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Abstract 
 

From the previous literature, there had been various research on models with error processes especially, the 

time series model with corrupted error processes. The gap to be filled here was the extension of such a model 

to the SARIMA model with corruption error processes.  Thus, this research work focused on parameter 

estimates with a corrupted AR(1)error process. Auto-covariance functions were used to estimate the 

variances of error terms that characterized the SARIMA model. The forecast performance measurement was 

investigated and properties of errors with different values of parameters were examined. A test of seasonal 

unit root was carried out and the result revealed a seasonality effect. Simulation with R Statistical software 

was used to prove the findings. In addition, the monthly temperature data of Zamfara State from 1998 to 2020 

was used to validate the results using the iteration procedure and chi-square statistic.The results from the 

study showed that the research findings were very significant to the error process and would be useful to 

researchers in the prediction and handling of natural calamities. 
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1 Introduction 
 

1.1 Seasonal Autoregressive Integrated Moving Average Model (SARIMA) 
 

“The SARIMA model is a version of the common ARIMA model which also incorporates a seasonal part. The 

general SARIMA model can be expressed” as Box et al. [1]. In the study on error process, a point of contention 

of practical interest to researchers is how to describe a relationship when studied variables are measured with 

errors. 

 

Ansley [2] worked on “finite sample properties of estimators for Autoregressive Moving Average Models.He 

analyzed by simulation the properties of three estimators frequently used in the analysis of autoregressive 

moving average time series models for both nonseasonal and seasonal data. The estimators considered are exact 

maximum likelihood, exact least squares, and conditional least squares”.  

 

Komolafe et al. [3] developed “an integrated moving average (IMA) model with a transition matrix for error 

resulting in a convex combination of two ARMA errors. The basic tools they used are the auto covariance 

function, maximum likelihood methods, Raphson iterative method, and Kolmogorov Smirnov test statistic. The 

result showed that the proposed model provided a generalization and more flexible specification than the existing 

models of AR and ARMA errors in fitting time series processes in the presence of error”.  

 

Rudelson and Zhou [4] worked with “errors in variable models with dependent measurement, analyzed the 

convergence rates of the gradient descent methods for solving the no-convex programs, and showed that the 

composite gradient descent algorithm is guaranteed to converge at a geometric rate to a neighborhood point. The 

result revealed interesting connections between computational and statistical efficiency and the concentration of 

measure phenomenon in random matrix theory. It also provided simulation evidence to illuminate the theoretical 

predictions”. 

 

Ayodeji [5] worked on “a three-state Markov-modulated switching model for exchange rates.  Examined the long 

swings hypothesis in exchange rates using a two-state Markov switching model. The study developed a model to 

investigate the long swings hypothesis in currencies that may exhibit ak-statepattern, his model was then applied 

to the Euro, British pounds, Japanese yen, and Nigerian naira. Specification measures such as AIC, BIC, and 

HIC favored a three-state pattern in the Nigerian naira but a two-state one in the other three currencies. From 

January 2004 to May 2016, empirical results showed the presence of asymmetric swings in naira and yen and 

long swings in euros and pounds. In addition, taking 0.5 as the benchmark for smoothing probabilities, choice 

models provided a clear reading of the cycle in a manner that is consistent with the realities of the movements in 

the corresponding exchange rate series”. 

 

Eni [6] worked on “parameter estimation of the first-order IMA model in the presence of ARMA (1, 1) errors 

using a simulation method and showed that the error was uniformly AR(1) correlated. He used auto covariance 

functions to estimate the variances of the white noises that characterize the IMA (1) models corrupted with 

ARMA (1, 1) errors. He developed an iteration formula that can be used to estimate the parameters of the IMA 

(1) models and ARMA (1, 1) errors using simulation studies to demonstrate the findings. The results showed that 

the method produced estimates that were very close to the true parameters of the process, his work demonstrated 

the use of the autocovariance function in the isolation and measurement of correlated shocks”. 

