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ABSTRACT 
 

The study was conducted to determine fungal communities associated to strawberry plant roots, 
densities of nematodes in fumigated soil and physico-chemical properties of soil in three 
commercial strawberry plots (Dlalha, Ouled Aguile and Gnafda) located in Gharb region and visited 
three times during 2013-2014 season. Under a slight variation of soil temperature and humidity with 
specific physico-chemical characteristics, a high infestation level of soil by nematodes was marked 
in the studied farms over the periods of sampling. The lowest number was observed in the first visit 
attaining 1000 units/g of soil, increased to 5000 units/g of soil in the second sampling period at one 
site and in the last visit, a significant decrease trend occurs for the big plot which the number of 
nematodes was reduced to 1500 units/g of soil. The analysis of fungal communities colonizing 
roots of strawberry plants showed the presence of 13 fungal species. Rhizoctonia solani presented 
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a higher frequencies of isolation from roots of Festival variety reaching respectively 36% and 
26.72% in the first and the second visits of Dlalha farms compared to those recorded in the second 
visit of Ouled Aguile (18%) and Gnafda (13.6%) farms. The Fusarium genus was represented by F. 
solani, Fusarium sp.1 and Fusarium sp.2 detected at frequencies not exceeding 7.08%. Those of 
C. gloeosporioides reached 12%, Phytophthora sp. (15.8%). In addition, the appearance of A. 
alternata, C. herbarum, Aspergillus sp., Circinella sp., Ulocladium sp. and Trichoderma asperellum 
was more frequent during the three sampling periods. 

 
 
Keywords:  Strawberry; nematodes; soil temperature; soil humidity; fungi distribution; root 

colonization; fumigated soil; Morocco. 
 

1. INTRODUCTION  
 
Strawberry (Fragaria ananassa Duch.) is one of 
the most economically important crops worldwide 
[1,2,3]. It is grown under a wide range of climatic 
conditions as wild and cultivated plants 
producing small delicious fruits [4]. However, the 
strawberry cultivation is constrained by serious 
diseases involving different soil borne pathogens 
which severely impacts the plant agronomic 
performance and generates economic losses in 
conventional production fields [5] and are 
problematic especially when they remain alive in 
soil under unfavourable conditions for many 
years [6]. Many species have been reported to 
cause strawberry root rots, crown rot and 
damping off diseases in several countries where 
strawberry cultivation is more extent [7,8,9,10]. 
Their causative agents include Fusarium 
oxysporum [11,12], Macrophomina phaseolina 
[13,14], Pythium spp. [15,16,17], Phytophthora 
spp. [18] and Rhizoctonia spp. [19]. In addition, 
the cultivated strawberry can be parasitized by 
plant parasitic nematodes, which are known to 
cause a reduction in strawberry yield [20,21]. 
There are two most common species known as 
root- knot nematodes [22] and root-lesion 
nematodes [23,24,25]. These organisms are 
regarded as a primary cause of black root 
diseases [22], as predisposing factor for 
strawberries infection by Rhizoctonia and 
Pythium [15] and enhancing damping-off 
diseases caused by various fungi [20,26]. But, 
environmental factors and cultural practices also 
play an important role in the probability of 
disease outbreaks and development [27,28,29]. 
Indeed, the virulence and the dominance of 
some pathogens are influenced by the prevailing 
seasonal temperature regime [30]. 
Environmental stresses including soil 
compaction, excess moisture, and winter injury, 
also may increase the severity of diseases 
[31,32]. Previous studies have reported 

environmental effects like soil temperature and 
soil water on nematode population trends [33]. In 
Morocco, surveys conducted from 2010-2013 
have identified mycoflora associated to 
strawberry plants grown in the major berry-
producing areas of Gharb-Loukkos region which 
the distribution was variable in the prospected 
farms [34,11,17]. However, information on the 
distribution, the occurrence of plant-parasitic 
nematodes, soil-borne fungal species associated 
with strawberry and changes in abiotic variables 
during growing season is non-existent. Thus, the 
main objective of the present study is to follow 
the appearance of telluric fungi colonizing bellow 
ground parts of strawberry plants (root-
associated fungi), nematodes inhabiting the 
rhizosphere around the roots of strawberry plants 
and soil parameters varying during growing 
season.    
 

