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ABSTRACT 
 

Objective: Tocreate an easy-to-use structure-based screening workflow using KNIME and open 
source software to prepare and screen virtual libraries in order to discover novel bioactive or drug 
molecules. 
Materials and Methods: In the preparation of the workflow we mentioned in the article KNIME 
version 4, AutoDock Vina, Pymol were used. KNIME plugins used in this study are RDKit KNIME 
Integration, ChemAxon/Infocom Marvin Extensions Feature, KNIME Python Integration, Lhasa 
Metabolism Feature, KNIME Ploty and KNIME JavaScript View. We have used Python3 and 
libraries in the python scripts through Anaconda installation. 
Results: A workflow that can work with a single click after making required adjustments which uses 
docking as structure-based screening method was created and tested.  
Conclusion: With the workflow we have created, it will be possible for researchers especially those 
who are working in the field of computer-aided drug design/development to create personalized 
molecule libraries, perform virtual screening, reporting the results in a short time with the least 
effort. 
 

 
Keywords: Bioactive molecule design; virtual screening; docking; virtual library; drug design; drug 

discovery. 
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1. INTRODUCTION 
 
Virtual molecule libraries can be thought of as a 
collection of molecules that can theoretically be 
produced. It is a great advantage that libraries 
consist of molecules that can be synthesized. 
Once a possible bioactive molecule has been 
identified, the continuation of the studies can be 
ensured as long as the molecules are obtained at 
high purity and amount. Although there are many 
physical and virtual molecule libraries [1-5], 
having unique molecules in their bodies will be 
an advantage in the race to obtain bioactive 
molecules for both companies and academic 
research groups. In the physical and virtual 
molecule libraries that already exist there are 
diverse and similar molecules [6] but these 
libraries allow researchers to screen a relatively 
similar and narrow regions of huge chemical 
space [7-9]. Although virtual screening or 
screening using molecules from existing physical 
libraries is an advantage for further studies, it 
poses a disadvantage as the supply chain of the 
possible bioactive molecule will be dependent on 
third parties. In these conditions, it becomes 
important to create virtual or physical molecule 
libraries with structural diversity using the 
building blocks that already exist.  

 
Many academic groups and companies have 
worked in this direction, and some of their efforts 
are summarized in a mini perspective written by 
Walters. [9]. For example, scientists in Pfizer 
have used the information they gained from their 
syntheses to build the Pfizer Global Virtual 
Library (PGVL). [10]. Using selected reaction 
schemes and reagents, the researchers at Lilly 
obtained about 10 million virtual molecules and 
used them in virtual screening processes. In 
addition, the researchers stated in the article they 
published that the molecules mentioned were 
synthesizable with the Automated Synthesis 
Laboratory system called ASL [11]. Some 
academic groups have also had similar studies. 
Chevillard and Kolb have built a virtual library of 
21 million molecules using virtual reactions and 
created subets coded as S, consisting of 9994 
molecules, M consisting of 99977 molecules, and 
L, consisting of 999794 molecules. [12]. The 
number of molecules obtained by the groups in 
these three examples we have given is quite 
impressive and represents only a small fraction 
of the possible sizes of virtual molecule libraries. 
In addition, it is important to note that the groups 
used reaction synthesis schemes while creating 
virtual libraries.  
 

Reaction scheme was defined as “drawing that 
unambiguously defines the regio- and stereo- 
chemical outcome of a given synthetic 
transformation, in general terms, using R groups 
to show optional substitution.” by the authors of 
the article which we mentioned above related to 
Pfizer Global Virtual Library (PGVL). [10] The 
use of reaction schemes enables the physical 
availability of the virtual molecules and the 
reaction conditions to be known. Although there 
are various methods and software that make it 
possible to use reaction schemes in virtual 
reactions, the most striking ones are the Daylight 
Reaction Smarts [13] and ChemAxon Reactor 
module [14], which we use indirectly in our 
article. 
 

