
aerospace

Article

Unmanned Aerial Vehicle Pitch Control Using Deep
Reinforcement Learning with Discrete Actions in Wind
Tunnel Test

Daichi Wada 1,* , Sergio A. Araujo-Estrada 2 and Shane Windsor 2

����������
�������

Citation: Wada, D.; Araujo-Estrada,

S.A.; Windsor, S. Unmanned Aerial

Vehicle Pitch Control Using Deep

Reinforcement Learning with

Discrete Actions in Wind Tunnel Test.

Aerospace 2021, 8, 18. https://

doi.org/10.3390/aerospace8010018

Received: 16 December 2020

Accepted: 8 January 2021

Published: 14 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Aeronautical Technology Directorate, Japan Aerospace Exploration Agency, Tokyo 181-0015, Japan
2 Department of Aerospace Engineering, University of Bristol, Bristol BS8 1TR, UK;

s.araujoestrada@bristol.ac.uk (S.A.A.-E.); shane.windsor@bristol.ac.uk (S.W.)
* Correspondence: wada.daichi@jaxa.jp

Abstract: Deep reinforcement learning is a promising method for training a nonlinear attitude
controller for fixed-wing unmanned aerial vehicles. Until now, proof-of-concept studies have demon-
strated successful attitude control in simulation. However, detailed experimental investigations have
not yet been conducted. This study applied deep reinforcement learning for one-degree-of-freedom
pitch control in wind tunnel tests with the aim of gaining practical understandings of attitude control
application. Three controllers with different discrete action choices, that is, elevator angles, were
designed. The controllers with larger action rates exhibited better performance in terms of following
angle-of-attack commands. The root mean square errors for tracking angle-of-attack commands
decreased from 3.42◦ to 1.99◦ as the maximum action rate increased from 10◦/s to 50◦/s . The com-
parison between experimental and simulation results showed that the controller with a smaller action
rate experienced the friction effect, and the controllers with larger action rates experienced fluctuating
behaviors in elevator maneuvers owing to delay. The investigation of the effect of friction and delay
on pitch control highlighted the importance of conducting experiments to understand actual control
performances, specifically when the controllers were trained with a low-fidelity model.

Keywords: attitude control; deep reinforcement learning; fixed-wing aircraft; unmanned aerial
vehicle; wind tunnel test

1. Introduction

Many current fixed-wing unmanned aerial vehicles (UAVs) exhibit some nonlinear
flight dynamics, such as inertial coupling and aerodynamic nonlinearities. Future air-
craft are likely to have even greater nonlinearities in their flight dynamics. For example,
bio-inspired morphing wings significantly change their shapes to enhance the agility of
UAVs [1,2]. High aspect ratio wings are used in UAVs for high-altitude long-endurance
flights [3]. Flexible wings improve the flight efficiency of transport aircraft in off-design
conditions [4]. These designs expand the range of applications of UAVs. However, they
simultaneously lead to increased nonlinearity, thereby making control challenging. Classi-
cal linear controllers generally need to be used in a conservative manner with constrained
flight envelopes. As such it is desirable to develop nonlinear control algorithms that can
expand the usable flight envelope of UAVs and to take full advantage of the potential of
new wing designs.

Machine learning approaches based on neural networks are one type of nonlinear
control technique. The nonlinear activation functions in neural networks can represent
highly nonlinear transfer from inputs to outputs, which is a promising feature for nonlinear
control. A common method for training neural networks is supervised learning, where the
neural network is trained using existing labelled data. An example of supervised learning
in the aviation domain is the use of a neural network as an alternative to a lookup table in an

Aerospace 2021, 8, 18. https://doi.org/10.3390/aerospace8010018 https://www.mdpi.com/journal/aerospace

https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-1577-0185
https://orcid.org/0000-0002-5432-5842
https://orcid.org/0000-0002-7597-4497
https://doi.org/10.3390/aerospace8010018
https://doi.org/10.3390/aerospace8010018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/aerospace8010018
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/2226-4310/8/1/18?type=check_update&version=2

Aerospace 2021, 8, 18 2 of 16

aircraft decision making system for collision avoidance [5]. Replacing the numeric tabular
system with the neural network increased the efficiency of the system. Neural networks
have also been proposed to replace and supplement a number of other components of
aircraft flight controller systems [6]. A common approach is to replace the linear gains of
conventional control structures with neural networks, and with the performance benefits
of this approach having been validated through simulation [7]. Neural networks with [8]
and without [9] recurrent architectures have been also used to represent nonlinear inverse
transformations for feedback linearization using supervised learning.