2. MATERIALS AND METHODS  
 

2.1 Study Site and Location 
 
The surveys were conducted during the crop 
season of 2013-2014 (which starts mi- August 
and ends June) at the strawberry growing farms 
covering three villages belonging to the town of 
Moulay Bousselham in the south of Loukkos and 
delimiting the northern Atlantic coast of the 
Gharb region (70 km north of Kenitra and 35 km 
south of Larache). Three selected plots G, M and 
P, were visited three times: in February 04, 2014 
(S1), in March 03, 2014 (S2) and in April 24, 
2014 (S3) (Table 1). 
 

2.2 Soil and Strawberry Plants Sampling 
 
To monitor nematode numbers, soil samples 
were taken three times during the strawberry 
growing seasons (full growth and flowering 
stages). At each visit during the strawberry 
growing seasons, 5 sites for each farm were
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Table 1. The sampling sites surveyed in the municipality of Moulay Bousselham during the 
2013-2014 strawberry campaign 

 

Localities Farmers Farm size Age and type 

of culture 

Soil 

disinfestation 

Varieties 

Dlalha Allal (G) 

Abd lkbir (M) 

Hassan (P) 

Big size (28 
Ha) 

Second year  

Greenhouse 

Fumigation metam  
sodium 2012-2013 

Festival 

 

Ouled Aguile Abd lkbir 

(M) 

Medium size 
(1.5 Ha) 

Second year 

under tunnels 

Fumigation with 
metam sodium  

2012-2013 

Festival 

Gnafda Hassan  

(P) 

Small size 
(0.6 Ha) 

First year  

under  tunnels 

Fumigation with 
metam  sodm  

2012-2013 

Camarosa 

 
randomly selected. A sample of one plant with 
soil attached to the roots was taken from each 
site, carefully placed inside a bag for transfer to 
the laboratory. Upon arrival soil adhering to the 
roots of 5 strawberry plants was scraped into the 
same bag, mixed to yield a composite soil 
sample and the plant removed. The remaining 
soil in the bag was thoroughly mixed before 100 
g was removed for placing in a labelled plastic 
bag for nematode extracting.  

 
2.3 Isolation of Fungi from Strawberry 

Plants 
 
Isolation was done from thinner roots, cut into 
small segments of 1cm length from adjoining 
areas of diseased and healthy areas of the 
strawberry plants. Root pieces were washed 
under tap water for about 30 minutes to remove 
any dirt or soil particle. The root pieces were 
disinfected in sodium hypochloride solution at a 
concentration of 5% then with 95° alcohol for 
about 2 minutes and then passed from two 
washes of distilled sterile water for 2-3 minutes 
each. The treated root pieces were dried 
completely and then transferred to Petri dishes 
containing sterilized potato-saccharose agar 
medium (200 g of potato starch, 15 g of sucrose, 
20 g of Agar-agar, 1000 mL distilled water) 
supplemented with 5 mg streptomycin. All the 
plates were kept at 25 ± 1°C for 5 days. The 
fresh growth of the fungi was transferred to 
freshly prepared potato-dextrose agar medium 
for sub-culturing under the same conditions for 7 
days. The growth was sub-cultured/multiplied 
whenever needed during the entire study. The 
fungi isolated were identified by studying their 
typical mycelial growth produced on the potato 
dextrose agar medium and conidial morphology 
using standard diagnostic keys of Tarr [35],         

Ellis [36], Chidambaram et al. [37], Domsch       
et al. [38], Champion [39], Ponchet [40].  
 

The percentage of infection and/or contamination 
by different fungal species was calculated using 
the method of [41] which defines the frequency of 
isolation of different fungi from 100 lesions root 
rots present on the plants studied according to 
the formula: 
 

PC = (NFI / NTF) × 100 
 

Where PC represents infection ratio and / or 
contamination; 
 

NFI is number of lesions infected with a fungal 
species; 
 

NTF is the total number of lesions. 
 

2.4 Nematode Analysis 
 

Nematodes were extracted by processing 100 g 
of the homogenized soil/plot. Thus, a modified 
Baermann method was used [42]. The method 
involves placing a screen on top of a bowl. 
Tissue paper is placed on top of the 50 micron 
mesh screen and a thin layer of the soil sample 
is placed over it. The bowl was filled with tap 
water until it covers the soil sample. After a set 
period of 48 hours the tissue containing the soil 
and screen is removed and the water in the bowl 
is collected in a beaker. The nematodes are 
collected in the water left behind in the beaker. 
They will then concentrate and sink to the 
bottom. 25 mL of the filtrate was                        
collected, poured into a gridded Petri dish,                 
and then the number of nematodes is                    
counted under an optical microscope at a 
magnification × 40. The count is repeated three 
times. A mean of 3 counts was taken in each 
case.  
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Nmn = (ΣNb) / (Nr) 
 
Nmn: Mean number of nematodes   
Nb: Number of nematodes in each repetition;  
Nr: Number of repetitions.  
 