Using high-throughput screening methods is one 
of the most frequently used strategies to discover 
novel bioactive / drug molecules. [15] While its 
high precision, speed, minimization of the test 
method can be counted as the advantages of 
HTS, its high cost and the need for automation 
are also its disadvantages. Virtual screening (VS) 
can be used as a complement to the HTS 
methods or as a starting point for bioactive or 
drug molecules discovery process. [16,17] The 
most commonly used virtual screening methods 
can be grouped under two main categories. 
These are Ligand Based Virtual Screening 
(LBVS) methods and Structure Based Virtual 
Screening (SBVS) methods.  LBVS methods can 
be defined as the methods which search for 
similar molecules to a molecule or a group of 
molecules with known bioactivity. Methods such 
as ligand base pharmacophore screening, 
screening of molecular descriptors and 
properties can be cited as examples of LBVS 
methods. In SBVS methods, the interactions of 
molecules with the target structure - mostly 
proteins - and the scores obtained from these 
interactions are examined. It is possible to find 
more information about some studies in which 
these methods are used to determine the lead 
molecules to be used in drug development 
processes in the article prepared by Ma and 
colleagues. [17]  
 

Docking is one of the most commonly used 
SBVS method in bioactive / drug molecule 
discovery process. The docking method 
examines the interactions of small molecules and 
proteins at the atomic level in two steps. The first 
step is to predict the conformation and 
orientations (poses) that the molecule will have in 
the active site of the protein. The second step is 
scoring of the estimated poses. [18] There are 
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many open source and commercial software that 
can be used in the docking method. [19] There 
are many examples that can be given to 
bioactive or drug molecules determined using the 
docking method and some of them have been 
summarized by Ghosh and colleagues [15].  
AutoDockVina is one of the most commonly used 
and cited docking software on SBVS process. 
[20] Its ease of use, enabling multithreading, 
successfully predicting docking poses, and being 
open source make AutoDockVina a popular 
docking software. There are many successful VS 
studies in which AutoDockVina is used. For 
example, Uddin and colleagues designed a 
series of peptides using the rational design 
method and selected three of them using 
AutoDockVina software to be active. It was 
determined that all three of the selected peptides 
had better Ki values than the known ligand. [21] 
In another study, Perryman and colleagues 
worked to identify new bioactive molecules due 
to the resistance of Mycobacterium tuberculosis 
to some drugs. 316000 molecules in the NCI 
library were subjected to virtual screening 
process using AutoDockVina software and 91 
molecules were selected according to the 
calculated binding energies. After the visual 
inspection, 16 molecules were selected and two 
of them were determined as the most active 
molecules with Ki values of 54 and 59 µm. It has 
been determined that these two molecules show 
low structural similarity with the known InhA 
inhibitor molecules. This is an indication that 
there may be two new molecular skeletons that 
can be used in the development of InhA 
inhibitors. [22] 
 
Konstanz Information Miner (KNIME) is a 
modular system that allows the creation of 
workflows that can easily process data consisting 
of interconnected nodes or modules.  KNIME can 
be easily used in training, research and 
collaboration projects [23] and enables 
researchers to make reproducible analyzes. 
Thanks to its capabilities that can be expanded 
with add-ons, it has a wide potential for use in life 
sciences. [24] Next generation sequencing [25], 
metabolomics analysis [26], QSPR [27], QSAR 
[28], high content screening [29] and drug 
discovery studies [30-32] are examples of wide 
range of uses. 
 

In this study, based on the issues mentioned 
above, we prepared a workflow on the KNIME 
platform which creates virtual product molecule 
library, enriches product molecules with the help 
of various medicinal chemistry filters, screens 

with the docking method, visualizes in a way that 
allows interactivity, and compiles data and stores 
them. In addition, an application of the workflow 
we have applied and the results obtained from 
this example were discussed. 
 

2. MATERIALS AND METHODS 
 

2.1 Materials 
 

All operations in this study were carried out on 
the workstation with an i7 processor installed 
Ubuntu 18.04 on and KNIME version 4, 
AutoDockVina, Pymol were used. KNIME plugins 
or software used in this study are RDKit KNIME 
Integration, ChemAxon/Infocom Marvin 
Extensions Feature, KNIME Python Integration, 
Lhasa Metabolism Feature, KNIME Ploty and 
KNIME JavaScript View. We have used Python3 
and libraries in the python scripts through 
Anaconda installation.  
 

2.2 Methods 
 
2.2.1 Preparation of reactants (section - 1) 

 
First section consists of the workflow which has 
two separate metanode (Fig. 1).  After the 
reagents are loaded into the workflow in the first 
metanode, duplicated molecules are removed 
and a simple reagent code is given to each 
reagent. After the codes are given to the 
reagents, all data except molecular structure and 
reagent code are filtered and the results obtained 
are transferred to the next metanode. In the 
second metanode of the section 1 after applying 
the functional group filter and structure 
normalization to the reagents, using the RDKit 
Molecular Descriptor node, SlogP, Total Polar 
Surface Area (TPSA), Average Molecular Weight 
(AMW), Number of Lipinski Hydrogen Bond 
Donor (NumLipinskiHBD), Number of Lipinski 
Hydrogen Bond Acceptor (NumLipinskiHBA), 
Number of Rotatable Bonds 
(NumRotatableBonds) are calculated.  Then, 
molecules that do not meet the conditions of 
logP<= 3, TPSA <= 60 AMW <300, 
NumLipinskiHBA<= 3, NumLipinskiHB<= 3 and 
NumRotatableBonds<= 3 are filtered in 
accordance with the rule of three (Ro3) [33].  
 