 

Madansky [7], worked on “the fitting of straight lines when both variables are subject to error. Heconsidered the 

situation where X and Y are related by Y = α + βX, where α and β were unknown and observedX and Y with error, 

i.e.,  observedx = X + u and y = Y + v. Assume that Eu = Ev = 0 and that the errors (u and v) are uncorrelated 

with the true values (X and Y) he survey and comment on the solutions to the problem of obtaining consistent 

estimates of α and β from a sample of (x, y)'s,  when one makes various economic applications, the estimators are 

compared in terms of bias, mean squared error, and predictive ability”.  
 

Lindley [8] worked on “regression lines and linear functional relationships. Using least square and maximum 

likelihood estimation methods for fitting a straight line, Y =α + βX.  All these methods led to the same results“ 

Dent and Min [9] worked on “a Monte Carlo study of autoregressive integrated moving average processes. Six of 
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the simpler ARMA-type models were examined concerning the properties of a variety of proposed estimators of 

unknown parameters. The results showed that only one estimation method was available to work with and the 

choice should probably be maximum likelihood. Stationarity and inevitability-restricted estimation would appear 

appropriate when parameters are thought to be within 5 percent of constraint boundaries”. 

 

Schnelweiss and Shalesh [10] worked on “the estimation of linear relations when error variances are known, 

using the maximum likelihood method”. The results were linearly correlated.Eni and Mahmud [11] worked on 

“the parameter estimation of a first-order IMA model corrupted with AR(1) error using the maximum likelihood 

method, the result showed that error pattern varied between AR and ARMA processes within a specified period 

arising from the varying dynamic process to be observed”. Arun Kumar et al. [12] studied “the epidemiological 

trend of COVID-19 cases in the sixteen(16) top countries where 70%–80% of global cumulative cases are 

located. They used the SARIMA model with a convectional error process to predict future cases of the disease. 

The results revealed a trend of an exponential rise for countries such as the United States, Brazil, South Africa, 

Colombia, Bangladesh, India, Mexico, and Pakistan while that of deaths due to COVID-19 showed an 

exponential rise for countries Brazil, South Africa, Chile, Colombia, Bangladesh, India, Mexico, Iran, Peru, and 

Russia”. 

 

Salimaco [13] used “the seasonal ARIMA (SARIMA) model with a normal error distribution process to forecast 

electricity consumption in the Province of Davao Oriental. The studied period was between 2004 and 2020, and 

the optimum model obtained was SARIMA(1, 1, 0) ×(0. 1, 1)12. The result from the analysis revealed that there 

was an increasing rate of monthly consumption with a higher seasonal demand every August of the new year. 

 

Shahin et al. [14] employed the non-seasonal inherent model of SARIMA, ARIMA model to study the monthly 

average price (LE/Kg) for broiler farms in Egypt from September 2019 to December 2022. An optimum model 

of ARIMA (1, 1, 0) model was used to forecast the said price. The result showed % values of price as 25.25 

LE/Kg (2.46) in September, 24.58 LE/Kg (4.33) in October, 24.61 LE/Kg (4.23) in November and 25.32 LE/Kg 

(4.11) in December”. 

 

However, this research work aims to estimate the parameter of the AR(1) error process for which the SARIMA 

model was corrupted. The objectives are to: examine the properties of error patterns and variation with different 

values of the parameters, test the season alunit roots on the data, and finally investigate the forecast performance 

measures. This research paper tended to add to the existing literature on the time-series model with a corrupted 

error process and its application tended to help researchers and government officials in making decisions on 

crucial areas under similar studies.   

 

2 Materialas and Methods  
 

( , , ) ( , , )SSARIMA p d q P D Q
with error process:(1 − L)Xt = et + (θ − 1)et−1                  (1)  

 

(1 − ∅L)(1 − ∅sL)(1 − L)Xt = et + (θ − 1)et−1         (2) 
 

Zt = (1 + ∅sL)(1 + ∅L)et + (1 − L)                                                                             (3) 
 

Suppose the error 𝑏𝑡 is a Markov modulated mixture of AR (1) and 𝑏𝑡is AR (1) correlated. 
 