The rule of three counts was used to estimate 
the number of nematodes per 100 g soil.  
 

2.5 Temperature and Relative Moisture 
 

At every visit, a diagonal randomly sampling was 
conducted per plot, the relative moisture and 
temperature of soil were measured using 
portable Thermo-hygrometer, inserted at 15 cm 
depths on each strip plot. 
 

2.6 Physico-chemical Analysis of Soil 
 

At the first visit, 5 samples of about 5 Kg 
collected in the rhizosphere of the strawberry 
plants selected on the diagonal of each plot 
surveyed, were mixed to yield composite soil 
samples.  
 
Physical and chemical parameters of soil such as 
pH, electric conductivity (EC), organic matter 
(OM), nitric nitrogen (N Nit), ammonia nitrogen 
(N Amo) mineral nitrogen (N. Min), phosphorous 
(P) and potassium (K) were determined through 
conventional analyzes in the Laboratory soil    
tests of the Regional Office of Agricultural 
Development GHARB (ORMVAG). 
 

2.7 Statistical Analysis 
 

The data for all measured parameters were 
subjected to analysis of variance and significant 
differences between means were evaluated 
using Least Significant Difference Method at 
P<0.05 (LSD test), a comparison test of means is 
applied to the data.    
 

3. RESULTS AND DISCUSSION 
 
The field soils displayed variable amounts of total 
carbon, nitrogen and phosphorus while pH was 

almost alkaline during the investigation periods. 
As shown in Table 2, the pH value of the sandy 
soil are almost the same (basic around 7.90), 
with a low electric conductivity value varying from 
0,09 to 0,15 mmhos/cm, poor contents in organic 
matter which the percentage reached 0.96% in 
soil of P and no limestone in M and P farms. The 
total nitrogen content of the soil samples is 
variable. For ammonia nitrogen content, is 
ranged from 19.08 ppm in Ouled Aguile to 24.48 
ppm in Dlalha. Highest amounts of mineral 
nitrogen and nitric nitrogen were marking the soil 
of Gnafda followed by those of Dlalha. Also, the 
soil samples contain more potassium, of the 
order of 205 ppm in M and 176 ppm in G 
compared to reduced amounts of phosphorous 
(Table 2). 
 
The measure of soil temperatures during the 
visits from February to April revealed a slight 
fluctuation (Fig. 1). In the first period (February), 
the soil temperature differed significantly and it 
was ranged between 20°C and 25°C. In the 
follower month, a slight increase was noticed but 
there were no differences between the three 
sites where soil temperatures were around 30°C. 
In the third period, it was significantly equal to 
that recorded in the previous period although        
the difference between GS3 and PS3 or MS3 
(Fig. 2).  

 
As for soil moisture, it registered a high level 
between 50 and 60% in the first visit for all of 
plots, decreased below 50% in the second visit 
then went up to more than 50% in the last visit 
(Fig. 2). 

 
The total number of plant parasites nematodes 
found in the soil samples revealed a high 
infestation level varying among the studied farms 
and period of sampling. The lowest numbers 
were observed in the first visit attaining 1000 
units/g of soil (Fig. 3). A significant difference of 
nematode number was noticed among the three 
farms in the second visit in which the total 
number increased reaching almost 5000 units/g

 
Table 2. Soil properties of the research field in the visited sites 

 
Soil pH EC 

mmhs/cm 
Limestone  
% 

O.M 
% 

O.C 
 % 

Nitrogen (ppm) P   
ppm 

K  
ppm Amo.  Nit.  Min.  