A challenge in supervised learning is that training data must accurately reflect the
underlying dynamics of a system based on the prior knowledge of the system. In this
regard, deep reinforcement learning is a promising alternative to supervised learning. In
deep reinforcement learning, agents with neural networks interact with environments.
Based on the experience collected through repetitive interactions, the neural networks
are updated such that the agents can solve a task, which refers to the development of an
optimum control law for aircraft attitude control in this case. The desirable behavior of
agents is designed using reward functions, and the agents learn how to maximize the
expected reward. In other words, without explicit knowledge of the system, a controller
learns to be as nonlinear, accurate and robust as required to solve the task. The powerful
task solving capabilities that are difficult to achieve via other methods have been demon-
strated specifically in the game playing area [10,11]. Examples of recent deep reinforcement
learning algorithms are deep deterministic policy gradient (DDPG) [12], normalized ad-
vantage functions (NAF) [13], asynchronous advantage actor-critic (A3C) [14], trust region
policy optimization (TRPO) [15] and proximal policy optimization (PPO) [16]. In the avi-
ation domain, reinforcement learning has been applied to glider soaring [17]. A flight
policy was successfully learnt to effectively gain lift from ascending thermal plumes. For
deep reinforcement learning applications to the attitude control, neural-network-based
controllers trained with DDPG, TRPO, and PPO have been tested using simulation for a
quadrotor [18]. The controller trained with PPO outperformed conventional proportional–
integral–derivative control systems in terms of accuracy and agility. For fixed-wing UAVs,
NAF has been applied to learn aerobatic maneuvers [19], and PPO has been applied to
control attitudes, including roll, pitch, and airspeed [20]. In addition to flight control, deep
reinforcement learning has also been applied to active flow control to stabilize lift and drag
fluctuations and to reduce drag [21,22].

The above results have demonstrated the applicability of deep reinforcement learning.
Nevertheless, the application of deep reinforcement learning in the aviation domain and
its role in attitude control have not been extensively investigated yet. Specifically, most
previous works are proof-of-concept studies based on simulation. In practice, neural
networks are trained through simulation. However, this method is susceptible to model
parameter uncertainty. The theoretical performance is not valid if the simulator used in
training is significantly different from the actual operating environment. This is referred to
as the reality gap. Therefore, it is critical to assess performance in a real-world situation via
experiments to investigate the effect of reality gaps on attitude control.

Considering this background, this study focused on the experimental application of
deep reinforcement learning to aircraft attitude control in order to gain understandings
of its applicability. To investigate the performance of deep reinforcement learning with a
simple and clear basis, wind tunnel tests were conducted using a free-to-pitch one-degree-
of-freedom model. Three neural-network-based controllers with discrete action spaces
were trained using the A3C algorithm [14]. The controllers output elevator angle rates
as actions. The amplitudes of the actions varied between the three controllers. The pitch
control performance of the controllers was investigated and compared through simulation
and experiments. In particular, the effects of delay and friction on pitch control were
investigated as examples of the reality gap.

Aerospace 2021, 8, 18 3 of 16

2. Methods
2.1. Aircraft Model

The one-degree-of-freedom model used in this work is depicted in Figure 1. The
model was supported by a shaft, which allowed for free-to-pitch motion. The model was
the span-wise half of an off-the-shelf radio control aircraft (WOT4 Foam-E Mk2+, Ripmax,
Hertfordshire, UK), which was mounted to the wind tunnel wall. The wing shape was
rectangular with a half span of 0.60 m and a chord of 0.25 m. The model was equipped
with an inertial measurement unit (IMU) (in Pixhawk 1, 3DR) for measuring the pitch
angle and pitch rate, an air speed sensor (custom-built based on SDP31, Sensirion, Stäfa,
Switzerland) for measuring the wind speed, and a servo motor for the elevator maneuver.
These sensors and the servo were connected to a micro-controller unit. The pitch angle
was considered equal to the angle of attack. Measured data were received at the micro-
controller unit and transmitted to a computer via USB communication. The computer
collected and recorded the data and computed elevator commands, which were transmitted
to the elevator servo via the micro-controller unit. Data were processed at 20 Hz control
rate, which was also applied in numerical simulations. The implementation of the deep
reinforcement learning control algorithm was divided into offline training and online
closed-loop control. The offline training was performed via simulations in Matlab using a
custom implementation of the A3C algorithm. A computer running the Microsoft Windows
Operating System was used for the online closed-loop control. Note that the trained model
was run in Simulink, the micro-controller unit was used to collect sensor data and to control
the elevator servo, while a custom Python algorithm was used to handle data exchange
between Simulink and the micro-controller unit. A simple Network Time Protocol was
used to reduce communication latency between the computer and micro-controller unit,
with the computer providing the reference clock signal. Additionally, a cooperative task
scheduler was used in the micro-controller unit to ensure all tasks run on time.

Figure 2 shows the angle of attack and pitch rate responses when a scheduled elevator
angle sweep was applied. The elevator angle was actuated within ±45°. The experimental
results are indicated in black. The angle-of-attack amplitude decreased as the frequency of
the elevator sweep increased. The system cut-off frequency was estimated to be 1.3 Hz. A
linear model was used to approximate the model dynamics, which was expressed as

Iyyα̈ =
1
2

ρV2ScCM, (1)

CM = CM0 + CMα α + CMq

c
2V

q + CMδe
δe, (2)

where Iyy is the moment of inertia for pitch, ρ is the air density, V is the air speed, S is
the wing area, c is the chord length, α is the angle of attack, q is the pitch rate, δe is the
elevator angle, and C represents individual coefficients. The blue plots in Figure 2 indicate
the simulated model responses that were obtained when the parameters were set as shown
in Table 1. At higher frequencies of the elevator sweep, the simulated responses of the
angle of attack and pitch rate were smaller than the experimental results. In addition, the
experimental angle of attack showed a delay compared to the simulation response when
the elevator started to move at 3 s. This was due to friction, which existed around the
pitching shaft. Based on the friction model proposed by Makkar et al. [23] and assuming
only the Coulomb friction effect, friction was included in Equation (1) as

Iyyα̈ =
1
2

ρV2ScCM − g4 tanh(g5q), (3)

where the coefficients were estimated as g4 = 8.53× 10−1 Nm and g5 = 100.0 s/rad. The
red plots in Figure 2 indicate the responses when the model included the friction. The
simulated responses and experimental results were still different at higher frequencies of
the elevator sweep. However, the simulated responses obtained using the model with
friction agreed more closely with the experimental results compared to the simulated
responses obtained using the model without friction.