𝑏𝑡 =
𝑒𝑡

1−𝛼1𝐿
                                       (4) 

 

2.1 Stationarity 
 

In this research work, stationarity refers to weak stationarity. A time series is said to be weakly stationary if the 

following are true: 

 

i.  𝐸(𝑦𝑡) = 𝜇 for all t,                        (5) 

 

ii 𝛾𝑡,𝑡−𝑘 = 𝛾0,𝑘for all time t and lag k,                                    (6) 

 

https://www.sciencedirect.com/topics/engineering/brazil
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where  𝜇 is the mean and 𝛾𝑘the auto covariance atlag k (Cryer and Chan [11]). 

 

When testing for stationarity, the alternative (or null hypothesis, depending on the test), is that the series has a 

unit root. If the series has a unit root it is non-stationary. A unit root process can be described in the following 

way considering an ARMA process: 

 

                      (7) 

 

Where the moving average polynomial is invertible. The autoregressive polynomial in equation (7) is then 

factored as: 

 

(1 − φ1B − φ2B2 − ···− φpBp) = (1 − λ1B)(1 − λ2B)···(1 − λpB)                                                                (8) 

 

“The process has a unit root if any of the eigenvaluesλ lies outside of the unit circle. By testing both the null 

hypothesis of a unit root and the null hypothesis of stationarity, one can differentiate between series that are 

stationary, series that have a unit root, and series where the data are not informative enough to determine if the 

series is stationary or integrated” (Kwiatkowski et al. [15]). 

 

2.2 Hylleberg-engle-granger-yoo (HEGY) test 
 

The Hylleberg-Engle-Granger-Yoo test (HEGY-test) was proposed by Hylleberg et al. [16] to test for seasonal 

unit roots on quarterly data. Factorizing. 
 

the quarterly seasonal difference operator as: 
 

4

4 (1 ) (1 )(1 )(1 )(1 ),B L L iL iL = − = − + + −
                                   (9) 

 

shows that it will have four unit-roots on the unit circle: 
1, 1 ,and i− +

 where 1 is non-seasonal. The HEGY test 

uses the following auxiliary regression to test for the unit roots: 
 

4, 1 1, 1 2 2, 1 3 3, 1 3 4, 1(L) y t t t t t t ty y y y      − − − −= + + + + +
                               (10) 

 

Where 
 

2 3

1,

2 3

2,

2

3,

4

4,

(1 ) ,

(1 )

(1 ) ,

(1 ) ,

t t

t t

t t

t t

y L L L y

y L L L y

y L y

y L y

= + + +

= − − + −

= − −

= −
 

ty =
Deterministic components which can be an intercept, seasonal dummies and/or trend, 

 =
is a polynomial of L.       

 

2.3 Forecast performance measures 
 

The forecast performance measures or forecast performance metrics. 
 

Now, in applying a particular model to some real or simulated time series to generate forecasts, we first divided 

the raw data into two parts: 
 

𝑌𝑡: is the actual value 

𝑌̂𝑡  : is the forecasted value 

𝜀𝑡 =  𝑌𝑡 − 𝑌̂𝑡  :  is the forecast error 

n:  is the size of the test set 
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2.3.1 The mean forecast error (MFE) 

 

This measure is defined as: 

 

MFE =
1

n
∑ εt

n
t=1                                                                 (11) 

 

2.3.2 The Mean Absolute Error (MAE) 

 

The mean absolute error is defined as: 

 

MAE =
1

n
∑ |εt|n

t=1                                                                (12) 

 

2.3.3 The Mean Absolute Percentage Error (MAPE) 

 

This measure is given by 

 

MAPE =
1

n
∑ |

εt

Yt
| × 100n

t=1                                                                (13) 

 

2.3.4 The Mean Percentage Error (MPE) 
 

It is defined as: 
 

MPE =
1

n
∑ (

εt

Yt
) × 100n

t=1                        (14) 