G 7.96 0.15 0.12 0.95 0.55 24.48 133.92 158.40 31 176 
M 7.79 0.11 0.00 0.91 0.53 19.08 126.48 145.56 21 205 
P 7.98 0.09 0.00 0.96 0.56 21.24 190.96 212.20 25 88 

G, Allal’s farm; M: Abd lkbir’s farm; P: Hassan’s farm 
EC: electric conductivity, OM: organic matter, N Nit: nitric nitrogen, N. Amo: ammonia nitrogen, 

N. Min: Mineral nitrogen, P: Phosphorous and K: Potassium 
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Fig. 1. Soil temperature values of sites in three farms during sampling visits 
PS1, PS2, PS3: The three measures separately realized in February (PS1), March (PS2) and 

April (PS3) at Gnafda parcel. 
MS1, MS2, MS3: The measures realized in February (MS1), March (MS2) and April (MS3) in Dlalha 

parcel. 
GS1, GS2, GS3: The three measures realized in February (GS1), March (GS2) and April (GS3) 

at Ouled Aguile parcel. 
Bars with the same letter show no significant difference at 5% level of probability by LSD test 

 

 
 

Fig. 2. Relative soil moisture percentages of sites in the 3 farms during each visit times 
PS1, PS2, PS2: The three measures separately realized in February (PS1), March (PS2) and April 

(PS3) at Gnafda parcel. 
MS1, MS2, MS3: The measures realized in February (MS1), March (MS2) and April (MS3) in Dlalha parcel. 

GS1, GS2, GS3: The three measures realized in February (GS1), March (GS2) and April (GS3) 
at Ouled Aguile parcel. 

Bars with the same letter show no significant difference at 5% level of probability by LSD test 
 

of soil in comparison with those counted in both 
other farms. In these ones, the nematode 
number is significantly similar going over 2000 
unites/g of soil. While in the last visit, a significant 
decrease trend occurs since for the big plot the 
number of nematode was reduced to roughly 
1500 units/g of soil. In contrary, Ouled Aguile and 
Gnafda farms maintain the same level of 
infestation as in second visit (Fig. 3). 
 
Results from analyses of species colonizing roots 
of strawberry plants grown in Dlalha, Ouled 
Aguile and Gnafda farms showed that there were 
13 species of harmful fungi (Table 3), among 
them Rhizoctonia solani was predominant. Its 

isolation frequencies was higher from roots of 
Festival variety reached respectively 36 and 
26.72% in the first and the second visits of Dlalha 
farms compared to those recorded in the second 
visit of Ouled Aguile (18%) and Gnafda (13.6%) 
farms. In contrary, this species was absent in the 
third prospection of both farms Dlalha and       
Ouled Aguile. A lower occurrence marked 
Colletotrichum gleoesporioides at the second 
visit in Gnafda (3.91%) and Ouled Aguile (3.96%) 
where it showed a frequency superior in the first 
prospection (12%) but overall null in Dlalha. The 
Fusarium genus was represented by F. solani 
that appear only in Ouled Aguile and Dlalha at 
the first visit as well as Fusarium sp.1 and 
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Fig. 3. Number of nematodes recovered from soil samples taken from three sites 
during three investigation periods 

PS1, PS2, PS3: The three measures separately realized in February (PS1), March (PS2) and April (PS3) at 
Gnafda parcel. 

MS1, MS2, MS3: The measures realized in February (MS1), March (MS2) and April(MS3) in Dlalha parcel 
GS1, GS2, GS3: The three measures realized in February (GS1), March (GS2) and April (GS3) at Ouled Aguile 

parcel. 
Bars with the same letter show no significant difference at 5% level of probability by LSD test 

 
Fusarium sp.2 showing a lower frequency of 
isolation except those recorded by Fusarium sp.1 
in Dlalha at the last visit (7.06%) and 3.08% by 
Fusarium sp.2 in Ouled Aguile at the second 
sampling period. Root contamination was also 
allocated to Alternaria alternata detected in all 
plots for the three visits. In the first isolations this 
species presented higher frequencies at 17.2% 
and 17.6% in a small and medium plot 
respectively whereas in the larger plot, it 
occurred mostly in the end of growing season. 
Although less frequent than A. alternata, the 
contamination percentage of Aspergillus sp was 
high, 22.8 and 26.4% respectively in the third 
prospection at Ouled Aguile and Gnafda. The 
other saprophytic fungi Circinella, Penicillium sp. 
and C. herbarum were detected, these species 
appeared with frequencies of 0.4% at Gnafda in 
the first visit, 7.6% at Dlalha in the third one 
whereas for C. herbarum had frequencies of 8% 
and 4.4% in Ouled Aguile and Dlalha plots 
respectively. Beside these residents, 
Phytophothora sp. was isolated in one plot 
(Dlalha) from roots of the first sampling with a 
frequency of 15.8%. 
 
