cosmetic, paper, and food industries have poten-
tially adverse environmental and health impacts since they not only affect the quality and
aesthetic of water but can also be associated with mutagenic, carcinogenic, and allergenic
risk [1–5]. Thus, working on new alternatives to remove materials is relevant.

Dyes are complex organic molecules with several recalcitrant aromatic rings classified
as anionic (acid), cationic (basic), and non-ionic [6]. They consist of chromophores, which
are responsible for giving color, and the auxochromes charge intensifies the color of dyes.
Acidic dyes are water-soluble compounds containing one or more anionic groups (salts
of sulfuric, carboxylic, phenolic groups). Basic dyes are cationic molecules that have
monoazoic, diazoic, and azine compounds.

Among diverse synthetic dyes, Congo red (CR) and malachite green (MG) are two of
the most commons due to their low cost, high availability, and efficacy. CR is the sodium
salt of benzidinediazo-bis-1-naphthylamine-4-sulfonic acid (C32H22N6Na2O6S2; molecular
weight: 696.66 g mol−1) (Figure 1A). It is an azo acid dye that is very soluble in water,
which directly stains cotton in red; it may also turn blue by the presence of mineral acids.
CR is also used for staining some products in the wood pulp and paper industry [7,8].
MG, the most common basic dye (N-methylated diaminotriphenylmethane; C52H54N4O12;
molecular weight: 927.00 g mol−1) (Figure 1B), has been widely used as a bactericide and
fungicide in the fish farming industry, in the coloring of silk, and as a food coloring agent
and additive [9,10].
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The importance of studying dyes such as CR and MG lies in the fact that they are 
resistant to natural degradation processes. The aromatic rings provide the dye molecules 
with chemical stability, so organisms require more energy to mineralize these substances 
[11,12]. That is to say, since the dye’s mineralization process becomes slow, the greater the 
number of aromatic rings, the longer their persistence in the environment, which could 
lead to a negative effect on the aquatic flora and fauna [12,13]. Additionally, they are sus-
ceptible to being reduced, which results in the formation of aromatic amines that are 
highly carcinogenic [10,14–16]. 

To reduce the pollution caused by these two dyes, either chemical, physical, or bio-
logical methods have been used [16–18]. Some chemical dye removal methods are the ad-
vanced oxidation process, ozonation, photochemical, electrochemical destruction, and 
Fenton reaction. Most of these dye removal methods are effective, quick, and do not gen-
erate sludge. However, they could produce undesirable by-products, and in general, they 
are costly compared to biological and physical dye removal methods. Among conven-
tional physical dye removal methods are adsorption by activated carbon, membrane fil-
tration, ion exchange, electrokinetic flocculation, irradiation, reverse osmosis, and ultra-
filtration. Physical methods are commonly used due to their efficiency and simplicity; 
nevertheless, they are effective for a limited number of dyes, and some of them show high 
sludge production. On the other hand, biological methods such as adsorption by micro-
bial biomass, algae degradation, fungal cultures, adsorption by living/dead microbial bi-
omass, and enzyme degradation, among others, have gained importance used alone or as 
a combined method, because they are ecofriendly and do not need the consumption of 
chemicals. However, these methods deal with living organisms, so they are sometimes 
considered unstable or unpredictable [19–23]. 

Among biological treatment with microorganisms, it has been found that the use of 
living or dead microbial biomass (from bacteria, yeasts, fungi or microalgae) can play a 
key role in decolorizing the wastewater of different industries without producing toxic 
substances [24–26]. Microbial biomass is a low-cost product obtained as a residue of the 
fermentation processes in the production of antibiotics, beverages, enzymes, and other 
metabolites. However, it has been reported that the use of live biomass in the processes of 
biosorption of dyes presents some disadvantages, such as the need for a continuous sup-
ply of nutrients and high sensitivity to the dye toxicity [27]. Therefore, a lot of research 
has focused on using dead biomass for biosorption processes, since it does not require 
continuous nutrient supply and is not affected by toxic waste [28]; likewise, its regenera-
tion is simple, can be stored for long periods at room temperature, can be reused for many 
cycles, and can be easily immobilized on inert supports [26]. 

The surface properties of bacteria, yeasts, fungi, and algae allow them to interact with 
different types of contaminants. In particular, in the process of dye biosorption, microbial 
biomass can use mechanisms such as physical and chemical adsorption, electrostatic in-
teraction, ion exchange, complexation, chelation, and micro-precipitation [29]. Thus, the 
biosorption process will depend on the dye chemical nature (specie, size, ionic charge), 
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Figure 1. Chemical structure of the Congo red (A) and malachite green (B) dyes.

