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ABSTRACT 
 

The manuscript proposed a physical application of single step block method using the interpolation 
and collocation procedure for the direct solution second order physical oscillatory initial value 
problem. The properties of the new method which include error constant, order, zero-stability, 
consistency and convergent are established and satisfied. The new method was tested on some 
second order oscillatory initial value problems and compared with the existing works in literature, 
and later the new method revealed its superiority by producing less error if compared. Therefore, 
the new method does not required much computation when compared with predictor corrector 
methods.  
 

 

Keywords:  Physical application; single step; power series; predictor corrector; mass spring and simple 
harmonic motion. 

 

1. INTRODUCTION 
 

The numerical application of general                        
second order initial value problems given                  
as  

( ) ( )',,'' yytfty =                       (1.1) 

 

With initial condition ( ) ( ) 21 ', ytyyty == is 

consider in this manuscript. 
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“The previous efforts have been made by 
eminent researchers to solve higher order initial 
value problems specifically, the second order 
ordinary differential equation. In exercise, this 
class of problem (1.1) is usually reduced to 
system of first order differential equation and 
numerical methods for first order ODEs then 
employ to solve them, these researchers” [1-3] 
showed that “reduction of higher order equations 
to its first order has a serious implication in the 
results; hence it is necessary to modify existing 
algorithms to handle directly this class of problem 
(1.1)”.  
 
Skwame, et al. [4] demonstrate “a successful 
application of LMM methods to solve directly a 
general second order odes of the form (1.1)”. 
The few researchers also contributed immensely 
to the development of block hybrid method for 
the direct solution of second order initial value 
problems, among others are [5-7], [2] just to 
mention a few. Skwame, et al. [5 and 6] employ a 
power series polynomial to developed double 
step hybrid linear multistep method for solving 
second order initial value problems (1.1). While 
Sabo, et al. [7] proposed Numerical Simulation of 
One Step Block Method for Treatment of Second 
Order Forced Motions in Mass-Spring Systems. 
They results is better when reduced to first order. 
 
Block methods which are widely used by many 
researchers for solving (1.1) were first 
announced by Milne [8] and later by [9] mainly to 
provide starting values for predictor-corrector 
algorithms. Those methods produced better 
accuracy than the usual step by step methods. 
[10], on the other hand, extended Milne's idea to 

develop block methods for solving initial value 
problems (1.1). In order to obtain higher order 
methods and hence to increase the accuracy of 
the approximate solution, [11] proposed the 
direct simulation of higher order initial value 
problems on single step block method.  
 
Different researchers such as [12-16] have 
applied hybrid methods to solve (1.1) but their 
solutions have lower order of accuracy. 
 
The aim of this manuscript is to develop the 
physical application of motion using single step 
block method using the power series polynomial. 
While the objectives are  
 
I. To developed the method using 

interpolation and collocation method 
II. To analyzed the basic  properties of the 

method and  
III. To compare the method with the existing 

once in literature. 
 

2. METHODOLOGY 
 
The one step block hybrid method was 
developed using the power series polynomial as 
a basic function, for solving (1.1). Let the power 
series  

( ) j
vu

j

j taty 
−+

=

=
1

0

         (2.1) 

 
Be the approximate solution of (1.1) where 

  ut ,1,0  are number of interpolation and v

are number of collocation. 

 
Differentiating ((2.1) twice, yield 
 

( ) ( ) 2
1

0

1'' −
−+

=

 −= j

j

vu

j

tajjty                                                                                (2.2)                 

 
Substituting (2.2) into (1.1) yield 

 

( ) ( )',,1 2
1

0

yytftajj j

j

vu

j

=− −
−+

=

                                                                               (2.3) 

 

Equation (2.1) is interpolated at 
4

1
,

8

1
=u  while equation (2.3) at 1,

2

1
,

8

3
,

4

1
,

8

1
,0=v  lead to a  

 
system of equation reformed in matrix form as 

 