The last found competitors in this community 
were Trichoderma asperellum and Ulocladium 
sp. compared to this later one, T. asperellum was 
more frequent reaching percentages of 29%, 
26.6 and 37.4% respectively in the third 
prospecting period of Gnafda, Ouled Aguile and 
Dlalha while those of Ulocladium sp. not 
exceeding 3.64% recorded in the second visit at 
Ouled Aguile. 

The follow up of the total nematode number and 
the fungal communities over time retrieved 
respectively in soil and from roots of strawberry 
plants cultivated in fumigated plots have 
displayed noticeable variations.  
 
As for nematode distribution, their population 
density differs as per the locality and sampling 
period during which slight changes in soil 
temperature and soil moisture have been 
observed.  Under soil moisture percentage 
ranged from 50 to 60%, the number of nematode 
increased in month of March. According to [43], 
the increase in nematode population depends 
upon the season.  Mouden [33] found the 
greatest nematode population density in the fall 
and the spring. This would be probably due to 
moisture [44] and ease of movement of the 
nematodes through the large soil pore diameter 
and soil particle size [45]. The results presented 
by Jordaan [43] clearly indicate that multiplication 
of root knot nematode was found to be highest 
where soil moisture was also more (18.45%). 
Likewise, [46] confirmed that higher soil moisture 
is favourable for nematode multiplication while 
[47] affirmed that migration and infectivity of 
Meloidogyne hapla is shown to be optimized than 
parasitism and reproduction of M. hapla on 
strawberry when the soil is moist. Additionally, 
under soil temperature between 25-30°C, the 
total number of nematode was much elevated 
than those recovered at 20-25°C in soil of tomato 
growing fields in India where soil moisture have 
been ranged between 4.4% and 18.45% [43]. 
Indeed, higher temperature causes desiccation
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Table 3. Isolation frequencies of fungal species contaminating the roots of strawberry plants 
cultivated in plots located in Moulay Bousselham during survey time from February to April 

2013 (expressed by contamination/ or infection percentage %) 
 

Fungal species Farm / Visit 
PS1 PS2 PS3 MS1 MS2 MS3 GS1 GS2 GS3 

Alternaria alternata 17.2b 1.7c 17.20b 17.60cd 6.60b 7.20bc 9.40c 1.45cd 17.20b 
Aspergillus sp. 0

c
 0

d
 26.40

a
 0

b
 0

d
 22.80

a
 0

e
 0

d
 0

e
 

Circinella sp. 0.40c 0d 0b 0b 0d 0c 0e 0d 0e 

Cladosporium 
herbarum 

0c 0d 0b 0b 0d 8.00b 0e 0d 4.40cd 

Colletotrichum  
gleoesporioides 

0c 3.91bc 0b 12.0ab 3.96bc 0c 0e 0d 0e 

Fusarium solani 0
c
 0

d
 0

b
 7.60

ab
 0

d
 0

c
 2.40

d
 0

d
 0

e
 

Fusarium sp1 0c 2.21c 0b 0.80 b 1.24cd 0c 0e 2.64bc 7.60cd 
Fusarium sp2 0

c
 0.49

d
 0

b
 0

b
 3.08

b
 0c 0

e
 0

d
 0

e
 

Penicillium sp 0c 0d 0b 0b 0d 0c 0e 0d 7.60cd 
Phytophthora sp. 0

c
 0

d
 0

b
 0

b
 0

d
 0c 15.80

b
 0

d
 0

e
 

Rhizoctonia solani 34.4
a
 56.0

a
 0

b
 13.60

a
 18.60

a
 0c 36.00

a
 26.72

a
 0

e
 

Trichoderma 
asperellum 

0c 0d 29.00a 0b 0d 26.60a 0.20e 0d 37.40a 

Ulocladium sp. 0c 0d 0b 2.40b 3.64b 0c 0e 3.24b 2,60d 
* PS1, PS2, PS3: The three measures separately realized in February (PS1), March (PS2) and April (PS3) 

at Gnafda parcel. 
MS1, MS2, MS3: The measures realized in February (MS1), March (MS2) and April (MS3) in Dlalha parcel. 

GS1, GS2, GS3: The three measures realized in February (GS1), March (GS2) and April (GS3) at 
Ouled Aguile 

Results in the same column followed by the same letter show no significant difference at 5% 
of probability by LSD test 

 
and dryness of soil and in low soil moisture, 
nematodes are subjected to increased stress and 
during this they consume a considerable amount 
of energy stored and reduce their population 
density [48].  
 