Aerospace 2021, 8, 18 4 of 16

This study employed the linear model without friction as a simulator in the reinforce-
ment learning. This implies that the neural networks were trained with a low-fidelity
simulator, that is, there was a reality gap. To highlight the reality gap, Section 4 presents
the investigation of the effect of friction on pitch control through numerical simulations.

Wind tunnel wall

Tail wing with elevator

Main wing with shaft for pivot

Computer

Micro-controller
unit

Elevator
servo

IMU
Air speed

sensor

(a) Top view (b) Side view (c) Signal transfer diagram

Fuselage

60.3

25.4

62.5

23.7

4.2

Length unit [cm]

Figure 1. Schematics of the experimental configuration.

Figure 2. Elevator command (top) and related angle of attack (middle) and pitch rate (bottom)
responses at a wind speed of 14 m/s.

Aerospace 2021, 8, 18 5 of 16

Table 1. Parameters of wind tunnel model.

Parameter Units Value

Iyy kg m2 1.90 × 10−1

ρ kg/m3 1.23
V m/s 14.0
S m2 3.06 × 10−1

c m 2.54 × 10−1

CM0 – −3.00 × 10−3

CMα
– −2.25 × 10−1

CMq – −5.46
CMδe

– −5.35 × 10−2

2.2. Training Algorithm

A deep reinforcement learning algorithm based on A3C was employed [14]. A3C is
a model-free and actor-critic method. For policy (actor network) update, it uses a value
function (critic network) to reduce gradient variance. It also uses advantage, which is
estimated by subtracting action-value from state-value, to assist reducing the variance of
the gradient estimation. Since it has a policy-based aspect, it is applicable to both discrete
and continuous action spaces.

Agents have a policy function and a value function, and they interact with the envi-
ronment. The agents observe the state of the environment, perform an action based on the
policy to update the environment, and consequently, receive a reward. The two functions
are represented by neural networks. The policy function is updated in a gradient ascent
manner based on the estimated advantage of performing the action, and the value func-
tion is updated in a supervised manner to estimate the advantage based on the collected
rewards. Through these updates, the agents learn to control the aircraft model to maximize
the expected reward.

In the pitch control tasks, angle-of-attack command schedules were provided to the
agents. Wind speeds varied for individual test cases. The agents observed the state, which
consisted of the error between the commanded and observed angles of attack, eα = αcom− α,
observed angle of attack α, pitch rate q, elevator angle δe, and wind speed V. The agents fed
the state into their neural networks to compute an action, which was the elevator angle rate,
to follow the angle-of-attack commands. The neural network architecture used in this study
is shown in Figure 3. The architecture was empirically designed. The input layer contained
five neurons that corresponded to the state elements. The hidden layer consisted of
16 neurons with sigmoid activation functions. The softmax and linear activation functions
were used for policy and value outputs, respectively. The neural network with weights θ
considered state st at time step t as an input, and it output the action values for possible
actions at. This was the policy function, π(at|st; θ). In addition, the neural network output
the value of the state V(st; θv), where θv denotes the weights and biases for calculating the
value. The policy and value functions shared all parameters except for the output layers.
All weights and biases were initialized based on the Nguyen–Widrow algorithm [24].

Three neural networks with different discrete action choices for elevator angle rate
were designed. Elevator angle rate rather than elevator angle was used as the output in
order that the whole range of elevator angle was continuously covered by the discrete
actions. The NN10 neural network contained three action choices for the elevator angle
rate, that is, −10, 0, and 10◦/s. The NN30 neural network contained five action choices,
that is, −30, −10, 0, 10, and 30◦/s. The NN50 neural network contained seven action
choices, i.e, −50, −30, −10, 0, 10, 30, and 50◦/s. At each time step during simulation, the
elevator angle was incremented at the selected rate. The working range of the elevator
angle was within ±45°. The elevator angle was saturated when an action choice attempted
to increment it out of the working range.

In training, the duration of a single episode was 30 s with 600 time steps, assuming
a control rate of 20 Hz. In each episode, a constant wind speed was randomly selected

Aerospace 2021, 8, 18 6 of 16

within the range of 8 to 22 m/s. The initial states were set as eα = 0 and δe = 0. Pitch
rate q was set randomly within the range of −5 to 5◦/s as an initial perturbation. The
angle-of-attack commands were set for every episode using different random seeds. The
command schedules were generated by utilizing the Ornstein–Uhlenbeck process [25]
with mean µ = 0, volatility σ = 2 and reverting rate towards the mean θ = 0.1. This
process generates a signal that drifts in the same direction for a longer duration rather
than oscillating around the mean value. The signal was calculated for 15 points over
30 s. The initial commands were randomly set within the range of −0.5° to 0.5°. The
command values were interpolated between adjacent signal points, which resulted in a
linear transition of 2.14 s for every interval. Figure 4 shows the examples of the angle-of-
attack command schedules. The circles represent the signals calculated by the process.
The command schedules varied approximately from −10° to 10°. ε-greedy exploration
was employed at each time step. A random action was sampled from all choices with
the probability defined by ε; otherwise, the action with the maximum action value was
sampled. The value of ε started at 0.40 and linearly decreased to a minimum of 0.15 after
5000 episodes.