2.2.2 Performing reaction and product 

idgeneration (section- 2) 
 
In this section filtered reactants are virtually 
reacted using the reaction scheme provided from 
the previous section. (Fig. 1) Virtual reactions are 
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carried out using the RDKit Two Component 
Reaction node. Subsequently, duplicate product 
molecules are removed and the remaining is 
transferred to metanode in which the product 
codes are generated. According to the coding 
system that we aim to facilitate the tracking of the 
product obtained, the codes are created using 
the reaction code specified by the user at the 
beginning of the project, and the derived codes 
of the first and second reagent used in obtaining 
the product. For example, the generated reaction 
code of the first member of the table showing the 
molecules we have obtained in our project is 
"Reaction_Example_R1_2_R2_12". In this code, 
"Reaction_Example" part is the reaction code 
defined by the user at the beginning of the 
project, "R1_2" is the derived code of the first 
reagent, "R2_12” is the derived code of the 
second reagent. The products whose codes have 
been generated are transferred to the third part 
where the medicinal chemistry filters will be 
applied. 
 
2.2.3 Enrichment of libraries using various 

medicinal chemistry filters (section – 3) 
 
In this section, SlogP, TPSA, AMW, 
NumLipinskiHBD, NumLipinskiHBA and 
NumRotatableBonds values were calculated in 
order to determine the drug-likeness properties 
of the product molecules (Fig 2). In addition to 
the features we have mentioned, FractionCsp3 
values are also calculated. One of the most 
important studies conducted to evaluate the 
similarity of molecules to drug molecules or their 
potential to become drugs is "Rule of Five (Ro5)" 
developed by Lipinski. [34] According to the Ro5, 
the probability of  being a drug molecule 
candidate increases if the molecule of interest 
has molecular weight less than 500 Da, logP 
value less than 5, the number of hydrogen bond 
donors equal to or less than 5, and the number of 
hydrogen bond acceptors less than or equal to 
10.  In addition, Veber et al. [35], Egan et al. [36], 
Ghose et al. [37], and Muegge et al. [38] 
conducted studies on this topic and suggested a 
variety of metrics (drug-likeness filters). In the 
study published by Diana and his colleagues in 
2017, they developed a web server named 
"SwissAdme" that allows scoring the oral 
bioavailability or drug-likeness of molecules 
using various metrics such as these. [39] Taking 
SwissAdme web server as an example we 
scored the bioavailability and drug-likeness of the 
products molecules we obtained using the 
parameters we showed in Table 1 [39]. PAINS 
[40] and BRENK filters [41] which derived from 

information obtained from HTS screens are 
applied to the molecules passing through first 
two filters of this section. With these filters, 
product molecules containing functional groups 
that cause false positive results in bioactivity 
studies and unwanted pharmacochemical 
properties are removed. Whether the product 
molecules will be inhibitors of CYP isoenzymes is 
another topic that we considered in this section. 
This consideration was carried out using the 
WhichCyp 1.2 node developed by Lhasa Limited 
[42]. The molecules that passed through all the 
filtration steps we performed are transferred to 
the fourth section in order to be prepared for and 
to perform the docking process. Also they are 
transferred to the fifth section for interactive 
visualizations and to the sixth section for storage. 
 
