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Abstract

For a graph G, the minimum transversal eccentric dominating energy E,.;(G) is the sum of the eigenvalues
obtained from the minimum transversal eccentric dominating n X n matrix M., (G) = (m;;). In this paper
E;eq(G) of some standard graphs are computed. Properties, upper and lower bounds for E,.,(G) are
established.
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1 Introduction

The concept of ‘energy of a graph’ was introduced by I. Gutman [1] in 1978. M.R. Rajesh Kanna et al [2] found
the minimum dominating energy of a graph. Tejaskumar R, A Mohamed Ismayil and Ivan Gutman [3]
introduced ‘minimum eccentric dominating energy of graphs’. For a graph G = (V,E), aset S € V is said to be
a dominating set, if every vertex in V — S is adjacent to some vertex in S. The concept of ‘eccentric domination’
was introduced by T.N. Janakiraman et al. [4] in 2010. The eccentricity e(v) of v is the distance to a vertex
farthest from v. Thus, e(v) = max {d(u, v): u € V}. For a vertex v, each vertex at a distance e(v) from v is an
eccentric vertex. Eccentric set of a vertex v is defined as E(v) = {u € V(G):d(u,v) = e(v)}. AsetD € V(G)
is an eccentric dominating set if D is a dominating set of G and for every v € V — D, there exists at least one
eccentric vertex of v in D. Nayaka S.R et al. [5] introduced transversal domination in graphs. Riyaz Ur Rehman
A and A Mohamed Ismayil [6] introduced transversal eccentric domination in graphs. A eccentric dominating
set S is called a transversal eccentric dominating set if it intersects every minimum eccentric dominating set D’
i.e. SN D" # @. Inspired by Tejaskumar et al [3] we introduce minimum transversal eccentric dominating
energy E;.q(G) of graphs. In this paper we discuss some properties on E,.,(G) of standard graphs.

2 The Minimum Transversal Eccentric Dominating Energy-E;.4(G)

Definition 2.1: Let G = (V,E) be a simple graph where V(G) = {v,, v,, ...,,} where n € N is the set of
vertices and E is the set of edges. Let D be a minimum transversal eccentric dominating set of G then the
minimum transversal eccentric dominating matrix of G is an x n matrix defined by M., (G) = (m;;), where

1,if v;orv;n D # @ and v; € E(v;) or v; € E(v),
(mij) = l,ifi=jandv; €D,
0, otherwise

Definition 2.2: The characteristic polynomial of M., (G) is denoted by
Pu(G, @) = det (Meq(G) — al).

Definition 2.3: The minimum transversal eccentric dominating eigenvalues of G are the eigenvalues of
minimum transversal eccentric dominating matrix M, (G). Since M4 (G) is symmetric and real. We label the
eigen values in non-increasing order a; = a, = -+ = a,,.

Definition 2.4: The minimum transversal eccentric dominating energy of G is defined by E..4(G) = X1 |a;].

Remark 2.1: The trace of M., (G)=Transversal eccentric domination number.

Example 2.1:
U1
(2)) vy
Uy Uy
Fig 1. Fork graph
Table 1. The vertex with Eccentricity e(v) and Eccentric vertex E(v)
Vertex Eccentricity e(v) Eccentric vertex E(v)
2 3 vg
v, 2 Vs
Vs 2 V1, Uy
U, 3 Vs
Vs 3 Uy, Uy
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The minimum transversal eccentric dominating sets of fork graph are D; = {v,, v,, vs}, D, = {vy,v,,v5}, D3 =
{v2,v3,v5} and D, = {v,, vy, Vs }.

1. Dl = {UII V3, vS}l

(10101\
0100 1
M@ =1 0 0 0 0
000 0 1
110 1 1

The characteristic polynomial P, (G, a) = —a® + 3a* + a® — 5a + 1.

Minimum transversal eccentric dominating eigenvalues are a; = 2.705, a, = 1.3835, a3 =~ 0.5102, a, =~ -0.4599,
as ~-1.1388.

Minimum transversal eccentric dominating energy E,.;(G) = 6.1974.

2. DZ = {UI, 174, vs},

(10101\
00 0 0 1
M,q@ =1 0 0 0 0
00011/
110 1 1

The characteristic polynomial 2,(G,a) = —a® + 3a* + a® — 5a + 1.

Minimum transversal eccentric dominating eigenvalues are a;, = 2.705, a, = 1.3835, a3 ~ 0.5102, a, = -0.4599,
as ~-1.1388.

Minimum transversal eccentric dominating energy E,.;(G) = 6.1974.

3. D3 = {172, U3, 175},

Meq @) =

=)
mooRrRo
cCOoO R OR
—_—Oo O o0
RO R

The characteristic polynomial £,(G,a) = —a® + 3a* + a® — 6a? + a + 1.