The following loss function was defined to update the weights and biases of the
neural network:

L = Lπ + 0.5Lv + 0.01Lreg, (4)

where Lπ is the policy loss, Lv is the value loss, and Lreg is the regularization loss with
policy entropy. The coefficients for the policy and regularization losses were empirically
determined. Following the implementation of the A3C algorithm, the value function
should converge to an estimation based on the rewards in the n-step forward view as [14]:

V(st; θv) =
n−1

∑
i=0

γirt+i + γnV(st+n; θv), (5)

where rt+i is a reward given at time step t + i and γ is a discount factor. Therefore, the
value loss is calculated as

Lv = (
n−1

∑
i=0

γirt+i + γnV(st+n; θv)−V(st; θv)). (6)

In this work, n was set as 4 for the n-step forward approach. The policy should
maximize the expected value; thus the policy loss is calculated as

Lπ = − log π(at|st; θ′)A(st, at; θ, θv), (7)

where the gradients are calculated for θ′. A(st, at; θ, θv) is an estimate of the advantage
function, which is defined as [14]:

A(st, at; θ, θv) =
n−1

∑
i=0

γirt+i + γnV(st+n; θv)−V(st; θv). (8)

Intuitively, it is an estimate of the advantage of performing action at in state st based
on the policy, π(at|st; θ).

The regularization loss with policy entropy was added to the loss function to encour-
age exploration in action. The regularization loss is calculated as

Lreg = −H(π(·|st; θ′)), (9)

where H is the entropy, which is expressed as

H(π(·|st; θ′)) = −∑
at

π(at|st; θ′) log π(at|st; θ′). (10)

Aerospace 2021, 8, 18 7 of 16

The immediate reward was provided at each time step. The reward function was
designed based on the angle-of-attack error, eα, and the action penalty as

r = Cr0 − |eα| − Cact|at|, (11)

where Cr0 = 2× αlim is a positive constant that is used to maintain the reward value as
positive. αlim indicates the working range of the angle of attack, which was set as 15◦. If
the observed angle of attack, α, exceeded ±αlim, the episode was terminated with r = 0.
The reward included an action penalty to discourage excess maneuvers. The action penalty
was defined based on the output of the neural network, that is, the elevator angle rate.
The amplitude of the action penalty, Cact, was empirically determined as 0.001 for training
NN10 and NN30 and 0.0003 for training NN50.

Multiple agents can run asynchronously using the A3C algorithm. Three agents with
different random seeds, and hence different angle-of-attack command schedules and wind
speeds, ran in different threads to collect training data, which consisted of states and
rewards. The agents sent the training data to global storage. An optimizer that ran in
a different thread used the data to update the global neural network, which was then
broadcast to the local agents. The Adam optimization algorithm was used as an optimizer,
and the hyperparameters were set based on a previous study [26]. The learning rate was
0.001. The optimization was performed whenever the optimizer thread was available.
Eventually, a dataset of approximately 400 time steps was used for every update.

Input layer Hidden layer Output layer

5 neurons

16 neurons
1 neuron

Policy

Value

3 or 5 or 7
neurons

eα
α
q

δe
V

[–10, 0, 10] or

[–30, –10, 0, 10, 30] or

[–50, –30, –10, 0, 10, 30, 50].

Figure 3. Neural network architecture.

Figure 4. Examples of the angle-of-attack command schedules using different random seeds.

Aerospace 2021, 8, 18 8 of 16

2.3. Experimental Conditions

The wind tunnel consisted of a test section with dimensions of 2.13 m × 1.52 m. Wind
speeds were set to be constant during each test case. The applied wind speed range
was 10 m/s to 20 m/s with increments of 2 m/s. Doublet and sinusoidal waves with an
amplitude of 5° were applied for the angle-of-attack commands. The duration of the
doublet wave was 7.5 s at ±5° and steady states. The sinusoidal wave had a frequency of
0.2 Hz and a duration of four cycles. The angle-of-attack commands in the training had
neither the smooth trajectories of sinusoidal waves nor the instantaneous transitions of
doublet waves. Therefore, the doublet and sinusoidal waves were expected to highlight
the generalized performance of the controllers.

There existed a time delay in the experimental configuration. Tests carried out to find
the reason behind this delay indicate that the main contributor was the use of a computer
as the source of the reference clock signal. The red plot in Figure 5 shows the histogram
of the measured communication delay between the controller output and the arrival at
the micro-controller unit, which was connected to the elevator servo. The vertical axis
represents the relative probability, which is normalized such that the sum of the bar heights
is 1, with 15,000 data points being sampled. The peak occurred at 15 ms. A theoretical
model was built to simulate delay using a log-normal probability density function, f (x), as

f (x) =
1

(x− t0)σ
√

2π
exp(− (log(x− t0)− µ)2

2σ2), for x > t0, (12)

where x is time in milliseconds, t0 is offset, σ is 1.67 and µ is −5.27. The blue plot in
Figure 5 shows the simulated delay when t0 = 15 in milliseconds. In addition to this type
of delay, there are mechanical delays such as those caused by the elastic deformation of
the servo horns and links. The total effective delay, which includes communication and
mechanical delays, affects pitch control performance. However, the total effective delay
was not directly measurable.