2.2.4 Docking preparation, docking and post 

docking analysis nodes (section - 4) 
 
The processes related to the docking method of 
the molecules coming from the third section of 
the workflow are carried out in this fourth section 
(Fig 3).  First, hydrogens are added to the 
molecules, then their three-dimensional 
coordinates are created and optimized using 
RDKit nodes. Before changing the data formats 
of molecules whose three-dimensional structures 
have been optimized, they are transferred to the 
fifth and sixth sections for visualization and 
storage. After this process, the data format of the 
molecules is converted to .pdbqt format, which is 
compatible with the docking software 
AutoDockVina. In AutoDockVinametanode of this 
section, there is Python script that creates folders 
to save the files obtained during the docking 
process and "docking_result.csv" file where the 
results will be stored. In the same metanode 
there is a second Python script that carries out 
the docking and then compiles the docking 
results as a post-docking process. This script has 
been prepared to repeat the docking process 
three times for each product molecule. Following 
the docking process, the averages and standard 
deviations of the RMSD values of the docking 
poses and the binding energies of each molecule 
are automatically calculated.In addition to these, 
the ligand efficiency parameter, which is 
calculated by dividing the binding energy to the 
number of heavy atoms (non-hydrogen atoms) in 
the relevant molecule, which facilitates the 
selection between possible active molecules, is 
also calculated with this script. [43] This script 
writes the compiled results to the "docking 
results.csv" file, and moves the configuration (to 
config folder), log (to log folder) and pose (to 
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docked folder) files to the separate folders 
generated during the docking process. After 
combining the data obtained from the docking 
process and the data previously calculated for 
each molecule, the results are transferred to the 
fifth and sixth sections for visualization and 

storage. The rule-based row filter node which 
was added to this section allows users to 
separate molecules with binding energy lower 
than the specified threshold value. In this way, 
promising molecules can be easily identified. 

 

 
 

Fig. 1. Section -1 and Section – 2 of the workflow: Preparation of reactants, performing 
reaction and product idgeneration 

 

 
 
Fig. 2.  Section - 3 of the workflow: Enrichment of libraries using various medicinal chemistry 

filters 
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Fig. 3.  Section - 4 of the workflow: Docking preparation, docking and post-docking analysis 
 
2.2.5 Interactive dashboards (section - 5) 
 

Section five of the workflow consists of 
interactive dashboards. (Fig. 4) Dashboards in 
this section are prepared using KNIME Ploty and 
KNIME JavaScriptViews nodes. Data used to 
create interactive graphics are obtained from the 
parameters calculated in section 3 (SlogP, 
TPSA, AMW, NumLipinskiHBD, NumLipinskiHBA 
and NumRotatableBonds, FractionCsp3). In 
addition to the histograms of these parameters, a 
radar chart was created to show the optimum 
oral bioavailability or drug-likeness zone. Since 
the units of the parameters we use are different, 
a normalization process has been carried out. 
The upper and lower boundaries of the optimum 
zone were established using the values we show 
in Table 1. The normalization process is carried 
out so that the normalized value of the lower limit 
shown in Table 1 is set to 0.33 and the upper 
limit to 0.67. The same visualization schemes 
were applied to all of the molecule groups 
obtained from the filters applied in the third 
section in order to compare enrichment levels. 
Different visualization schemes were applied to 

the results obtained from the docking process. 
The most important visualization in this section is 
the three-dimensional interactive graph prepared 
for molecules with better binding energy than the 
threshold value set by the user. The average of 
the binding energies, RMSD value of the poses 
obtained from the docking process and the ligand 
efficiency values are used to create the three-
dimensional graph. With this graph, different 
perspectives can be evaluated in selecting the 
molecule that can be used in further studies. In 
addition, all visualization dashboards contain 
interactive tables showing molecules and their 
properties. 
 
2.2.6 Product molecules save (section - 6) 
 
In the sixth section of the workflow, the data 
obtained from the third and fourth sections are 
stored in the csv format using automatically 
created naming schemes. (Fig. 4) Only the data 
obtained from the node where the optimized 
three-dimensional structure of the molecules 
were created is stored in sdf                                
format.

 

 
 
Fig. 4. Section – 5 and Section - 6 of the workflow: Interactive dashboards, product molecules 

save 
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Table 1. The upper and lower limits of bioavailability or drug-likeness filter used in section 3 
 

 Lower limit Upper limit 
logP -0.700 5.000 
TPSA (Å) 20.00 130.00 
AMW (g/mol - Da) 150.000 500.000 
NumLipinskiHBA 0 <= 10  
NumLipinskiHBD 0 <= 5 
NumRotatableBonds 0 < 9 
FractionCsp3 > 0.25 < 1.00 

 
2.2.7 Testing of the workflow 

 
In order to test the workflow we have created, 
"Acyl chlorides" group containing 317 and 
"Aromatic Primary Amines" groups containing 
2357 molecules from Sigma Selected Subsets 
were used.  