The importance of studying dyes such as CR and MG lies in the fact that they are resis-
tant to natural degradation processes. The aromatic rings provide the dye molecules with
chemical stability, so organisms require more energy to mineralize these substances [11,12].
That is to say, since the dye’s mineralization process becomes slow, the greater the number
of aromatic rings, the longer their persistence in the environment, which could lead to
a negative effect on the aquatic flora and fauna [12,13]. Additionally, they are suscepti-
ble to being reduced, which results in the formation of aromatic amines that are highly
carcinogenic [10,14–16].

To reduce the pollution caused by these two dyes, either chemical, physical, or bi-
ological methods have been used [16–18]. Some chemical dye removal methods are the
advanced oxidation process, ozonation, photochemical, electrochemical destruction, and
Fenton reaction. Most of these dye removal methods are effective, quick, and do not gener-
ate sludge. However, they could produce undesirable by-products, and in general, they are
costly compared to biological and physical dye removal methods. Among conventional
physical dye removal methods are adsorption by activated carbon, membrane filtration,
ion exchange, electrokinetic flocculation, irradiation, reverse osmosis, and ultra-filtration.
Physical methods are commonly used due to their efficiency and simplicity; nevertheless,
they are effective for a limited number of dyes, and some of them show high sludge produc-
tion. On the other hand, biological methods such as adsorption by microbial biomass, algae
degradation, fungal cultures, adsorption by living/dead microbial biomass, and enzyme
degradation, among others, have gained importance used alone or as a combined method,
because they are ecofriendly and do not need the consumption of chemicals. However,
these methods deal with living organisms, so they are sometimes considered unstable or
unpredictable [19–23].

Among biological treatment with microorganisms, it has been found that the use of
living or dead microbial biomass (from bacteria, yeasts, fungi or microalgae) can play a
key role in decolorizing the wastewater of different industries without producing toxic
substances [24–26]. Microbial biomass is a low-cost product obtained as a residue of the
fermentation processes in the production of antibiotics, beverages, enzymes, and other
metabolites. However, it has been reported that the use of live biomass in the processes
of biosorption of dyes presents some disadvantages, such as the need for a continuous
supply of nutrients and high sensitivity to the dye toxicity [27]. Therefore, a lot of research
has focused on using dead biomass for biosorption processes, since it does not require
continuous nutrient supply and is not affected by toxic waste [28]; likewise, its regeneration
is simple, can be stored for long periods at room temperature, can be reused for many
cycles, and can be easily immobilized on inert supports [26].

The surface properties of bacteria, yeasts, fungi, and algae allow them to interact with
different types of contaminants. In particular, in the process of dye biosorption, microbial
biomass can use mechanisms such as physical and chemical adsorption, electrostatic
interaction, ion exchange, complexation, chelation, and micro-precipitation [29]. Thus, the
biosorption process will depend on the dye chemical nature (specie, size, ionic charge),
type of biomass, specific surface properties, environmental conditions (pH, temperature,
ionic strength), and presence of organic compounds, salts, and competing ions [26].

Fungal adsorption by living or dead biomass is commonly used as biological treat-
ments for dye removal in aqueous media. Fungal biomass contains a large number of
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functional groups, which gives its cell surface a negative charge that allows the efficient
biosorption of dyes [30,31]. However, the process of dye biosorption for fungal biomass can
be slow, and the initial pH of the dye solution strongly influences the biosorption [3,32,33].

Filamentous fungi such as Aspergillus niger, Phanerochaete chrysosporium, Rhizopus
arrhizus, Cuninghamella elegans, Ganoderma applanatum, and Pleurotus ostreatus, among
others, have been assessed as an alternative strategy for removing and degrading dyes
under in vitro conditions [34–41]. Concerning the Trichoderma species, previous works
have reported that T. harzianum can remove or discolor Rhodamine 6G and Trypan Blue
Erioglaucine, and can favor the biosorption of the Orange G dye [42–46]. In addition,
researchers have shown the potential of T. viride for the removal of methylene blue [47].
However, more research is needed to determine the true potential of these species for
decolorizing polluted waters.