In this study, delay was not considered in training. The effect of delay on pitch control
is presented in Section 4.

Detailed view

0 50 100 150 200 250
System total time delay [ms]

0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

ty

Experimental
Simulated

0 20 40 60
System total time delay [ms]

0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

ty

Figure 5. Histogram of command transmission delay. Delay was measured between the controller
output and the arrival at the micro-controller unit.

Aerospace 2021, 8, 18 9 of 16

3. Results

Figure 6 shows the results of training. The total rewards were normalized by 1/(600× Cr0),
where 600 is the number of time steps per episode. All curves were saturated close to 1.0.
This indicated that the training successfully converged.

Figure 6. Training results. The solid lines are mean learning curves and the shaded areas are one
standard deviation over 5 random seeds.

Figure 7 shows the time histories of the measured angle of attack, elevator angle,
and pitch rate when the wind speed was 14 m/s. In the results with the doublet com-
mands in Figure 7a, all neural network controllers successfully followed the angle-of-attack
commands. The differences between the controllers were mostly evident in the transition
phases. In the transition phase at 15 s, the elevator angle increased with the maximum
action rates of the controllers. The pitch rate showed correlated peaks in the transition
phases. The amplitude of the pitch rate increased, and the width decreased, for the con-
trollers with higher action rates. Small angle-of-attack errors remained in the steady states.
The maximum angle-of-attack errors in the −5° steady state were 0.055°, 0.52°, and 0.87°
for NN10, NN30, and NN50, respectively. In principle, steady-state error could occur based
on the balance between the angle-of-attack error and action penalty. A large action penalty
could encourage the agents to remain in their states even with a small error rather than
incur the action penalty. However, the accuracy of NN30 and NN50 could be as good as the
accuracy of NN10 in theory. This indicated that learning parameters could be tuned further
to increase accuracy. Figure 7b shows the time histories of the measured parameters with
the sinusoidal commands. For NN10, even though the elevator moved at the maximum
rate, it did not produce a large pitch rate to follow the command. The sinusoidal command
was followed for NN30 and NN50. However, spiky fluctuations were observed in the
time histories of the elevator angle and pitch rate. The fluctuations in the elevator angle
indicated that the neural networks used the maximum amplitudes of the action rates and
did not use other action choices. This behavior resulted in the fluctuations in the angle of
attack.

Aerospace 2021, 8, 18 10 of 16

Figure 8 shows the results obtained at wind speeds of 10 and 20 m/s. The results for
NN10 with the doublet command are shown in Figure 8a. A higher wind speed led to more
instantaneous responses in the transition phases because larger pitching moments were
produced, as seen in Equation (1). The results for NN10 with the sinusoidal command
are shown in Figure 8b. The variations in the angle of attack increased with the wind
speed. Due to friction, a lower wind speed did not produce a pitching moment that was
sufficiently large to vary the angle of attack. The results for NN50 with the sinusoidal
command are shown in Figure 8c. The time histories of the elevator angle exhibited larger
fluctuations for NN50 compared to NN10. Additionally, the fluctuations in the angle of
attack increased with the wind speed. This was considered to be because of delay.

To summarize, the controllers with larger action rates showed better performance in
terms of following the angle-of-attack commands. However, larger action rates and higher
wind speeds caused fluctuations in the elevator angle and angle of attack, specifically in
the cases with the sinusoidal commands.

(a) With doublet command. (b) With sinusoidal command.

Figure 7. Pitch control results at wind speed of 14 m/s. NN10, NN30 and NN50 were used to follow doublet and sinusoidal
commands.

Aerospace 2021, 8, 18 11 of 16

(a) Using NN10 with doublet command. (b) Using NN10 with sinusoidal command.

(c) Using NN50 with sinusoidal command.

Figure 8. Pitch control results at wind speed of 10 and 20 m/s. NN10 was used to follow doublet (a)
and sinusoidal (b) commands. NN50 was used to follow sinusoidal command (c).

4. Effects of Friction and Delay on Pitch Control

The effects of friction and delay on pitch control were investigated through simu-
lation. Three theoretical models were tested. The first was the linear model that was
used in the training. The second model included the friction in Equation (3) and the
delay in Equation (12) with t0 = 15 ms. The third model included friction and delay with
t0 = 100 ms. The second model considered only communication delay, and the third model
included a larger offset delay, when compared to the second model, to examine the effect
of additional delay. The longer time delay of t0 = 100 ms was empirically selected. For the
simulation with delay, the control outputs at each time step were queued in a buffer with
individual delay times, which was assigned based on Equation (12). The command was
activated to move the elevator after the delay time had passed.