 
3. RESULTS  
 
All of the 317 acyl chlorides loaded into the 
workflow were transferred smoothly from the first 
metanode of the first section "Reaction 1 Code 
Generator" to the second metanode "Reactant 1 
Ro3 Filter". On the other hand, 17 of 2357 
aromatic primary amines loaded into workflow 
were found in the list as duplicates and filtered. 
In the first metanode of the Reactant 2 2340 
molecules were transferred from “Reactant 2 
Code Generator” metanode to “Reactant 2 Ro3 
Filter” metanode.  

 
The first member of the "Reactant 1 Ro3 Filter" 
metanode is "Reactant 1 Functional Group Filter" 
node. Molecules containing more than one acyl 
chloride functional group were filtered at this 
node, and the number decreased from 317 to 
293. The second member of the "Reactant 1 Ro3 
Filter" metanode is "Reactant 1 Structure 
Normalisation" node. The goal of this node is to 
remove problematic (uncertain three-dimensional 
structures, salts, etc.) molecules. It was observed 
that 287 of the 293 acyl chloride entered this 
node passed the filter and 6 failed. It was 
determined that three of the six failed molecules 
had incorrect three-dimensional structure and 
three contained more than one fragment. The 
SlogP, AMW, TPSA, NumLipinskiHBA, 
NumLipinskiHBD and NumRotatableBonds 
values were calculated for the 287 acyl chloride 
passing the first two filters. After the Ro3 filter 
applied to 287 acyl chloride, the number of 
molecules dropped to 182. The minimum and 
maximum values of the parameters before and 
after the Ro3 filter are shown in Table 2. The 

remaining 182 acyl chloride were transferred to 
the section 2 to be used in virtual reaction. 
 

Similar to "Reactant 1 Ro3 Filter" metanode first 
member of the "Reactant 2 Ro3 Filter" metanode 
is "Reactant 2 Functional Group Filter" node. 
Molecules containing more than one primary 
amine functional group were filtered at this node, 
and the number decreased from 2340 to 2330. 
The second member of the "Reactant 2 Ro3 
Filter" metanode is "Reactant 2 Structure 
Normalisation" node as well. It was observed that 
1733 of the 2330 aromatic primary amines 
entering this node passed the filter and 597 
failed. It was determined that nearly all of the 
failed molecules had more than one fragment. 
The SlogP, AMW, TPSA, NumLipinskiHBA, 
NumLipinskiHBD and NumRotatableBonds 
values were calculated for the 1733 aromatic 
primary amines passing the first two filters. After 
the Ro3 filter was applied to 1733 aromatic 
primary amines, the number of molecules 
dropped to 646. The minimum and maximum 
values of the parameters before and after the 
Ro3 filter are shown in Table 3. The remaining 
646 aromatic primary amines transferred to the 
section 2 to be used in virtual reaction. 
 

Considering the number of acyl chloride (182) 
and aromatic primary amines (646) passing 
through the first filters, it was seen that we had a 
chance to obtain 117572 lead like product 
molecules combinatorially. As a matter of fact, 
"Reaction Node", the first member of the second 
section, has produced the number of product 
molecules we expected. It was checked whether 
the produced product molecules contain 
duplicate molecules and eight molecules were 
determined. After removing the duplicated 
molecules, the product molecule number 
dropped to 117568. After the codes of the 
product molecules were produced and their two-
dimensional structures were made uniformed, 
they were transferred to the third part of the 
workflow where the medicinal chemistry filters 
would be applied. 
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Table 2. The upper and lower limits of parameters of acyl chlorides used in the example 
workflow. Number of the molecules written in parenthesis 

 
 Before Ro3 filter applied 

(287) 
Before Ro3 filter applied 
(182) 

 Lower  
limit 

Upper  
limit 

Lower  
limit 

Upper  
limit 

logP -0.075 8.574 -0.075 2.991 
TPSA (Å) 17.07 103.35 17.07 51.21 
AMW (g/mol - Da) 78.498 510.571 78.498 284.455 
NumLipinskiHBA 1 7 1 3 
NumLipinskiHBD 0 1 0 1 
NumRotatableBonds 0 20 0 3 

 
Table 3. The upper and lower limits of parameters of aromatic primary amines used in the 

example workflow. Number of the molecules written in paranthesis 
 

 Before Ro3 filter applied 
(1733) 

Before Ro3 filter applied 
(646) 

 Lower  
limit 

Upper  
limit 

Lower  
limit 

Upper  
limit 

logP -5.622 8.073 -0.008 2.997 
TPSA (Å) 26.02 702.02 26.02 59.14 
AMW (g/mol - Da) 83.094 1620.693 83.094 298.909 
NumLipinskiHBA 1 43 1 3 
NumLipinskiHBD 2 25 2 3 
NumRotatableBonds 0 40 0 3 