Minimum transversal eccentric dominating eigenvalues are a; = 2.5563, a, = 1.5063, a; =~ 0.5896, a, ~ -
0.3342, a5 ~-1.138.

Minimum transversal eccentric dominating energy E,.;(G) = 6.3044.

4' D3 = {v21v4' vS}l

Mted(G) =

= E==)
mRooORrRO
co o oOoOR
mRRmooo
RO R

The characteristic polynomial #,(G,a) = —a® + 3a* + a® — 6a? + a + 1.

Minimum transversal eccentric dominating eigenvalues are a; = 2.5563, a, = 1.5063, a; =~ 0.5896, a, ~ -
0.3342, a5 ~-1.138.
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Minimum transversal eccentric dominating energy E,.;(G) = 6.3044.

Remark 2.2: The minimum transversal eccentric dominating energy depends on the minimum transversal
eccentric dominating set.

3 Minimum Transversal Eccentric Dominating Energy of some Standard
Graphs
In this section we find the E,,;(G) of complete graph, cocktail party and crown graph.

Theorem 3.1: For a complete graph K,, where n > 2 the minimum transversal eccentric dominating energy of a
complete graph is E..4 (K,) = n.

Proof: Let K,, be a complete graph with the vertex set V = {v;, v,, ... v,}. The minimum transversal eccentric
dominating set is D = {v,}, then

1 1 1 1 1 1

1 0 1 1 1 1

1 1 0 1 1 1
Mieq (Kn) = : :

1 1 1 0 1 1

1 1 1 1 0 1

1 1 1 1 1 0/ xn

Characteristic polynomial is B, (K, a) = det (M., (K,,) — al).

1-y 1 1 11 1
1 -y 1 - 11 1
1 1 -y 11 1
111 -y 1 1
111 1 -y 1
111 1 1 -y

The characteristic equation is P, (K,,, @) = (=1)"a™ — (—1)"na™ L.
The minimum transversal eccentric dominating eigenvalues are

a=20,
a=n.

The minimum transversal eccentric dominating energy of the complete graph K,, is given by
Eteq (Kp) = 1.

Theorem 3.2: For a cocktail party where n > 4 and crown graph G where n > 6 the minimum transversal
eccentric dominating energy

(@ = 2+ 57 [(3) - 1] + [57[6) - 1)

2 2

Proof: Let G be a graph with the vertex set V = {v,, v,, ... v, }. The minimum transversal eccentric dominating
setisD = {vl,vz, ...,vg}, |D| = n/2 then
2
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1 0 0 O 0 0 1 0
01 0 O 0 0 0 1
0 0 1 0 1 0 0 O
0 0 0 1 01 0 O
Mted(c)z : :
0 0 1 0 1 0 0 O
0 0 0 1 0 0 0 O
1 0 0 O 0 0 0 O
01 00 0 0 0 0/ ,n
Characteristic polynomial is 2, (G, @) = det (M4 (G) — al).
1-a 0 0 0 0 010
0 1-a 0 0 0 0 0 1
0 0 l1—a 0 1 0 0 O
0 0 0 11—« 01 0 O
0 0 1 0 1—-a O 0 0
0 0 0 1 0 —a 0 0
10 00 0 0 —a 0
0100 0 0 0 —«a

n-2
The characteristic equation is P,(G,a) = a(a —2)(a? —a —1)n .

The minimum transversal eccentric dominating eigenvalues are

a=0,

a=2,
a= ! +2\/§ [(g - 1) times],
a= ! _2\/5 [(; — 1) times],

The minimum transversal eccentric dominating energy of the cocktail party and crown graph G is given by

Ereq(G) =0+2+ 1+\/§[(2) - 1] _|_1_T‘/g (g) _ 1]_

2 2

Erea(@) = 2+ 25[(2) - 1] + 25[(2) - 1].

2 2

4 Properties of Minimum Transversal Eccentric Dominating Eigenvalues

In this section we discuss the properties of eigenvalues of M,.,(G) for complete, crown and cocktail party
graphs.

Theorem 4.1: Let D be a minimum transversal eccentric dominating set and a4, a5, ... «,, are the eigenvalues of
minimum transversal eccentric dominating matrix M., (G) then

1. For any graph G, Y7, a; = |D|,
2. For a complete graph K,, where n > 2, ¥, a? = [D| + (n)(n — 1),

3. For a crown and cocktail party graph G then ¥, a? = |D| + n.
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Proof:
1. We know that the sum of eigenvalues of M., (G) is the trace of M., (G).
Dis & = Yj=ymy = |D|.
2. Similarly, for a complete graph K,, sum of square of eigen values of M., (G) is trace of [M ., (G)]?
n n n
:E:(Zf ==:E::E:Tn”1n”
i=1 i=1 j=1
Y, af=Y (my)? + iz Mymy;

n

2

af = ) (my)* + ZZ(mij)
i=1

i<j

> at = oI+ W -1)

i=1

-

..‘
1l
[y

Since for a complete graph K,,, 2 Zi<j(mij)2 =m)(n-1).
3. Similarly, for a crown and cocktail party graph G sum of square of eigenvalues of M,,,;(G) is trace of

[Meea (G o
Sur=3 Somm

i=1 i=1 j=1
Yhyaf=yt,(my)?* + Diwj Mymy;

Since for a crown and cocktail party graph G, 2 Zi<j(mij)2 =n.