Figure 9 shows the experimental and simulated time histories of the angle of attack
with the doublet and sinusoidal commands for NN10 at a wind speed of 10 m/s. This
condition was the least effective in producing pitching moment variations. Hence, it was
considered that this condition demonstrated the effect of friction clearly. When the doublet
command was applied, instantaneous changes were observed in the transition phases
for the linear model. However, the starting times of the changes did not agree with the

Aerospace 2021, 8, 18 12 of 16

experimental results. When friction was included in the model, the starting times of the
instantaneous changes were delayed, and they agreed with the experimental results. When
the sinusoidal command was applied, the effect of friction was evident over the entire
time history of the angle of attack. A sinusoidal-like cyclic curve was obtained for the
linear model, whereas flattened curves were obtained for the models that included friction.
The flattened curves were closer to the experimental results. These observations indicated
that friction affected the responsiveness of control. However, the effect of the size of the
assumed time delay t0 was negligible.

Figure 10a shows the experimental and simulated time histories of the angle of attack
and elevator angle with the sinusoidal command for NN50 at a wind speed of 20 m/s.
The magnified view of the time histories for the duration of 5–15 s is shown in Figure 10b.
This condition was the most effective in producing pitching moment variations. The time
histories of the elevator angle showed spiky fluctuations for the model that included delay.
The fluctuations were larger and the time histories were more similar to the experimental
results for the model with t0 = 100 ms compared to the model with t0 = 15. In principle,
the fluctuations in the elevator maneuver are inefficient in terms of the action penalty in
Equation (11). The result for the linear model did not show fluctuations. Hence, it was
considered that delay induced the fluctuating behavior. In the time histories of the angle of
attack, the results for the linear model and the model with friction and delay (t0 = 15 ms)
were smooth curves and did not show significant differences. The result for the model
with friction and delay (t0 = 100 ms) showed fluctuating behavior, and it was similar to
the experimental result. The aforementioned results indicate that the effective delay in
experiments should be assumed to be larger than communication delay. Considering that
only communication delay can be directly measured, it would be difficult to predict the
actual control performance without performing experiments.

For quantitative evaluation, the root mean square errors (RMSEs) for the angle of
attack were calculated at different wind speeds. The results are shown in Figure 11. The
circles represent the experimental results. Three tests per condition were conducted to
verify repeatability. The experimental curves plotted in Figures 7–10 are the results with
medium RMSE values among the three repetitive tests. When the doublet command was
applied, the RMSE increased as the wind speed decreased. This was because the pitching
moment produced by the elevator deflection decreased with the wind speed, and thus,
the control was less effective. When the sinusoidal command was applied, the RMSE
increased with the wind speed for NN10. This was because the variations in the angle of
attack were larger at the higher wind speed, as shown in Figure 8b. The larger variations
resulted in increased error compared to the flattened curve at the lower wind speed. For
NN50, the RMSE increased slightly with the wind speed owing to the error caused by the
fluctuations. The RMSE was the lowest for the linear model in the case of the doublet and
sinusoidal commands because the same model was used in simulation as in training. The
results obtained using the model with friction and delay (t0 = 100 ms) agreed well with the
experimental results. Specifically, the results for NN30 and NN50 at higher wind speeds
were more accurately predicted because the model with the delay (t0 = 100 ms) captured
the fluctuating behavior.

The RMSE values averaged over the wind speeds and repetitive tests are listed in
Table 2. It was essential to include friction to obtain accurate predictions. The model with
delay (t0 = 100 ms) provided accurate results, particularly for the sinusoidal command.
Overall, the neural networks with larger action rates showed lower RMSEs. In the experi-
ment, the RMSE values decreased from 3.42° for NN10 to 1.99° for NN50 with the doublet
command. This indicated that the neural networks were successfully trained to utilize
the merit of larger action rates. The larger action rates improved the control performance.
However, they tended to cause fluctuating behavior owing to delay. This may result in
unstable control in certain applications. In this regard, the delay in the system should
be minimized and/or be considered in the training. In addition to delay, other aspects
of the system such as aeroelasticity and aeroservoelasticity, which were not investigated

Aerospace 2021, 8, 18 13 of 16

in this study, could affect the control performance and thus need to be considered in
other applications.

In the previous studies of deep reinforcement learning for UAV’s attitude control [19,20],
convergence to target attitudes in simulation was a main basis for applicability evaluation.
This study successfully highlighted the differences in control performances for simulations
and experiments. The post-analysis presented the effects of the delay and friction, and
their dependency on wind speeds and control commands. This highlights the difficultly
is predicting the actual real world performance a priori based only on simulation results.
Therefore, we suggest that experimental testing is essential to validate the performance for
neural-network-based controllers trained through deep reinforcement learning.

One potential method for suppressing the fluctuating behavior, or mitigating the
reality gap effect in general, is identifying a model with high fidelity and training a
controller using the model. For example, in this study, delay was modeled by estimating
the communication and mechanical delays. However, this might be challenging to estimate
in other systems. In contrast to this case-specific approach, another approach is to train
a controller with model uncertainties. In this approach, a few parameters in a model are
set randomly at every episode such that the controller learns to be robust to uncertainties.
This approach is referred to as domain randomization [27]. The use of these approaches to
mitigate the reality gap will be investigated in the future.

Figure 9. Simulated pitch control results for NN10 with doublet (top) and sinusoidal (bottom)
commands at wind speed of 10 m/s.

Aerospace 2021, 8, 18 14 of 16

(a) Original. (b) Detailed.

Figure 10. Simulated pitch control results for NN50 with sinusoidal command at wind speed of 20 m/s (a). Time range
5.0 s–15.0 s is magnified in (b).