The genus Trichoderma comprises a predominant group of filamentous fungi in terres-
trial and aquatic ecosystems widely used in the control of phytopathogenic organisms and
industrial processes [48–51]. The advantages of using species of the genus Trichoderma in
the biosorption of dyes are its easy availability, low cost, good mechanical properties, and
chemical stability under both alkaline and acid conditions [52]. In this regard, the present
study evaluated the capability of either fresh or dry biomass of T. virens and T. viride to
remove CR and MG under several dye concentrations. These fungi were selected due to
their tolerance to high concentrations of polycyclic aromatic hydrocarbons [53]. In addition,
to carry out an objective comparison, under the same conditions, additional absorption
experiments were carried out with activated carbon as the sorbent.

2. Materials and Methods
2.1. Fresh Biomass of T. virens and T. viride

The fungi T. virens (CP1) and T. viride (CP4) were previously isolated from rhizosphere
soil of mesquite (Prosopis sp.) in the state of Jalisco, Mexico [54]. The two strains of
Trichoderma were reactivated in Petri dishes with potato dextrose (PDA, Merck®, State of
Mexico, Mexico) at 28 ◦C for 5 days and then grown in 50 mL of mineral medium (g L−1)
0.1 CaCl2; 0.2 KCl, 0.5 KH2PO4; 0.5 (NH4)2SO4; 0.2 MgSO4·7H2O; 0.05 CuSO4; 0.05 ZnSO4;
0.43 MnSO4; 0.05 (NH4)6Mo7O24·H2O, 6 glucose, and pH 4.3. After six days of incubation,
the living mycelium (fresh biomass) was vacuum filtered under sterile conditions. Then,
half of the mycelium of each fungal isolate was washed with 50 mL of sterile distilled water
and transferred to a 150 mL flask with 50 mL of sterile distilled water. The other half of the
fresh fungal biomass was exposed to 0.35 g of HgCl2 for five days to kill the mycelium and
avoid the further synthesis of fungal enzymes [55]. This dead mycelium was subsequently
filtrated and washed, as previously described, and placed in 50 mL of sterile distilled water.

Later on, 100 mL of a stock solution of CR or MG (1000 mg L−1) were added into
each respective treatment (living and dead mycelium) to obtain a final concentration of
50 mg L−1 at pH 6. The treatments were incubated at 28 ± 2 ◦C at 150 rpm for eight days,
sampling every 24 h; then, 300 µL of each treatment were transferred to a microplate and
analyzed in a multi-modal microplate reader (Synergy 2 SL, Biotek®, Winooski, VT, USA)
to 541 nm (CR) and 619 nm (MG), respectively. The amount of dye removal per unit of
fungal biomass was calculated using the following equation:

removal efficiency(%) =
Ci − Cf

Ci
× 100, (1)

where Ci and Cf represent the initial and final (after adsorption) dye concentrations, respectively.

2.2. Activated Carbon and Dry Biomass of T. virens and T. viride

First, 500 mL of the mineral medium previously described were added to 1000 mL
Erlenmeyer flasks and autoclaved for 18 min at 120 ◦C. Then, 10 mL of a spore suspension
(106 spores mL−1) of each fungus were subsequently added to each culture. Fungal cultures
were incubated at room temperature and pump oxygenated for six days. After incubation,
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the fungal mycelium was vacuum filtered, dried at 70 ± 2 ◦C for 96 h, weighed, and
powdered in a mortar.

Removal experiments were carried out by stirring 100 mg of the respective adsorbent
material [activated carbon Sigma Aldrich® (State of Mexico, Mexico) and fungal dry
biomass] with 1 mL of CR or MG at the following concentrations: 0, 15, 30, 45, 60, 75, and
90 mg L−1 at pH 6, and incubated at 25 ◦C and 150 rpm (TS-100, Biosan®, Riga, Latvia).
The concentration of each dye was spectrophotometrically estimated by taking absorbance
readings at 541 nm for CR and 619 for MG, using 96-well microplates (Synergy 2 SL,
Biotek®, Winooski, VT, USA). Removal capacity was determined using Equation (1).

2.2.1. Equilibrium Studies

The equilibrium relationship between the amount of substance adsorbed at constant
temperature (qe) and its equilibrium solution concentration (Ce) is known as adsorption
isotherm. The equilibrium adsorption data were analyzed using Langmuir and Freundlich
models. The linearized forms of the Langmuir and Freundlich isotherms are given by:

Langmuir Model :
Ce

qe
=

1
KLqmax

+
Ce

qmax
, (2)

Freundlich Model : log qe = log KF +
1
n

log Ce, (3)

where qmax (mg g−1) is the maximum value of qe that can be reached as Ce (mg g−1) is
increased, KL is the affinity coefficient (L mg−1), and KF and n represent the Freundlich
coefficients (n, dimensionless; KF, mg g−1).