 

2.3.5 The Mean Squared Error (MSE) 
 

Mathematical definition of this measure is: 
 

MSE =
1

n
∑ εt

2n
t=1                                      (15) 

 

2.3.6 The Sum of Squared Error (SSE) 
 

It is mathematically defined as: 
 

SSE =
1

n
∑ εt

2n
t=1                         (16) 

 

2.3.7 The Signed Mean Squared Error (SMSE) 
 

This measure is defined as: 
 

SMSE =
1

n
∑ (

εt

|εt|
)n

t=1 εt
2                       (17) 

 

2.3.8 The Root Mean Squared Error (RMSE) 
 

Mathematically, 
 

RMSE = √MSE = √
1

n
∑ εt

2n
t=1                       (18) 

2.3.9 The Normalized Mean Squared Error (NMSE) 

 

This measure is defined as: 

 

NMSE =
MSE

δ2 =
1

δ2n
∑ εt

2n
t=1                       (19) 
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The Theil’s U-statistics this important measure is defined as: 
 

U =
√

1

n
∑ εt

2n
t=1

√
1

n
∑ Ŷt

2n
t=1 √

1

n
∑ Yt

2n
t=1

                       (20) 

 

3 Results and Discussion 
 

Consider the SARIMA model 
12 12(1 L)(1 L ) y (1 )(1 ) (1)t tL L  − − = − − −

 where ty
is an output variable 

t  is a white noise with a constant mean of 0 and variance of
2 , 

and 
 are weight parameter (Box and 

Jenkins [17]).  
 

L is an operator with can be forward or backward. Most of time ty
may be necessary obtain by transformation as 

, 1 (1 )t t ty x b and   = − = − = −
 

 

Substituting t t ty x b= −
 in to equation (1) where tb

is an error component introduce by faulty measurement or 

observation  
 

12 12

12 12 12

12

(1 )(1 )( ) (1 )(1 L ) (22)

(1 )(1 ) (1 )(1 L ) (1 )(1 ) (23)

Let (1 )(1 )

t t t

t t t

t t

L L x b L

L L x L L L b

L L x

  

  



− − − = − −

− − = − − − − −

= − −
 

 

Equation (27) become  
 

𝜔𝑡 = (1 − 𝜙𝐿)(1 − 𝜆𝐿12)𝜀𝑡 + (1 − 𝐿)(1 − 𝐿12)𝑏𝑡(24) 
𝑆𝑖𝑛𝑐𝑒𝑏𝑡𝑖𝑠𝐴𝑅(1) 

 

𝑏𝑡 =
𝑒𝑡

(1−𝛼𝐿)
(Hamilton [18])(25)and substituting into equation (24) we have 

 

1 1 12 1 13

1 1 2

1 1 2 13 1 12 1 13

( ) 12 ( ) 13 (26)

( ), ( )

12 (27)

t t t t t t t t t

t t t

t t t t t t t

e e e e

Let z and

z e e e e

           

         

     

− − − −

−

− − − − −

= + + − − − − + + − − + − − +

= − = − − = + −

= + − − + + − − +

 

Multiply equation (27) by tz
 and take expectation  

2 2
2 2 2

0
1 2

1 4 (28)V     
 

= + − + + 
 

 

Multiply equation (27) by 1tz − and take expectation  
 

( )

2
2 2 22 (29)

1 2

2 2 2
2 1 2 (30)

2

2 2 2 2 2 22 1 2 (31)
0 1 1 2 2

V

V

e

V V

   

  


     

= +

−
=

= − − − + −
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Where te
 is white noise uncorrelated with t  

 
Groping the white Noise we get 

 

1 1 1 1 1

2 12 13 12

3 13 2 13 13

1 2 12 3 13 (32)

t t t

t t t

t t t

t t t

t t t t t

u e

u e

u e

u e

Z u u u



 



 



− − −

− − −

− − −

− − −

= +

 = −

 = − +

 = +

= + − +

 