10 12 14 16 18 20
Wind speed [m/s]

0

1

2

3

4

5

R
M

SE
 f

or
 a

ng
le

 o
f

at
ta

ck
 [

de
g]

(a) With doublet command.

10 12 14 16 18 20
Wind speed [m/s]

0

1

2

3

4

5

R
M

SE
 f

or
 a

ng
le

 o
f

at
ta

ck
 [

de
g] NN10

NN30
NN50
Experiment
Linear
Friction &
Delay 15 ms
Friction &
Delay 100 ms

(b) With sinusoidal command.

Figure 11. Root-Mean-Square Error (RMSE) distributions over wind speeds. RMSE was calculated for the angle of attack.
Experimental results as well as theoretical simulation results using different models were plotted. NN10, NN30 and NN50
were used to follow doublet and sinusoidal commands.

Table 2. Mean RMSE over wind speeds for NN10, NN30, and NN50 with doublet and sinusoidal
commands.

Doublet Sinusoidal

Method NN10 NN30 NN50 NN10 NN30 NN50

Experiment 3.42 2.29 1.99 3.74 2.38 1.99
Simulation with linear model 2.75 1.97 1.82 2.71 1.49 1.47
Simulation with friction and delay 15 ms 3.41 2.29 2.02 3.39 2.17 1.73
Simulation with friction and delay 100 ms 3.48 2.37 2.10 3.46 2.31 2.10

Aerospace 2021, 8, 18 15 of 16

5. Conclusions

A reinforcement learning approach based on A3C was applied to train neural-network-
based pitch controllers. Three controllers with different action choices, that is, elevator rates,
were designed. The controllers were successfully trained, and their control performance
was experimentally investigated through wind tunnel tests.

The experimental investigations demonstrated that the controllers with larger action
rates showed better performance in terms of following angle-of-attack commands. The
RMSE values decreased from 3.42° for NN10 to 1.99° for NN50 in the case of the doublet
command. This indicated the controllers could be successfully trained to utilize the merit
of larger action rates. The controller with a smaller action rate experienced the effect of
friction, which degraded the responsiveness of control, specifically at low wind speeds.

In contrast, the larger action rates resulted in fluctuating behaviors in elevator ma-
neuvers at high wind speeds. The numerical investigations indicated that the fluctuating
behavior was caused by delay. The effective delay in the experiments was considered to
be larger than the measured communication delay based on the comparison between the
numerical and experimental results. This demonstrated that it would be difficult to predict
the actual control performance without performing experiments.

As described in the introduction, most previous studies of neural-network-based
reinforcement learning in the context of flight control have focused on theoretical control
performance using simulation. The contribution of this study is to investigate the control
performance of these types of machine learning based flight controllers in physical wind
tunnel tests. The effects of friction and delay were discussed, which are common concerns
in actual applications but are not always focused on in simulation. The method presented
for designing controllers is considered to be applicable to different attitude control tasks,
such as roll and yaw control. The understanding of the effect of the reality gap on pitch
control can be generalized to the different control tasks. In the future, we will investigate
approaches for mitigating the reality gap.

Author Contributions: Conceptualization, D.W., S.A.A.-E. and S.W.; methodology, D.W. and S.A.A.-E.;
investigation, D.W. and S.A.A.-E.; data curation, D.W. and S.A.A.-E.; writing—original draft prepara-
tion, D.W.; writing—review and editing, D.W., S.A.A.-E. and S.W. All authors have read and agreed
to the published version of the manuscript.

Funding: A part of this work was funded by JSPS KAKENHI (grant number JP19K04850). This
project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 679355).

Acknowledgments: The authors would like to thank Lee Winter from the University of Bristol Wind
Tunnel Laboratory, for his invaluable support and work during the assembly of the experimental
platform used to carry out the tests presented in this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Luca, M.D.; Mintchev, S.; Heitz, G.; Noca, F.; Floreano, D. Bioinspired Morphing Wings for Extended Flight Envelope and Roll

Control of Small Drones. Interface Focus 2017, 7, 1–11. [CrossRef]
2. Chang, E.; Matloff, L.Y.; Stowers, A.K.; Lentink, D. Soft Biohybrid Morphing Wings with Feathers Underactuated by Wrist and

Finger Motion. Sci. Robot. 2020, 5, 1–14. [CrossRef] [PubMed]
3. Noll, T.E.; Ishmael, S.D.; Henwood, B.; Perez-Davis, M.E.; Tiffany, G.C.; Madura, J.; Gaier, M.; Brown, J.M.; Wierzbanowski, T.

Technical Findings, Lessons Learned, and Recommendations Resulting from the Helios Prototype Vehicle Mishap; NASA Technical Reports
Server; NASA: Washington, DC, USA, 2007.