KDT =                                                                                                          (2.4)  
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The unknown values of  ( )710,' =jsa j  c substituted into (2.1) to produce a continuous implicit hybrid 

one step method with its derivatives of the form: 
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Where the values of  and  are 
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Evaluating (2.5) non interpolating points to obtain the continuous form as. 
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Differentiating (2.5) once, yields 
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On evaluating (2.7) at 
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,0  and1, so that the following discrete schemes are obtained   
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Equation (2.5) and (2.7) are simultaneously combined, to obtain the new schemes as 
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3. ANALYSIS OF THE BLOCK METHODS 
 
In this section, we the analysis of the block method, which includes the order, error constant, 
consistency, zero stability, convergence and region of absolute stability of the method. 
 

3.1 Order and Error Constant 
 
Let the linear operator defined on the method be ( ) hty ; , where, 
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Comparing the coefficient of h , according to [2] the order p  of the new scheme and the error  

 
constant are given respectively by  Tp 55555=  and 

 

 69898

2 102294.3100367.4100644.1103165.7101274.1 −−−−−

+ −−−−−=pC
 

 
3.2 Consistency of the Method 
 

A numerical method is said to be consistent if the following conditions are satisfied. 
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i. The order of the method must be greater than or equal to zero to one i.e. 1p . 

ii. 

0
0

=
=

k

j

j

 

iii. ( ) ( ) 0' == rr   

iv. ( ) ( )rr  !3''' =  
 

 

Where ( ) ( )randr   are first and second characteristics polynomials of our method. According 

to [4], the first condition is a sufficient condition for the associated block method to be consistent. 
Hence the scheme is consistent. 
 

3.3 Zero Stability of the Method 
 

Definition 3.2: The numerical method is said to be zero-stable, if the roots kszs ,,2,1, =  of the 

first characteristics polynomial ( )z  defined by ( ) ( )( )EzAz −= 0det  satisfies 1sz  and every 

root satisfies 1=sz  have multiplicity not exceeding the order of the differential equation, [2]. The 

first characteristic polynomial is given by, 
 

( ) ( )1

10000

1000

1000

1000

1000

10000

10000

10000

10000

10000

10000

01000

00100

00010

00001

4 −=























−

−

−

−

−

=























−























= zz

z

z

z

z

z

zz

 
 
Thus, solving for in 
 

                                                                                                                     (3.4)

 

 
gives . Hence the scheme is said to be zero stable. 

 
3.4 Convergence of the Block Method 
 

Theorem 3.1: The necessary and sufficient conditions for linear multistep method to be convergent 
are that it must be consistent and zero-stable. Hence the scheme is consistent [4].  
 

3.5 Region of Absolute Stability of our Method 
 
Definition 3.3: The region of absolute stability is the region of the complex z  plane, where hz =  

for which the method is absolute stable. To determine the region of absolute stability of the block 
method, the methods that compare neither the computation of roots of a polynomial nor solving of 
simultaneous inequalities was adopted. Thus, the method according to [1] is called the boundary 
locus method. Applying this method we obtain the stability polynomial as 
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Applying the stability polynomial, we obtain the region of absolute stability in Fig.1. 
 

 
 

Fig. 1. Region of absolute stability 

 
4. NUMERICAL APPLICATION AND 

RESULTS 
 
4.1 Numerical Application of the Method 
 
The Single step block method of order five was 
tested on some systems of second order 
oscillatory initial value problems. Therefore, the 
conditions of solving (1.1) using the first order 
initial value problem has some computational 
burden which affect the accuracy of the scheme 
in terms of error and times constraints. To show 
performance of the scheme, this research has 
proposed the direct method. 
 
Problem 1: The system of second order Mass 
Spring Motion real-life initial value problem 
defined below is considered. 

 

A lb128 weight is attached to a spring having a 

spring constant of ftlb /64 . The weight is 

started in motion with no initial velocity by 

displacing it inches6  above the equilibrium 

position and by simultaneously applying to the 
weight an external force ( ) ttF 4sin84 = . 