The model Developed in equation (32) was 
12(0,0,1)(0,0,1)SARIMA  

 

Our interest is to estimate tx  through t t bty x −=  we define the following known facts Hamilton [16] for white 

noise processes 

 

( )

( )

( )

2

2

2

0

0 0

0

0 0

0

0 0

u

for i

t t i
for i

for i

t t i
for i

for j

t t j
for j

E

E e e

E u u







 
=

−


=

−


=

−



= 



= 



= 
  

 

,et t  are uncorrelated where tu
 is also a white noise process Moran [19] has shown that if the ratio 

2

2

t

e

 



=  is known, The maximum likelihood estimation for the parameter set can be found by directly 

solving likelihood equation Chen and mark [20] obtained the maximum likelihood estimates for the case where 

both 
2 2

t teand   are known and where the observations are replicated. Eni et al. [21], have used the same 

method to isolate errors of AR(1) corrupted with MA(1) process. Eni and Mahmud [11], have considered the 

case of IMA(1) with white noise in a similar cases, Eni [22], has considered the case of GARCH (1, 1) model 

with white noise errors using the proposed method [23].  

 

3.1 The auto covariance 0f SARIMA (0,0,1) (0,0,1) 
 

( )( )

( )

( )

2 2 2

0

2

1

2

11

2 2

12

2

13

1 1

1

1

   

   

 

   

 

= + +

= +

=

= − +

=
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3.2 The analysis in R software 
 

Table 1. SARIMA (0,01) (0,0,1)12 

 

AR(1) Estimate Stand. Error Z-value P-value 

MA (1) 0.2962 0.0108 27.4259 4.22712𝑒−154 

SMA(1) -0.0275 0.0142 -1.9366 0.0537 

MEAN -0.2003 0.0221 -9.0634 2.147207𝑒−21 

 

Table 1 reveal the results of parameter estimated of 
12(1,0,0)(0,0,1)SARIMA  corrupted with AR(1) error 

process and is significance considering the p- values.  

 

Sigma^2   estimated as 0.8464       log likelihood = -6676.31 

 

AIC = 13360.61 AICC = 13360.62 BIC = 13386.68 

 

Table 2. Forecast measurements 

 

 ME RMSE MAE MPE MAPE MAE MASE ACFI 

Training 

Set  
1.4039𝑒−05 0.9197 0.7320          127.5667   158 42.47 0.6928 0.00622 

 

Table 2 Indicated the results of forecast performance measurement and properties of errors with different values 

and is significance. 

 

 
 

Fig. 1. Plot of inverse of MA(1) root 

 

The plot in Fig. 1 is pictorial of SARIMA model for the period of twelve (12) months with a single MA root i.e.  

SARIMA(0.0.1)(0,0,1)s=12  the twelve circle point represent the seasonal effects while the single inner point 

represent the MA(1) root 
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Fig. 2. Plot of ACF and PACF s at lag 40 
 

The ACF plot in Fig. 2 shows the correlation of the series with its lagged values .it describes how present value 

of the series related with its past and consider seasonal effect with upper confidence interval. PACF plot shows 

the correlation of the residuals in the series and lags. 
 

Table 3. 12(001)(001)SARIMAMODEL for Monthly Temperature of Zamfara State from1998 to 2020 

Estimates at each iteration 

 

Iteration SSE Parameters   

0 13601.0 0.100 0.100 65.774 

1 10524.3 -0.050 0.083 65.763 

2 8497.8 -0.200 0.057 65.749 

3 7133.5 -0.350 0.013 65.728 

4 6247.7 -0.500 -0.068 65.696 

5 5906.5 -0.605 -0.218 65.648 

6 5885.7 -0.572 -0.259 65.658 

7 5885.4 -0.577 -0.261 65.661 

8 5885.4 -0.575 -0.261 65.662 

9 5885.4 -0.576 -0.261 65.662 

10 5885.4 -0.576 -0.261 65.662 
 

Relative change in each estimate less than 0.0010 
 

The results in Table 3. Showed the estimate at each iteration for the monthly temperature when the SARIMA 

model switch to AR (1) error process. 
 