 
In the first step of the third section, the SlogP, 
AMW, TPSA, NumLipinskiHBA, NumLipinskiHBD 
and NumRotatableBonds and FractionCsp3 
parameters of the product molecules were 
calculated. After the oral bioavailability and drug-
likeness filters which we have adapted from the 
SwissAdme server that we mentioned in the 
Method section above, the number of product 
molecules decreased from 117568 to 25256 
(4.65 fold enrichment), and after PAINS and 
BRENK filters to 13121 (8.96 fold enrichment). 
After the CYP filter, this number dropped to 565 
(208.08 fold enrichment). The minimum and 
maximum values of the parameters of all product 
molecules were shown in the Table 4 and their 
radar chart in Fig. 5. After optimizing the three-
dimensional structures of the remaining 565 
product molecules, docking was carried out 
against Adenosine A2a receptor. Adenosine A2a 
receptor was chosen randomly because it was 
the first target listed in the DUD.E database to 
test the workflow.[44] As a result of the docking 
process, the best bonding energy was calculated 
as -9.7 (Reaction_Example_R1_241_R2_1308) 
and the worst binding energy was calculated as -
4.4 kcal/mol 
(Reaction_Example_2_R1_99_R2_2283). 
Binding poses of these molecules are shown in 

Fig. 6. 13 product molecules were identified with 
a calculated binding energy equal to or better 
than -9.0 kcal / mol. The top three structures and 
properties of these molecules are shown in Table 
5. It has been observed that 10 of the mentioned 
molecules are derived from R1_241 and 3 of 
them are derived from R1_197 (Fig. 7). 
 
It was aimed to determine whether the 13 
molecules we selected were supplied by any 
vendor or not by searching the MolPort database 
(Similarity threshold wad set to 1). Only the 
record for the product molecules with the code 
Reaction_Example_R1_197_R2_1052 and 
Reaction_Example_R110_197_R2_78 was 
found. Also, it was examined whether there are 
bioactivity record of the selected molecules in the 
CHEMBL database and no record was found for 
any of them (Similarity> = 100%). In addition to 
these two searches, the SureCHEMBL patent 
database was searched for selected molecules 
and records were found for 
Reaction_Example_R1_197_R2_1052 and 
Reaction_Example_R110_197_R2_78 molecules 
or their highly similar structures. This has shown 
that the 11 molecules we chose in the last step 
are highly specific and not previously studied 
molecules. 
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Table 4. The upper and lower limits of parameters of after each medicinal chemistry filters 
applied in section 3. Number of the molecules written in parenthesis 

 
 All product 

molecules 
(117568) 

Product 
molecules after 
oral 
bioavailability 
filter applied 
(25256) 

product 
molecules after 
PAINS and 
BRENKfiltersap
plied 
(13121) 

Product 
molecules  after 
CYPfilters 
applied 
(565) 

 Lower 
limit 

Upper 
limit 

Lower 
limit 

Upper 
limit 

Lower 
limit 

Upper 
limit 

Lower 
limit 

Upper 
limit 

logP -0.479 5.593 -0.468 5.000 -0.089 5.000 -0.089 4.510 
TPSA (Å) 29.10 96.36 29.10 93.20 29.10 93.20 29.10 89.02 
AMW (g/mol) 125.13

1 
546.90
3 

151.16
9 

496.79
4 

151.16
9 

469.05
5 

151.16
9 

371.36
0 

NumLipinskiHBA 2 6 2 6 2 6 2 6 
NumLipinskiHBD 1 3 1 2 1 2 1 2 
NumRotatableBond
s 

1 7 1 7 1 7 1 6 

FractionCSP3  0.000 0.812 0.263 0.812 0.263 0.812 0.263 0.750 
 

 
 

Fig. 5. Radar plots of the physicochemical parameters of product molecules a) all product 
molecules generated b) drug-likeness filtered product molecules, c) drug-likeness / PAINS / 

BRENK filtered product molecules d) selected (drug-likeness / PAINS / BRENK / CYP 
isoenzyme inhibitor filtered) product molecules (Blue line: minimums of normalized 

physicochemical property values of all product molecules, black line: averages of normalized 
physicochemical property values of all product molecules, red line: maximums of normalized 

physicochemical property values of all product molecules, green area: Suitable 
physicochemical space for oral bioavailability) 
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Fig. 6. Binding poses of product molecules a) Reaction_example_R1_241_R2_1308 (-9.7 kcal / 

mol) and b) Reaction_example_2_R1_99_R2_2283 (-4.4 kcal / mol) 
 