Assuming no air resistance, computer the 
subsequent motion of the weight at

10.001.0:  tt  
 

Now, we model this problem into a mathematical 
model and then apply our method to compute the 
motion on the weight attached to the spring. 
Here, 
 

( ) ttFandbkm 4sin8,0,64,4 4 ====
 

 

Thus, problem 1 boils down to 
 

( ) ( ) 00',
2

1
0,4sin216

2

2

=−==+ yyty
dt

yd     (4.1) 

 

with the exact solution of (4.1) is given by, 
 

( ) ttttty 4cos
4

1
4sin

16

1
4cos

2

1
−+−=                  (4.2)  

 
Source: [17] 
 

Problem 2: The second order Simple Harmonic 
Motion is a linear real-life initial value problem 
defined as 
 

An object stretches a spring 6 inches in 
equilibrium. 
 

i. Set up the equation of motion and find its 
general solution. 

ii. Find the displacement of the object for

0t , if it’s initially displaced 18 inches 
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above equilibrium and given a downward 

velocity of
s

tf
3 . 

From Newton’s second law of motion, we              
have  
 

Fykycym =++ '''                      (4.3)  

 

By setting 0=c  and 0=F , we get 

 

0''0'' =+=+ y
m

k
yykym                (4.4) 

 
The equation of the weight of the object is given 
as follow: 
 

l

g

m

k
lkgm


==         (4.5) 

 

Substituting tfl
s

tf
g

12

6
,32

2
==  into (4.4) 

we obtain 
 

64
32

12
6
==

m

k
         (4.6) 

 

Substituting equation (4.5) into the equation (4.3) 

we get 

064'' =+ yy          (4.7) 

 

The initial upward displacement of 18 inches is 
positive and must be expressed in feet. The 
initial downward velocity is negative; thus,  

 

( ) ( ) 30',
2

3
0 −== yy  and 1.0=h . We make 

use of (4.6) as  
 

( ) ( ) ( ) ( ) 
















−===+ 30',
2

3
0,064'' yytytydsolver  (4.8) 

 
We obtain the exact solution (4.7) as 
 

( ) ( ) ( )ttty 8cos
2

3
8sin

8

3
+−=        (4.9)  

 
Source [18]. 
 
Problem 3: The highly stiff second order 
oscillatory initial value problem  

 

( ) ( ) 1.0,10',00,0''' =−===− hyyyy   (4.10) 

 
is consider, with analytic solution is given by  

 

( ) )exp(1 tty −=        (4.11) 

 
Source [19, 20]. 
 

5. RESULTS AND DISCUSSION 
 

The new method (one-step) was confirmed on 
three highly stiff initial value problem, viz. Mass 
Spring Motion, Simple Harmonic Motion and 
highly stiff second order initial value problem. 
The new scheme is was applied on problem 1, 
(i.e. second order Mass Spring Motion) the result 
on Table 1 is obviously shown the better 
convergence of our method than [17]. The 
application of second order Simple Harmonic 
Motion on problem 2 was confirmed on the new 
method and minimized the error than [18] as 
seen on Table 2. And problem 3 is a highly stiff 
second order initial value problem and the result 
are evidently shown on Table 3 with that if [19, 
20]. 
 

The new scheme displayed its superiority by 
producing less error if compared to the existing 
work of [17-20] as shown in Tables 1 to 3. 

Table 1. Showing the results for second order Mass Spring Motion (4.1) 
 

t ES CS ENM E17 

0.1 - 0.49959872021047678004 -0.49959872021047678187 1.8300e-18 1.6621e-09 
0.2 - 0.49839019330974949646 -0.49839019330974951095 1.4490e-17 1.1586e-08  
0.3 - 0.49636836974027966301 -0.49636836974027970138 3.8370e-17 2.9743e-08 
0.4 - 0.49352852660817937130 -0.49352852660817944509 7.3790e-17 5.6076e-08 
0.5 - 0.48986728796894500998 -0.48986728796894513108 1.2110e-16 9.0504e-08 
0.6 - 0.48538264289709933476 -0.48538264289709951530 1.8054e-16 1.3291e-07 
0.7 - 0.48007396129056685722 -0.48007396129056710958 2.5236e-16 1.8317e-07 
0.8 - 0.47394200736436189072 -0.47394200736436222748 3.3676e-16 2.4110e-07 
0.9 - 0.46698895079202783994 -0.46698895079202827380 4.3386e-16 3.0653e-07 
1.0 - 0.45921837545722401274 -0.45921837545722455653 5.4379e-16 3.7922e-07 