2.2.2. Kinetic Studies

The adsorption kinetics was analyzed with models of pseudo-first and pseudo-second
order. The pseudo-first-order model, in its linear form is described by Lagergren:

log(qe − qt) = log(qe)−
k1

2.303
t, (4)

where qe is the adsorption capacity at equilibrium (mg g−1), qt is the amount of the
adsorbate adsorbed by time t (mg g−1), and k1 is the pseudo-first-order constant (min−1).

The linear form of the pseudo-second-order kinetic model is described by Ho:

t
qt

=
1

k2q2
e
+

1
qe

t, (5)

where k2 is the pseudo-second-order constant (g mg−1 min−1).

2.3. Statistic Analysis

The experiment for the removal of CR and MG by fresh biomass (with or without
HgCl2 treatment) of T. virens and T. viride was set in a completely randomized experimental
design, establishing a 2 × 2 × 2 factorial experiment (two strains of Trichoderma, two
dyes, and two conditions of biomass), including eight treatments and three replicates each.
Analysis of variance and mean comparison test (Tukey, α = 0.05) were performed using the
SAS statistical program.

3. Results and Discussion
3.1. Removal of CR and MG by Fresh Biomass of T. virens and T. viride

The removal of CR (Figure 2A) showed no significant differences, from 24 h onwards,
for the living mycelium of T. viride (93%) and dead mycelium of T. viride (95%) and T. virens
(94%). However, the percentage of CR removal by living T. virens showed a constant
increase during the experimentation time from 82.4% to 93%. In that respect, it has been
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reported that some species pre-adapted to azo dyes show better removal properties than
untreated culture media [56].
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The living mycelium in the two species of Trichoderma had slightly lower removal
capability of CR when compared to that described for Trametes versicolor (100%) and Thele-
phora sp. (97%); however, the concentration of CR used in the present study (50 mg L−1) is
higher than those reported for T. versicolor or Thelephora with 31 mg L−1 and 35 mg L−1,
respectively [57] (Table 1). In contrast, when the CR concentration was 50 mg L−1, the
removal observed for T. versicolor, 82%, for Aspergillus niger, 9%, for A. oryzae, 52%, for Peni-
cillium chrysogenum, 10%, for Cladosporium rubrum, 10%, and Pleurotus ostreatus, 12% [58,59],
were lower than that obtained in the present study. The removal percentages of CR by the
dead mycelium of T. virens (94%) and T. viride (95%) are higher than those described for
the mycelium of T. versicolor under three conditions: (a) autoclaved (90%), (b) acidic (49%),
and (c) alkaline (42%) [58] (Table 1).

For MG dye (Figure 2B), the living and dead mycelium of T. virens showed the highest
removal percentages, 95% and 87%, respectively. For its part, the dead mycelium T. viride
showed 82% of MG removal, whereas the living mycelium showed the lowest removal
(75%). Compared to other fungi, the percentage of MG removal showed by the living
mycelium of T. virens (95%) and T. viride (75%) was higher than that reported for mycelium
of the white rot fungus Polyporus elegans (45%), T. versicolor (43%), Lenzites betulin (57%), P.
simplicissimum (89 and 57%), P. ochrochloron (93%), and Mucor (65%) [60,61] (Table 1).

It has been reported that the biomass of some other filamentous fungi shows a higher
capacity for removing CR and MG (Table 1). However, T. viride and T. virens have the
advantage of growing rapidly in conventional media and agri-food residues and produce,
at low-cost, large quantities of biomass, compared to some strains of Aspergillus niger,
Polyporus elegans, T. versicolor, and Pleurotus ostreatus [62–64].

It is worth to note that in this research, HgCl2 was used to kill mycelium and prevent
the synthesis of fungal enzymes, according to the methodology of Wunch et al. [55].
However, its use is not recommended because of its environmental implications. Another
alternative to kill mycelium in an environmentally friendly way is autoclaving [58]. In
addition, autoclaving mycelium has been found to increase the adsorption of fungal
biomass [26].