Nonetheless, the impact of physico-chemical soil 
properties on nematode population density as pH 
soil, nitrogen and the organic carbon content is 
confirmed in previous studies [49,50]. The soil 
texture, which determines soil compactness and 
porosity (there by availability of moisture and 
aeration for the nematodes) is one of the most 
important soil characteristics related to density of 
nematode in crop fields [51,52]. On the other 
hand, the lowest soil infestation level with 
nematodes observed in the third period in the 
experimental plot (Gnafda) and that of Dlalha at 
the second visit would be explained by the short 
term efficiency of soil fumigant metam sodium 
(MS) to suppress these organisms. Indeed, many 
chemical alternatives to MB and their 
combinations have been evaluated in numerous 
crops and locations. 1,3-Dicloropropene (1,3-D), 
chloropicrin (Pic), metham sodium, and their 
combinations are used for controlling root-knot 
nematodes and soilborne fungi in greenhouse 

tomatoes [53,54], cucumbers [55,56], tobacco, 
pepper, and strawberry [1,57,58,59,60,61] in 
Italy, the US, Spain, and China. 
 
However, some controversy still remains about 
the efficacy of these fumigant for nematode 
management. A significant potential of metam 
sodium in the suppression of root-knot 
nematodes (Meloidogyne spp.) in French bean 
under both greenhouse and field conditions was 
reported [62]. Fumigation with metam sodium 
was effective for temporarily reducing Longidorus 
population densities before population of 
nematodes rebounded [63]. This suggests that 
nematodes can survive in areas where fumigants 
fail to penetrate, or below the zone of fumigant 
placement [64]. Nematode control by metam-
sodium has been declared to be non-consistent 
or marginal [65]. Its ineffectiveness is attributed 
to its mode of action because it is rapidly 
converted to methyl isothiocyanate which has 
limited fumigant action and a high affinity for the 
soil water phase [66]. A significant interaction of 
soil water content and temperature on the 
efficacy of metham-sodium against V. 
dahliae microscloretia was previously noted              
[67].  
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Results from the studies of [69] show the 
difficulty in pest-pathogen control for  metam 
sodium (MS) use in Florida sandy soils. Applying 
metam sodium (MS) either by drip irrigation or by 
surface spray application followed by soil 
incorporation led to very erratic field pest-
pathogen control. Some MS treated areas 
exhibited good weed and root knot nematodes 
control while other areas had intense weed 
problems and 100% RKN galling of tomato roots 
[68,69]. In combination with cultural practices or 
other fumigants, the control of plant parasitic 
nematodes with metam sodium could be 
improved [70,71,72]. Greenhouse trials revealed 
that the blend of 1,3-D and MNa (10+20 g a.i. 
m−2) greatly inhibited the ability of Meloidogyne 
incognita to form root galls. In addition, the 
number of colony forming units of F. oxysporum 
declined substantially after growth in media, 
resulting in higher fruit yields and greater 
economic benefits [73].  

 
Concerning the distribution and the occurrence of 
fungal species associated with roots of 
strawberry plants as expressed by frequency of 
isolation showed differences as per experimental 
plot and sampling period. Out of 13 fungal 
species isolated from roots, the presence of 
Rhizoctonia solani, Fusarium solani and the 
exclusive appearance of Phytophthora sp. in one 
site rejoin the results previously signalled in 7 
farms of strawberry production in Gharb and 
Loukkos region in Morocco [17] where these 
fungi were registered at higher frequencies than 
that of P. cactorum. These species with 
Colletotrichum gloeosporioides eventually coexist 
with other soilborne pathogens such 
Macrophomina phaseolina, Pythium sp., 
Fusarium oxysporum and causes root and crown 
rots to strawberry plants [17,74,75,76,77]. In 
addition, the fungal community examined during 
the three sampling periods also revealed the 
existence of Penicillium sp., Aspergillus sp., A. 
Alternata, C. herbarum, Circinella sp. and 
Ulocladium sp. no commonly present on roots 
but more frequent on stems or leaves as study 
results reported on strawberry plants [11,16] or 
the olive trees cultivated in the South of Morocco 
[78]. The four members, Aspergillus sp., 
Penicillium sp. Trichoderma sp. and Fusarium 
sp. are commonly occurring in soil mycloflora 
[79]. In Florida, [80] advanced the isolation of 
Alternaria, Pestalotiopsis accompanied with 
Rhizoctonia, Fusarium spp., Cylindrocarpon and 
Phoma radicina from diseased roots of 
strawberry runner plants from nurseries tested in 
2010 and 2012. Rosado-May et al. [81] have 

detected the presence of Fusarium, Pythium, 
Rhizoctonia, Cylindrocarpon, Trichoderma           
and Verticillium isolated from the strawberry 
roots. 
 