 
 
Fig. 7. Structures of reactant a) R1_241 - (2S)-1-(trifluoroacetyl)-2-pyrrolidinecarbonyl chloride 

- (Cas No: 36724-68-2) and b) R1_197 - cyclohexanecarbonyl chloride - (Cas No: 2719-27-9) 
 
As we mentioned above, we created some of the 
filters we use in our workflow by taking 
SwissAdme server as an example. We have 
reviewed the ADME properties of the final 
product molecules using the SwissAdme server 
to create a consensus. When the data obtained 
were examined, it was observed that all of the 
remaining 11 molecules fit the oral bioavailability 
and drug-likeness filters determined by the 
server. However, it was also observed that the 
probability of being a CYP enzyme inhibitor was 
evaluated differently from our model. In order to 
make a consensus between the results obtained 
from the server and the results produced by the 
workflow, molecules that were not marked as 
inhibitors for all CYP isoenzymes were selected. 
At the end of this process, it was determined that 
Reaction_Example_R1_241_R2_910, 
Reaction_Example_R1_241_R2_931 and 
Reaction_Example_R1_241_R2_1739 molecules 
were not marked as inhibitors for any CYP 

isoenzymes. All the processes performed show 
that the molecules coded as 
eaction_Example_R1_241_R2_910, 
Reaction_Example_R1_241_R2_931 and 
Reaction_Example_R1_241_R2_1739 (Fig. 8) 
are suitable lead molecules that can be used in 
the processes of Adenosine A2a receptor ligand 
development studies.  

 
When the reagent code generation nodes we 
performed at the beginning of our workflow are 
examined, it was determined that the molecules 
required to synthesize three molecules are 
R1_241: (2S) -1- (trifluoroacetyl) -2-
pyrrolidinecarbonyl chloride (CAS No: 36724-68-
2), R2_910: 2-amino-N-isopropylbenzamide 
(CAS No: 30391-89-0), R2_931: N- (2-
aminophenyl) acetamide (CAS No: 34801-09-7), 
R2_1739: 4- (4,5-dihydro-1H-imidazol-2-yl) It has  
(CAS No: 61033-71-4). 



 
Fig. 8. Structure of selected molecules a) Reaction_Example_R1_241_R2_910, b) 

Reaction_example_R1_241_R2_931 and c) Reaction_
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8. Structure of selected molecules a) Reaction_Example_R1_241_R2_910, b) 
xample_R1_241_R2_931 and c) Reaction_example_R1_241_R2_1739 at the end of 

the all analysis 

Structures and properties of three products molecules that have better binding energy 
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4. DISCUSSION 
 
In this study, we focused on developing a 
KNIME-based workflow that can be used in 
bioactive or drug molecule development 
processes, which is simple to use and suitable 
for customization. After determining the protein 
target that the end user wants to work with, 
making the necessary adjustments in the 
workflow, we aimed to make the whole process 
proceed on its own with just one click. The 
workflow is divided into six sections and the 
tasks and outputs of each are explained. The 
workflow we have created can be used as a 
whole from the start to finish, and can be used as 
separate parts as long as the inputs are 
compatible with sections or metanodes. In the 
docking process, which is the structure-based 
virtual screening method used in the fourth part, 
AutoDockVina software has been chosen in 
terms of speed and ease of use. The script used 
in the relevant metanode is in a mono block 
structure and has been prepared for a 
workstation with Vina and Pymol installed in the 
Linux system. However, with simple changes in 
the script, it can be used in workstations using 
different operating systems such as Windows 
and Mac. 
 
Since the interactive visualization components 
used in the fifth part work with the website logic, 
they can be displayed on remote screens with 
appropriate adjustments. The data storage 
metanodes we mentioned in the sixth section are 
important in terms of compiling and storing the 
results obtained. When the end users want to 
make changes to the file names, they can 
change the patterns we recommend in our 
workflow by making the necessary changes in 
the "String Manipulation" nodes. 
The use of open source software in our workflow 
is also an important feature. In this way, we think 
that the use of workflow will be an advantage, 
especially since it will not bring a financial burden 
to academic groups. At this point, it will be 
beneficial for the end user to review the license 
terms while making the necessary installations 
and adjustments. 
 