To evaluate the adsorption rate, the data obtained from kinetic experiments were fitted
using pseudo-first (Equation (4)) and pseudo-second-order (Equation (5)) reaction rate
models. The results indicated that the adsorption rates of CR and MG by T. virens and T.
viride could be more appropriately described using the pseudo-second-order rate model
(correlation coefficient R2 = 0.99). Figure 3A (CR) and 3B (MG) show plots of experimental
data fitted to the pseudo-second-order rate model. Table 2 gives the parameters determined
from the linear regression plots (t/qt vs. t) using the pseudo-second-order model and the
experimental values of qe (qe,exp) for both dyes.
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Table 1. Fungal biomass used for removal of Congo red and malachite green.

Fungal Strain Adsorbate Operational
Conditions

Adsorbate
Concentration

(mg L−1)

Adsorption
Capacity
(mg g−1)

Removal (%) Ref.

Aspergillus fumigatus CR Dead fungus biomass,
pH: 6, 180 min, 25 ◦C. 100 Nm 78 [65]

Aspergillus niger CR 0.2 g of dry fungal
biomass, pH: 6.0, 42 h. 50 14.7 89.6 [56]

Aspergillus niger
ZJUBE-1 CR

pH: 2–5; 120 rpm,
28 ◦C, mycelial pellets
(4 g L−1), 12 h.

25–300 263.2 99 [66]

Phanerochaete
chrysosporium CR Mycelial pellets, 48 h. 500 Nm 90 [67]

Trametes versicolor CR pH: 2, sterilized
biomass. 50 51.8 90 [58]

Pleurotus ostreatus MG pH: 2 to 10, 180 min, 25
◦C. 40 32.3 89.6 [68]

Trichoderma asperellum MG
pH: 5, immobilized
biomass, 30 ◦C, 200
rpm.

100 50.3 Nm [31]

Trichoderma asperellum MG

2 g of the freshly
prepared fungal
biomass, 14 days, 150
rpm, 30 ◦C.

100 Nm 62 [69]

Penicillium
simplicissimum MG

2 g of the freshly
prepared fungal
biomass, 14 days, 150
rpm, 30 ◦C.

100 Nm 54 [70]

Coriolopsis sp. MG

2 g of the freshly
prepared fungal
biomass, 14 days, 150
rpm, 30 ◦C.

100 Nm 52 [71]

Penicillium ochrochloron MG

0.3 g of the freshly
prepared fungal
biomass, 10 days, pH: 7,
30 ◦C.

50 Nm 93 [72]

Penicillium
simplicissimum MG

0.8 g of the freshly
prepared fungal
biomass, 480 min, pH: 5,
2 ◦C.

50 Nm 88.5 [61]

Penicillium
simplicissimum MG

0.1 g of dry fungal
biomass, 480 min, pH5,
2 ◦C.

50 Nm 56.9 [61]

Nm = No mentioned.
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25–300 263.2 99 [66] 

Phanerochaete 
chrysosporium 

CR Mycelial pellets, 48 h. 500 Nm 90 [67] 

Trametes versicolor CR pH: 2, sterilized biomass. 50 51.8 90 [58] 
Pleurotus ostreatus MG pH: 2 to 10, 180 min, 25 °C. 40 32.3 89.6 [68] 
Trichoderma asperellum MG pH: 5, immobilized biomass, 30 °C, 200 rpm.  100 50.3 Nm [31] 

Trichoderma asperellum MG 
2 g of the freshly prepared fungal biomass, 14 
days, 150 rpm, 30 °C. 

100 Nm 62 [69] 

Penicillium 
simplicissimum 

MG 
2 g of the freshly prepared fungal biomass, 14 
days, 150 rpm, 30 °C. 

100 Nm 54 [70] 

Coriolopsis sp. MG 
2 g of the freshly prepared fungal biomass, 14 
days, 150 rpm, 30 °C. 

100 Nm 52 [71] 

Penicillium 
ochrochloron 

MG 
0.3 g of the freshly prepared fungal biomass, 10 
days, pH: 7, 30 °C. 

50 Nm 93 [72] 

Penicillium 
simplicissimum 

MG 
0.8 g of the freshly prepared fungal biomass, 480 
min, pH: 5, 2 °C. 

50 Nm 88.5 [61] 

Penicillium 
simplicissimum 

MG 0.1 g of dry fungal biomass, 480 min, pH5, 2 °C. 50 Nm 56.9 [61] 

Nm = No mentioned. 