Nevertheless, the fluctuant occurrence of fungal 
species throughout the three investigation 
periods seems to concern all species detected in 
the studied plots which have received a pre-plant 
fumigant application prior to planting. Several 
factors including soil type, temperature, physical 
properties, pH, and water holding capacity are 
known to impact the efficacy of metam sodium 
[82]. Soil temperatures below 10°C will disrupt 
the generation and dissipation of methyl 
isothiocyanate [83]. Many workers have found 
Trichoderma and Penicillium spp. to be dominant 
in fumigated soils [84,85]. Saksena [86] studied 
the resistance of various soil fungi to fumigants 
and their ability to recolonize the fumigated soils. 
Similarly, the fungitoxic effect of Formalin and 
carbon disulphide (CS2  was very pronounced  
on mycoflora members of sunflower rhizosphere 
harboring Aspergillus ruber, A. ochraceus, A. 
luchuensis, A. fumigatus, A. niger, Penicillium 
Nigricans, Penicillium funiculosum, Mucor 
racemosus Trichoderma viride and Curvularia 
lunata but thereafter they reappeared in the 
treated soil whereas both Aspergillus terreus and 
Fusarium oxysporum were resistant to formalin 
application [87]. 
 
Based on the observed fungi frequency, the 
relative importance of the four species F. solani, 
C. gloeosporioides, R. solani greatly decreased 
at the third visite compared to T. asperellum, A. 
alternata, Aspergillus sp., Penicillium sp., and 
Fusarium sp1. This would be related to sensitivity 
of these fungi towards all control mesures 
existing or to metam sodium which was applied 
at the beginning of the 2012-2013 season in the 
small farm while the medium and big sized farms 
received fumigation in the preceeding year.   
Klose et al. [88] revealed that 2735 mmol InLine 
kg-1 soil is needed to kill 90% of V. dahliae in this 
soil.  Moreover, among tested species, Pythium 
ultimum was the most sensitive and V. dahliae 
the least sensitive pathogen to fumigation with 
InLine that also showed an intermediate efficacy 
for controlling propagules of F. oxysporum and 
Phytophthora cactorum in soils [88]. According to 
[89], incorporation of dazomet in the surface 
layer and injection of metam-sodium with a 
polythene cover, resulted in 100% kill 
of Fusarium culmorum and Pythium sp., and 
reductions in Phytophthora cryptogea, 
Rhizoctonia solani and Sclerotinia  sclerotiorum.  
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Similarly, previous studies have also reported 
that fumigation resulted in a change in the soil 
fungal communities, especially the structure of 
ascomycetes [90]. Hu P et al. [91] found a 
differential impact of biofumigant on soil 
microorganisms. They observed a dramatic 
decrease in fungal populations (∼85% reduction) 
after allyl ITC addition Also, the fungal 
community compositions shifted following ITC 
amendments (e.g., Humicola increased in allyl 
and Mortierella in butyl ITC amendments). 
Bacterial populations were less impacted by 
ITCs, although there was a transient increase in 
the proportion of  Firmicutes, related to bacteria 
know to be antagonistic to plant pathogens. 
According to Essarioui and Sedrato [92], the 
combination of reduced doses of metam sodium 
with soil solarization resulted in the greatest 
impact on total fungi and Fusarium spp. 
 