Table 4. Final estimates of parameters 
 

Type Coef SE Coef T P 

MA (1) -0.5756 0.0691 -8.33 0.000 

SMA (12) -0.2607 0.0824 -3.16 0.002 

Constant 65.662 1.070 6135 0.000 

Mean 65.662 1.070   
Number of observations:  144 

Residuals: SS = 5853.52 (back forecasts excluded) 

MS = 41.51 DF = 141 
 

The results in Table 4. Showed the final parameter estimate for SARIMA model corrupted with AR(1) error 

process. 
 

Table 5. Modified box-pierce (ljung-box) chi-square statistic 
 

Lag 12 24 36 48 

Chi-Square 142.9 151.5 165.8 203.9 

DF 9 21 33 45 

P-Value 0.000 0.000 0.000 0.000 
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The results in the Table 5. is the Chi-square statistic for the SARIMA model corrupted with AR(1) error process 

at lag 12, 24, 36 and 48 respectively. 

 

4 Conclusion 
 

This research work dealt with the modified error process of SARIMA model as against the convectional 

independently, identically, and normally distributed errors. Thus, this research work focused on parameter 

estimates of ( , , ) ( , , )SSARIMA p d q P D Q with corrupted AR(1) error process. Auto-covariance functions 

were used to estimate the variances of error terms that characterized the SARIMA model. The forecast 

performance measurement was investigated and properties of errors with different values of parameters were 

examined. A test of seasonal unit root was carried out and the result revealed a seasonality effect. Simulation 

with R Statistical software was used to prove the findings. In addition, the monthly temperature data of Zamfara 

State from 1998 to 2020 was used to validate the results using the iteration procedure and chi-square statistic. 

The results from the study showed that the research findings were very significant to the error process and would 

be useful to researchers in the prediction and handling of natural. 

 

The future research work ear-marked here was to improve upon one form of error process such as AR(1) and 

work on combined flow of error processes (more one error processes) with SARIMA model or other advanced 

time series models most especially the non-linearmodels such as volatility models in financial markets, 

convolutionaland recurrent neural networks for learning non-linear models in time series using machine learning, 

panel data time series models with machine learning context and so on. There is no doubt that the research of this 

nature would tend to improve the predictability level of measures  such as weather, financial, agricultural, 

science and technological indicators. 

 

5 Recommendation  
 

Finally, this study discussed SARIMA models corrupted with AR(1) it will certainly enhance research if other 

version of time series like Autoregressive Conditional Heteroskedasticity (ARCH) and Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) are considered for volatility. More data will be 

required for better results. 

 

Acknowledgements 
 

The authors are thankful to the Editor, Journal editorial office and anonymous referees for their fruitful 

comments for the success of this work. 

 

Competing Interests 
 

Authors have declared that no competing interests exist. 

 

References 
 

[1] Box G, Jenkins, GM, Reinsel GC, Ljung GM. Times series analysis: Forecasting and control. John Wiley 

and Sons. New Jersey Fifth Edition; 2015.  

 

[2] Ansley CF, Newbold P. Finite sample properties of estimators for autoregressive moving average models. 

Journal of Econometrics. 1980;13(2):159-183. 

 

[3] Komolafe SA, Obilade, TO, Ayodeji IO, Babalola AR. Development of a first order integrated moving 

average model corrupted with a markov modulated convex combination of autoregressive moving average 

errors. Statistical Theory and Related Fields. 2019;3:1:48–58.    

 



 
 

 

 
Maihaja et al.; Asian J. Prob. Stat., vol. 25, no. 1, pp. 100-111, 2023; Article no.AJPAS.106565 

 

 

 
110 

 

[4] Rudelson M. Zhou S. Errors in variables models with dependent measurement. Electronic Journal of 

Statistics. 2017;11:1699–1797.  

[5] Ayodeji IO. A three state markov-modulated switching model for exchange rates. Journal of Applied 

mathematics.  2016;1-9. 