To evaluate the adsorption rate, the data obtained from kinetic experiments were fit-
ted using pseudo-first (Equation (4)) and pseudo-second-order (Equation (5)) reaction rate 
models. The results indicated that the adsorption rates of CR and MG by T. virens and T. 
viride could be more appropriately described using the pseudo-second-order rate model 
(correlation coefficient R2 = 0.99). Figure 3A (CR) and 3B (MG) show plots of experimental 
data fitted to the pseudo-second-order rate model. Table 2 gives the parameters deter-
mined from the linear regression plots (t/qt vs. t) using the pseudo-second-order model 
and the experimental values of qe (qe,exp) for both dyes. 

 
Figure 3. Pseudo-second-order model plot for fungal fresh biomass. (A) Congo red and (B) malachite green. Lines are 
guides to the eyes. 

Figure 3. Pseudo-second-order model plot for fungal fresh biomass. (A) Congo red and (B) malachite green. Lines are
guides to the eyes.



Appl. Sci. 2021, 11, 448 7 of 15

Table 2. Pseudo-second-order kinetic parameters for the removal of Congo red and malachite green by fungal fresh biomass
of T. virens and T. viride.

Adsorbent Dye K2 (g mg−1 h−1) qe (mg g−1) qexp (mg g−1) R2

T. virens dead mycelium CR −0.0234 22.15 23.39 0.999
T. virens living mycelium CR 0.0116 20.74 21.97 0.998
T. viride dead mycelium CR −0.0422 21.28 22.44 0.999
T. viride living mycelium CR −0.0275 19.56 20.65 0.999
T. virens dead mycelium MG 0.0543 22.66 23.36 0.999
T. virens living mycelium MG 0.1062 23.60 22.36 0.999
T. viride dead mycelium MG 0.0067 20.29 18.64 0.998
T. viride living mycelium MG −0.0181 16.87 17.62 0.998

3.2. Removal of CR and MG by Activated Carbon and Dry Biomass of T. virens and T. viride

Figure 4 shows removal efficiencies for CR (Figure 4A) and MG (Figure 4B), for the
more representative dye concentrations, as a function of stirring times ranging from 1.5 to
48 h. It is important to note that removal by activated carbon is very fast for both dyes and
remained almost unchanged during the experimentation time, indicating that it reaches the
equilibrium faster than the mycelium of both Trichoderma isolates. As it can be seen, during
the first 24 h, the activated carbon showed the highest CR removal capacity. In absorption
processes, activated carbon is a highly effective and versatile material. However, both
chemical and thermal regeneration of the used carbon produces effluent, is expensive, and
is impractical on a large scale.
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On the other hand, after 24 h, the dry biomass of both Trichoderma species showed
higher CR removal capacity than activated carbon (Figure 4A). In addition, the CR removal
obtained by the dry biomass of T. virens (88%) was higher than that reported for the fungus
Aspergillus niger (72%) [73]. In contrast, MG removal by the dry biomass of both fungi was
lower than that observed by activated carbon during the first 24 h, although, at 48 h, the
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removal of MG by the dry fungal biomass was similar to that observed for activated carbon
(Figure 4B).

Equilibrium adsorptions data of CR and MG onto activated carbon and dry biomass
of the two Trichoderma species were analyzed using the Freundlich (Equation (2)) and
Langmuir (Equation (3)) adsorption isotherms. The isothermal plots were found to be
linear, and the linear correlation coefficients were slightly higher for the Langmuir model
(Figure 5); all the calculated isotherm model parameters are given in Table 2.
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Figure 5. Linear Freundlich (Equation (2)) and Langmuir (Equation (3)) adsorption isotherm for Congo red (row A) and
malachite green (row B).

Additionally, we calculate the equilibrium parameter, RL, which represent an impor-
tant characteristic in the Langmuir model and is defined by

RL =
1

1 + KLC0
, (6)

where C0 stands for the initial concentration of dye. The value of RL indicates favorable
absorption if 0 < RL < 1. In addition, RL = 0 denotes irreversible absorption, RL = 1 indicates
linear absorption, and RL >1 reveals unfavorable absorption [74]. Then, higher correlation
coefficients for the Langmuir model and RL values between 0 and 1 (last column in Table 3)
suggest that the adsorption of CR and MG by activated carbon and dry biomass of T. virens
and T. viride could be well described by the Lamgmuir model.

Parameters found through the Freundlich model could give information about the
heterogeneous nature of adsorption (n > 1). That is the case of CR adsorption by acti-
vated carbon and T. virens, and MG adsorption by T. virens. However, linear correlation
coefficients (R2) are higher for the Langmuir model than for the Freundlich model.
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Table 3. Langmuir and Freundlich adsorption isotherm parameters. Initial concentrations (C0) of dye, 15 mg/L.