Otherwise, Ceja-Torres et al. [93] confirmed that 
the distribution and prevalence of fungi and 
pseudo-fungi causing of strawberry dry wilt was 
influenced by soil texture and the level of organic 
matter. Also, Bhatti and Kraft [94] demonstrated 
the effect of the soil moisture on the rhizosphere 
populations of the wilt and root rot pathogens 
that increased with an increase in soil moisture 
content. Indeed the majority of fungal species 
affecting underground organs of strawberry 
plants like R. Solani [95], Fusarium oxysporum 
[96], Macrophomina phaseolina [76], 
Colletotrichum species [97,98] can survive for 
long periods as resistant structures sclerotia, 
chlamydospores or as potential inoculum in plant 
debris and soil [39,99,100]. Under special 
environmental conditions in rhizosphere, the 
germination can occur [99,101,102]. It has been 
hypothesized that survival of C. acutatum may 
improve at lower temperatures [103] as the result 
of reduced colonization of plant debris by the 
pathogen whereas it would decrease in the case 
of increased colonization by other soilborne 
microorganisms that would compete for nutrients 
in tissue at high temperatures [103,104]. 
According to [97], the survival of C. acutatum in 
infected plant debris of leatherleaf fern or in soil 
increased with the reduction in soil moisture. For 
C. gloeosporioides, the effect of variations in 
moisture and temperature on its survival in 
strawberry crowns is unclear [105]. Soil moisture 
may have affected the survival of C. 
gloeosporioides in buried strawberry crowns by 
affecting fungus activity or by indirectly disrupting 
the activity of its competitors [106]. The 
competitive saprophytic ability of Trichoderma 
harzianum in buried plant tissues is reduced 

when the soil is flooded or when there is a drastic 
reduction in the moisture content of the soil [106]. 
As claimed by [100], in soil, the varying survival 
capabilities of different types of Colletotrichum 
spp. inoculum is of importance because such 
inoculum may serve as a potential source for 
disease outbreak. However under these 
circumstances the pathogenicity of recovered 
isolates and the susceptibility of cultivars should 
be considered. 
 
Researchers approved that soil biodiversity loss 
and simplification of soil community composition 
impair multiple ecosystem functions, including 
plant diversity, decomposition, nutrient retention, 
and nutrient cycling [107]. Thus, to avoid the 
destruction of soil ecosystems by many of these 
chemicals [108,109,110], it is worth noting that 
management systems that are not dependent on 
chemical soil fumigation but rely on biologically 
based approaches are more beneficial  Indeed, 
organic amendments, such as compost, are 
widely available and offer the advantage of 
improving soil properties, adding nutrients, 
recycling wastes [111]. In this sense, composts 
may enhance plant growth, yield of several crops 
and suppress plant pathogens by naturally 
introducing beneficial microbial populations, or by 
amendment with commercial biocontrol strains 
[112,113,114,115,116,117,118]. Similarly, [119] 
indicate that application of antagonists can 
suppress galling and reproduction of M.incognita 
resulting in enhancement of plant growth. As a 
ubiquitous soil fungus which colonizes root 
surfaces and root cortices [120], several species 
of Trichoderma, including T. harzianum, T. viride, 
T. atroviride, and T. asperellum, have provided 
excellent control of root-knot nematodes in 
previous studies [121,122]. The fungal and 
bacterial isolates (Trichoderma and Bacillus 
strains) were able to reduce rootknot nematode 
damage while increasing yield in crops such as 
soybeans where no nematicides are currently 
registered and no rootknot resistant cultivars are 
currently available in South Africa [123]. In 
Ethiopia, a  effect of different botanicals and T. 
harzianum on individual and in combination for 
the management of tomato root-knot nematode 
development and their role on plant growth under 
greenhouse condition were advantageous [124].  
 

4. CONCLUSION 
 
This is the first survey conducted to estimate the 
frequency occurrence of fungal flora associated 
with roots of strawberry plants and the nematode 
density in interaction with physicochemical 
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parameters of soil over time at three localities. 
The current study demontrated the high 
occurrence of nematodes inhabiting strawberry 
rhizospheres and the diverse effects of soil 
physico-chemical  properties on their density 
throughout the three farms and soil sampling 
periods as well as the variable frequency of 
fungal communities colonizing roots of 
strawberry plants cultivated in fumigated soil. 
Moreover, results showed that even applying 
metam sodium, among 13 fungal species 
isolated from roots of strawberry plants, R. solani 
was more prevalent than F. solani, 
Colletotrichum acutatum and Phytophthora sp. 
These fungi are known to be capable of causing 
damage to the crop [125,126,127] with those less 
harmful. Knowledge of which species is present 
in a field is important to determine the possible 
threat to strawberry before to adopt a suitable 
method that will adequately provide season long 
nematode and soilborne pathogens control.  
 
The use of special techniques and procedure of 
application may improve the fumigant action 
[128]. Therefore, it is necessary that the 
researchers should pay direct attention towards 
widespread distribution of nematodes affecting 
plants, interaction with other soil microorganism 
and evaluation of their potential damage and 
influence on crop. 
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