We have managed to produce a total of 117572 
product molecules after performing the 
necessary filtrations with 317 acyl chloride and 
2357 aromatic primary amine, which we chose to 
test the workflow, thanks to the applied medicinal 
chemistry filters 565 of them were found to be 
bioactive or capable of being used as bioactive / 
drug molecules. At the end of the docking virtual 

screening process, it was determined that 13 
molecules could have better binding energy than 
-9.0 kcal / mol.  
 
Whether there are companies producing these 
molecules, whether bioactivity screens have 
been carried out before and whether they are the 
subject of patents were examined and no records 
were found in the databases (MolPort, CHEMBL, 
SureCHEMBL) about 11 of these 13 molecules. 
Eleven were repeatedly uploaded to the 
SwissAdme server and three of them were found 
to be unlikely to be inhibitors of CYP isoenzymes 
by this server. Until the end of the process where 
we identified the possible bioactive 13 molecules, 
the processes were carried out with a single click 
without any intervention. This process took 
approximately three hours at the workstation we 
mentioned in the material section. 
 
Some aspects of our workflow are open to 
improvement. For example, the metanode, in 
which CYP isoenzyme inhibitors are tried to be 
identified, takes almost half of the entire 
execution time. We continue to work on to 
improve the node where CYP inhibitors are tried 
to be determined with a more effective model. 
Also, the component in which all product 
molecules obtained is tried to be visualized has a 
long execution time. This situation is related to 
the creation of a table of many molecules and 
can be accelerated by reducing the number of 
molecules to be shown in the table.  
 
VSPrep is one of the good examples to use 
KNIME software and plugins to used to generate 
and standardize virtual libraries. [32] Gally and 
his colleagues created a workflow named as 
VSPrep to prepare small molecules for virtual 
screening processes. In the first step of the 
workflow, the molecules were standardized, then 
the duplicate molecules were removed. After 
some filtration processes related to 
stereochemistry and tautomerism, conformers of 
the molecules were generated. The conformers 
created were recorded to be used in virtual 
screening processes. VSPrep and the workflow 
we discuss in our article have some 
commonalities like creating codes for molecules, 
generating three dimensional structure and 
saving structures for further studies. There are 
some differences as well as similar aspects. For 
example, while we focused on building a 
personal library in our workflow, VSPrep focused 
on curation of existing libraries. 
TeachOpenCADD KNIME workflow is a very 
comprehensive workflow aimed at teaching 
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computer-aided design work to beginners. [30] 
TeachOpenCADD consists of eight sub-
workflows where data is transferred to the 
workflow, various filters are applied, the 
similarities of the molecules of interest are 
examined and similar ones are searched and 
possible activities are evaluated. Unlike our 
study, TeachOpenCADD uses ligand-based 
screening methods to identify new potential 
bioactive molecules. One of the studies recently 
performed using KNIME was carried out by 
Tuerkova and Zdrazil. [45] The authors examined 
the molecules that can be used in the treatment 
of rare diseases and COVID-19 with the drug 
reproposing approach using the ligand-based 
screening method. They created an integrated 
virtual screening workflow on KNIME by using 
the Application Programming Interfaces (API) 
services of the servers and other plugins in their 
workflows. In our study, no API was used, and 
our update plans include changes to screen the 
databases of patents, bioactivity and suppliers 
for possible active molecules or raw materials 
using existing APIs. Gonzalez and colleagues 
have described a workflow to obtain a series of 
lactam derivative molecules using KNIME 
software and plugins. [46] As in our study, 
possible building block molecules were loaded 
into the workflow, filtered according to the Ro3 
rule, and then possible molecules were obtained. 
Then, possible intermolecular cyclization 
schemes were defined and applied to the 
obtained molecules. Although a single-step 
reaction is defined in our study, this number can 
be easily increased by increasing the number of 
reassembly nodes used or by using Python 
scripts. 
 
5. CONCLUSION 
 
The production of a large number of molecules, 
including various physicochemical parameters, 
using a simple reaction scheme and reactants in 
such a short time, and the fact that they have 
been recorded in a structure that can be 
transferred to personal databases, shows the 
success of the workflow. With the help of our 
workflow and the encouraging results we have 
obtained from the sample library we generated, it 
will be possible for smaller companies, 
enterprises and academic groups to apply the 
method we mentioned in the introduction section 
of this paper about generation of novel bioactive 
or drug molecule studies that have been used by 
pharmaceutical companies and some academic 
groups. 
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