Dye Adsorbent
Freundlich

KF ((mg g−1)/
(mg L−1)1/n)

n R2 Langmuir
qm (mg g−1) KL (L mg−1) R2 RL

CR Activated carbon 0.317 1.136 0.991 10.684 0.014 0.996 0.44
T.virens 0.102 1.270 0.990 5.577 0.012 0.995 0.48
T. viride 0.019 0.746 0.989 2.764 0.012 0.993 0.48

MG Activated carbon 1.843 0.749 0.991 14.514 0.114 0.993 0.88
T.virens 0.348 1.027 0.991 81.818 0.002 0.994 0.84
T. viride 0.231 0.652 0.986 0.848 0.107 0.995 0.09

For the Langmuir isotherm, the saturation capacity of the monolayer in the activated
carbon (10.7) is greater than that for T. virens (5.6) and T. viride (2.76), for CR; whereas for the
MG dye, T. virens (81.8) had higher saturation capacity of the monolayer when compared
to T. viride and activated carbon. The constant KL for CR dye had similar values in all three
adsorbent materials, whereas for MG, the KL was greater for activated carbon (Table 3).

Reviewing the reports for the monolayer saturation capacity of other organic and
inorganic adsorbents used for the removal of CR dye (Table 4), it was found that most of
the materials showed a higher saturation capacity of the monolayer than that obtained
for the two species of Trichoderma reported in this study: straw carbon (403.7), grape-
fruit peel carbon (169.5), ground nut shells charcoal (117.6), bamboo dust carbon (101.9),
Ca-bentonite (85.3), hen feather (73.8), and cassava residue (59.2), among others. Never-
theless, the saturation capacity was higher than that reported for other adsorbents such
as laboratory-grade activated carbon and commercial-grade activated carbon, with 1.88
and 0.64, respectively [75–77]. On the other hand, for MG, few materials showed higher
saturation capacity of the monolayer than T. virens (Table 4): tobacco hairy roots (277.2),
coco-peat (276.8), Anethum graveolens (244.0), brown alga Dictyota cervicornis (230.0), oil
palm trunk fiber (149.4), and magnetic bacterial cellulose (270.3). Finally, it is worth noting
the performance of the Ackee apple seed-bentonite composite, which showed the highest
saturation capacity for both CR (1439.9) and MG (706.7). Thus, an alternative to improve the
adsorption capacity of dry biomass of T. virens is to apply an acid or alkaline pre-treatment
or combine it with other materials or biomasses from other fungi or microorganisms.

On the other hand, the kinetics studies reveal that adsorption rates of CR and MG
by activated carbon and dry biomass of T. virens and T. viride are adequately described
by the pseudo-second-order rate model (Figure 6). Table 5 shows the values obtained
from the linear regression plots (t/qt vs. t) using the pseudo-second-order model, for
the different concentrations of both dyes, finding that qe tends to increase along with Ce
in the three adsorbents tested in this study; the highest values of qe were obtained with
activated carbon.
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Table 4. Organic and inorganic adsorbents used for the removal of Congo red and malachite green dyes.

Material Adsorbate
Adsorption

Capacity
(mg g−1)

Concentration
Range

(mg L−1)

Contact
Time pH Ref.

Banana peel CR 18.2 10–120 24 h Nm [78]
Orange peel CR 14.0 10–120 24 h Nm [78]

Activated red mud CR 7.0 10–90 90 min Nm [79]
Chitosan CR 81.2 NP 12 h 7 [80]

Sunflower stalk CR 37.8 50–1000 5 d Nm [81]
Coir pith CR 6.7 20–80 Nm 7.7 [82]

Ca-bentonite CR 85.3 50–200 600 min 5–10 [83]
Straw carbon CR 403.7 175 120 min 7.4 [84]

Grapefruit peel
carbon CR 169.5 Nm 120 min 3 [85]

Ground nut shells
charcoal CR 117.6 65 60 min 7 [86]

Bamboo dust
carbon CR 101.9 150 120 min 7.4 [84]

Hen feather CR 73.8 6.96 3 h 7.0 [87]
Cassava residue CR 59.2 100 240 min 8.5 [88]

Cattail root CR 38.8 50 360 min 7.0 [89]
Ackee apple

seed–bentonite
composite

CR 1439.9 100–6000 480 min 2–10 [90]

Oil palm trunk
fiber MG 149.4 25–300 120 min Nm [91]

Waste material
from paper

industry, pine bark
MG Nm 100 1 h Nm [92]