 

[6] Eni D. Parameter estimation of first order IMA model in the presence of ARMA (1,1) Errors. Research 

Journal in Engineering and applied Science. 2013;2(4):246–50.  

 

[7] Madansky A. The fitting of straight lines when both variable are subject to error. Journal of the American 

Statistical Association. 1959;54:173–205.  

 

[8] Lindley DV. Regression lines and the linear functional relationship. The Journal of the Royal Statistical 

Society. 1947;9:218–44. 

 

[9] Dent W, Min A. A monte carlo study of autoregressive integrated moving average processes. Journal of 

Econometrics. 1978;7(1):23-55. 

 

[10] Schneeweiss H, Shalabh H. Relation when the error variances are known computational statistics & data 

analysis. 2007;52:1143–1148.  

 

[11] Eni D, Mahmud SA. On the parameter estimation of first order IMA model corrupted with AR (1) Errors. 

Global Journal of Pure and applied Science. 2008;14(1):115–20.  

 

[12] ArunKumar KE, Kalaga DV, Kumar CMS, Chikoor G, Kawaji M, Brenza TM. Forecasting the dynamics 

of cumulative COVID-19 cases (confirmed, recovered and deaths) for Top-16 countries using statistical 

machine learning models: Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-

Regressive Integrated Moving Average (SARIMA). Elsevier, Applied Soft Computing. 2021;103:107161. 

 

[13] Salimaco Jr., RA.  Modeling the electricity consumption in the province of davao oriental with seasonal 

auto-regressive integrated moving average. Advances and Applications in Statistics. 2022;75:23–37. 

 

[14] Shahin SE, Roshidy M, Omar MAE. Predicting the monthly average price (LE/KG) For egyptian broiler 

farms (2019–2022) using Auto Regressive Integrated-Moving-Average (ARIMA) model. Zagazig 

Veterinary Journal (ZVJ). 2023;51,1:27-44. 

 

[15] Kwiatkowski D, Phillips, Schmidt P, Shin Y. Testing the null hypothesis of stationarity against the 

alternative of a unit root: How Sure are we that economic time series have a unit root. Journal of 

Econometrics. 1992;54(1):159-178. 

 

[16] Hylleberg S, Engle RF, Granger CWJ, Yoo BS. Seasonal integration; 1990. 

 

[17] Box G, Jenkina G. Times series analysis: Forecasting and control. San Francisco, CA: Holden Day; 2015. 

 

[18] Hamilton James D. Time series analysis. Princeton Univ. Press, Princeton, New Jersey; 1994. 

 

[19] Moran PAP. Estimating structural and functional relationships. Journal of Multivariate Analysis. 

1971;1:232–255. 

 

[20] Chan L, Mark, T. Maximum likelihood estimation of a structural relationship with replications. Journal of 

Royal Statistical Society. 1979;4(1):263-268. 

 



 
 

 

 
Maihaja et al.; Asian J. Prob. Stat., vol. 25, no. 1, pp. 100-111, 2023; Article no.AJPAS.106565 

 

 

 
111 

 

[21] Daniel Eni, Gabriel Ogban, Bassey Ekpenyong, Jeremiah Atsu. On error handling for a process following 

AR (1) With MA (1) Errors. Journal of Research in Engineering. 2007;4,1:102-104. 

 

[22] Eni D, Mahmud SA. On the parameter estimation of first order IMA model corrupted with AR (1) Errors. 

Global Journal of Pure and applied Science. 2008;14(1):115–120.  

 

[23] Cryer JD, Chan K. Time series analysis: with applications in R. Springer, New York, 2nd edition; 2008. 

__________________________________________________________________________________________ 
© 2023 Maihaja et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. 
 

 

 

Peer-review history: 

The peer review history for this paper can be accessed here (Please copy paste the total link in your 

browser address bar) 

https://www.sdiarticle5.com/review-history/106565 

http://creativecommons.org/licenses/by/3.0