See [17] 
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Table 2. Showing the results for second order Simple Harmonic Motion (4.7) 
 

t ES CS ENM E18 

0.1 0.77605152993342709579 0.77605164672277503203 1.1679e-07 3.3496e-07 

0.2 - 0.41863938459249752594 - 0.41863866774780550794 7.1685e-07 1.6371e-06 

0.3 - 1.3593892660185498469 - 1.35938835559453437100 9.1042e-07 3.2716e-06 

0.4 - 1.4755518599067871611 - 1.47555182275661788490 3.7150e-08 3.5979e-06 

0.5 - 0.69666449555494477770 - 0.69666609961950345728 1.6041e-06 1.3589e-06 

0.6 0.50481020347261010590 0.50480740714035305148 2.7963e-06 2.9143-06 

0.7 1.4000738069674951883 1.40007152976286630760 2.2772e-06 6.7226e-06 

0.8 1.4460714263183540043 1.44607159476884231050 1.6845e-07 7.0589e-06 

0.9 0.61490152285494961183 0.61490477930018535131 3.2565e-06 2.6543e-06 

1.0 - 0.58925939319668845548 - 0.58925453185468652875 4.8613e-06 4.6056e-06 

 

Table 3. Showing the results for highly stiff second order initial value problem (4.9) 
 

t ES CS ENM E19 E20 

0.1 -0.1051709180756476248 -0.1051709180756476248 5.7670e-15 3.2482e-12 7.5650e-11 

0.2 -0.2214027581601698339 -0.22140275816021784595 4.8012e-14 8.5643e-11 1.6017e-10 

0.3 -0.3498588075760031040 -0.34985880757601930108 1.6197e-14 3.4401e-10 1.7600e-10 

0.4 -0.4918246976412703178 -0.49182469764154388788 2.7357e-13 7.4251e-10 6.0784e-10 

0.5 -0.6487212707001281468 -0.64872127070060400673 4.7586e-13 1.3785e-09 1.4729e-09 

0.6 -0.8221188003905089749 -0.82211880039126191378 7.5294e-13 2.2193e-09 2.5336e-09 

0.7 -1.0137527074704765216 -1.01375270747159482250 1.1183e-12 3.3875e-09 4.7876e-09 

0.8 -1.2255409284924676046 -1.22554092849405505530 1.5875e-12 4.8470e-09 7.2770e-09 

0.9 -1.4596031111569496638 -1.45960311115912784190 2.1782e-12 6.7518e-09 1.0170e-08 

1.0 -1.7182818284590452354 -1.71828182846195610190 2.9109e-12 9.0628e-09 1.4827e-08 
See [19, 20] 

 

 
 

Fig. 2. Graphical curve of table 1 
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Fig. 3. Graphical curve of table 2 
 

 
 

Fig. 4. Graphical curve of table 3 

 
6. SUMMARY AND CONCLUSION 
 
We have developed a single step block method 
using the power series polynomial for the direct 
solution second order initial value problem. The 
properties of the new method which include        

error constant, order, zero-stability, consistency 
and convergent are established and             
satisfied. 
 
The new method was tested on some second 
order initial value problems and compared with 
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the existing method of [17-20], displayed its 
superiority by producing less error if compared to 
the work as shown in Tables 1 to 3. Therefore, 
the new methods has shown better convergence 
than the existing methods consider graphically. 
 
Conclusively, the new method does not required 
much computation when compared with predictor 
corrector methods.  
 
Therefore, further research can consider the 
application of power series method on k-step 
block method for the direct solution of higher 
order initial value problems. 
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