Carbonaceous
material MG 75.1 36.49 6–8 h Nm [93]

Sugarcane dust MG 3.9 12 30 min Nm [94]
Neem sawdust MG 4.4 6–12 24 min 7.2 [95]
Apricot stones MG 23.8 4.45–17.6 60 min 3–11 [96]
Ackee apple

seed–bentonite
composite

MG 706.7 100–6000 480 min 2–10 [90]

Rattan sawdust MG 62.7 25–300 210 min 2–12 [97]
Bentonite MG 178.6 50–300 2 h 3–11 [98]

Magnetic bacterial
cellulose

nanofiber/graphene
oxide polymer

aerogel

MG 270.3 5–50 5–25 min 2–12 [99]

Carbonized
pomegranate peel MG 31.5 30 1–150 min 6 [100]

Coco-peat MG 276.8 500 2–240 min 7 [101]
Brown alga

Dictyota cervicornis MG 230 5–125 10–2440 3–11 [102]

Tobacco hairy roots MG 277.2 50–100 0–120 3–7 [103]
Anethum graveolens MG 244 10–50 20 min 3–10 [104]

Nm = Not mentioned.
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Figure 6. Pseudo-second-order model fit plot for activated carbon and fungal dry biomass of T. virens
and T. viride. (A) Congo red and (B) malachite green.

Table 5. Pseudo-second-order kinetic parameters for the removal of Congo red and malachite green by fungal dry biomass
of T. virens and T. viride.

Dye Concentration (mg L−1) Adsorbent qe (mg g−1) K2 (g mg−1 h−1) R2

CR 15 Activated carbon 0.525 6.819 0.999
CR 15 T. virens 0.297 11.952 0.985
CR 15 T. viride 0.209 10.381 0.991
MG 15 Activated carbon 0.700 6.215 1.000
MG 15 T. virens 0.625 10.368 0.999
MG 15 T. viride 0.619 3.505 0.999
CR 30 Activated carbon 0.900 3.691 0.999
CR 30 T. virens 0.388 6.249 0.999
CR 30 T. viride 0.600 7.030 0.991
MG 30 Activated carbon 1.548 2.773 1.000
MG 30 T. virens 1.425 4.870 0.999
MG 30 T. viride 1.458 10.890 0.999
CR 45 Activated carbon 1.592 3.022 0.999
CR 45 T. virens 0.813 5.943 0.999
CR 45 T. viride 0.908 9.418 0.988
MG 45 Activated carbon 2.168 2.058 1.000
MG 45 T. virens 2.006 2.982 0.999
MG 45 T. viride 2.076 2.678 0.999
CR 60 Activated carbon 1.986 2.002 0.999
CR 60 T. virens 1.160 3.389 0.986
CR 60 T. viride 1.247 4.831 0.999
MG 60 Activated carbon 2.875 1.486 1.000
MG 60 T. virens 2.583 2.904 0.999
MG 60 T. viride 2.796 2.090 0.999
CR 75 Activated carbon 2.296 1.300 0.999
CR 75 T. virens 1.060 3.709 0.998
CR 75 T. viride 1.598 5.921 0.999
MG 75 Activated carbon 3.644 1.191 1.000
MG 75 T. virens 3.206 2.828 0.999
MG 75 T. viride 3.399 1.315 1.000
CR 90 Activated carbon 2.716 1.121 0.999
CR 90 T. virens 2.207 1.561 0.988
CR 90 T. viride 2.108 3.926 0.997
MG 90 Activated carbon 4.570 0.941 1.000
MG 90 T. virens 3.951 1.408 1.000
MG 90 T. viride 4.322 1.042 1.000

4. Conclusions

The removal of dyes depends on physicochemical factors such as the concentration
and size of the dye molecule, ionic charge, pH, and temperature. In this research, it was
observed that the genotype and the preparation of the fungal biomass are relevant factors
when looking for high removal percentages. In that sense, it was found that the removal of
CR by the fresh biomass of both species of Trichoderma studied was very similar. For MG,
the highest percentage of removal was obtained with the live and dead biomass of T. virens.

In the same way, the present study showed that after 24 h of contact time, fresh and
dry biomass of T. virens and T. viride had a higher CR removal capacity than activated
carbon. Additionally, T. virens showed a higher saturation capacity of the monolayer than
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T. viride and activated carbon for MG removal. Thus, either fresh or dry biomass of T. virens
can represent a simple and cost-effective alternative for removing industrial dyes like CR
and MG.
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