4. Rodriguez, D.L.; Aftosmis, M.J.; Nemec, M.; Anderson, G.R. Optimization of Flexible Wings with Distributed Flaps at Off-Design
Conditions. J. Aircr. 2016, 53, 1731–1745. [CrossRef]

5. Julian, K.D.; Kochenderfer, M.J. Deep Neural Network Compression for Aircraft Collision Avoidance Systems. J. Guid. Control
Dyn. 2019, 42, 598–608. [CrossRef]

6. Gu, W.; Valavanis, K.P.; Rutherford, M.J.; Rizzo, A. A Survey of Artificial Neural Networks with Model-based Control Techniques
for Flight Control of Unmanned Aerial Vehicles. In Proceedings of the 2019 International Conference on Unmanned Aircraft
Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; pp. 362–371.

http://doi.org/10.1098/rsfs.2016.0092
http://dx.doi.org/10.1126/scirobotics.aay1246
http://www.ncbi.nlm.nih.gov/pubmed/33022590
http://dx.doi.org/10.2514/1.C033535
http://dx.doi.org/10.2514/1.G003724

Aerospace 2021, 8, 18 16 of 16

7. Ferrari, S.; Stengel, R.F. Classical/Neural Synthesis of Nonlinear Control Systems. J. Guid. Control Dyn. 2002, 25, 442–448.
[CrossRef]

8. Dadian, O.; Bhandari, S.; Raheja, A. A Recurrent Neural Network for Nonlinear Control of a Fixed-Wing UAV. In Proceedings of
the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 1341–1346.

9. Kim, B.S.; Calise, A.J.; Kam, M. Nonlinear Flight Control Using Neural Networks and Feedback Linearization. In Proceedings of
the First IEEE Regional Conference on Aerospace Control Systems, Westlake Village, CA, USA, 25–27 May 1993; pp. 176–181.

10. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep
Reinforcement Learning. arXiv 2013, arXiv:t1312.5602.

11. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.;
et al. Human-Level Control Through Deep Reinforcement Learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

12. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous Control with Deep
Reinforcement Learning. arXiv 2015, arXiv:1509.02971.

13. Gu, S.; Lillicrap, T.; Sutskever, I.; Levine, S. Continuous Deep Q-Learning with Model-based Acceleration. arXiv 2016,
arXiv:1603.00748.

14. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.P.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for
Deep Reinforcement Learning. arXiv 2016, arXiv:1602.01783.

15. Schulman, J.; Levine, S.; Moritz, P.; Jordan, M.I.; Abbeel, P. Trust Region Policy Optimization. arXiv 2015, arXiv:1502.05477.
16. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,

arXiv:1707.06347.
17. Reddy, G.; Wong-Ng, J.; Celani, A.; Sejnowski, T.J.; Vergassola, M. Glider soaring via reinforcement learning in the field. Nature

2018, 562, 236–239. [CrossRef] [PubMed]
18. Koch, W.; Mancuso, R.; West, R.; Bestavros, A. Reinforcement Learning for UAV Attitude Control. arXiv 2018, arXiv:1804.04154.
19. Clarke, S.G.; Hwang, I. Deep Reinforcement Learning Control for Aerobatic Maneuvering of Agile Fixed-Wing Aircraft.

In Proceedings of the AIAA SciTech Forum, Orlando, FL, USA, 6–10 January 2020.
20. Bøhn, E.; Coates, E.M.; Moe, S.; Johansen, T.A. Deep Reinforcement Learning Attitude Control of Fixed-Wing UAVs Using

Proximal Policy Optimization. In Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta,
GA, USA, 11–14 June 2019; pp. 523–533.

21. Rabault, J.; Kuchta, M.; Jensen, A.; Réglade, U.; Cerardi, N. Artificial neural networks trained through deep reinforcement
learning discover control strategies for active flow control. J. Fluid Mech. 2019, 865, 281–302. [CrossRef]

22. Tang, H.; Rabault, J.; Kuhnle, A.; Wang, Y.; Wang, T. Robust active flow control over a range of Reynolds numbers using an
artificial neural network trained through deep reinforcement learning. Phys. Fluids 2020, 32, 053605. [CrossRef]

23. Makkar, C.; Dixon, W.E.; Sawyer, W.G.; Hu, G. A New Continuously Differentiable Friction Model for Control Systems
Design. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, CA, USA,
24–28 July 2005; pp. 600–605.

24. Nguyen, D.; Widrow, B. Improving the Learning Speed of 2-layer Neural Networks by Choosing Initial Values of the Adaptive
Weights. Int. Join Conf. Neural Netw. 1990, 3, 21–26.

25. Uhlenbeck, G.E.; Ornstein, L.S. On the Theory of the Brownian Motion. Phys. Rev. 1930, 36, 823–841. [CrossRef]
26. Kingma, D.P.; Ba, J. ADAM: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
27. Peng, X.B.; Andrychowicz, M.; Zaremba, W.; Abbeel, P. Sim-to-Real Transfer of Robotic Control with Dynamics Randomization.

In Proceedings of the Proceedings—IEEE International Conference on Robotics and Automation, Brisbane, QLD, Australia,
21–25 May 2018; pp. 3803–3810. [CrossRef]

http://dx.doi.org/10.2514/2.4929
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1038/s41586-018-0533-0
http://www.ncbi.nlm.nih.gov/pubmed/30232456
http://dx.doi.org/10.1017/jfm.2019.62
http://dx.doi.org/10.1063/5.0006492
http://dx.doi.org/10.1103/PhysRev.36.823
http://dx.doi.org/10.1109/ICRA.2018.8460528

	Introduction
	Methods
	Aircraft Model
	Training Algorithm
	Experimental Conditions

	Results
	Effects of Friction and Delay on Pitch Control
	Conclusions
	References