5 Bounds for Minimum Transversal Eccentric Dominating Energy
Similarly to McClelland’s [7] bounds for energy of a graph, bounds for E,.,;(G) are given in this section.

Theorem 5.1: For a complete graph K,, where n > 1, if D be the minimum transversal eccentric dominating set
and W = | det M4 (G) | then

JIDl+n(m—1) +n(n — DWW/ < Epy(K,) < (/n(n(n—1) + |DJ).

Proof: By Cauchy schwarz inequality (X%, g;h)? < G, 9>, h?). If g; = 1 and h; = q; then

2

(2) =)&)

i=1 i=1 i=1

(Eea(6))? < n(ID| + n(n — 1))
= Eeq(G) < /n(ID] +n(n — 1))
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Since the arithmetic mean is not smaller than geometric mean we have

n(+—D
1)Z|a||a,|> Hlailla,-ll

i#j

1 n(n1 1)
m2|ai||aj| = [HW 2= 1)]
i#j
ﬁilaillajl = [ﬁ |ai|]n
i)
T el - [ﬂal]"

2
— i||ai| = [det Mypq (G)|n = Wn
n(n_l);|al||a,| [det Mgy (6] = W

Zlail|a]~| =>n(n— 1)W%

i*j

Now consider

(Erea(6))? = (Zm)
, i=21
(Etea(6))? = <Z|ai|> +Z|“i||“j|

i#j

(Eroa(6))? = (D] + n(n - 1)) + n(n — DW=

Eieq(G) = \/(IDI +nn—1))+nn— 1)W%

Theorem 5.2: For a crown graph where n > 6 and cocktail party graph G where n > 4, be the minimum

transversal eccentric dominating set and W = | det M4 (G) | then

\/IDI +n4n(n—DWn < E,y(6) < Jnlm +1DD.

Proof: The proof follows on the similar lines of theorem-5.1.

Theorem 5.3: If a;(G) is the largest minimum transversal eccentric dominating eigenvalue of M,,,(G)

then

1. For a complete graph K,,, a,(G) > ‘2201

n

2. For a crown and cocktail party graph G, a,(G) = —— IDltn

n

Proof:

1. Let Y be a non-zero vector, then by ref. [8], we have a; (Meq(G)) =74 %ﬁym)y

a1 (Mo (@) = where U is the unit matrix.

UTMteq(G)U _ |ID|+n(n-1)
uTy n

T
2. Let Y be a non-zero vector, then by ref. [8], we have u; (M, (G)) =74 %

UTMea(©)U _ DI+
 (Meq (6)) = ;T‘Z -

where U is the unit matrix [9-13].
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Table 2. Characteristic equation P,(G, &), Roots a(G) and Energy E,.4(G) of Minimum TED sets of various standard graphs are tabulated

Graph Figure Minimum TED set Characteristic equation  Roots a(G) Energy
:Pn(G: (l) IEted(G)
Diamond graph U {vy, 3}, a* —2a3 — 4a?. a, = 3.2361, 4
a, =0,
" " as = —1.2361.
M
Tetrahedral graph U1 {v1,v5, 3,14}, a* - 2as. a; = 3.2361, 4
a, =0.
Claw graph vy {v,,v3}, a* —2a® - 4a?, a; = 3.2361, 4.4722
a, =0,
a; = —1.2361.
Uo V3
{vy, 3}, at—2a® —4a’+a a; = 3.1401, 5.3866
+1, a,=05712,
vy a; = —0.4378,
a, = —1.2735.
{vs, va}.
at—2a® —4a’+a a; = 3.1401,
+ 1. a, = 0.5712, 5.3866
a; = —0.4378,
a, = —1.2735.
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Graph Figure Minimum TED set Characteristic equation  Roots a(G) Energy
:Pn(G: (l) IEted(G)
Paw graph U1 {vy,v3}, a*—2a®-3a’+«a a, = 2.8794, 5.0642
% +1,  a,=0.6527,
U3 a3 = —0.5321,
a, =—1.
Vs
a*—2a® -3a’+«a a; = 2.8794,
{v,,v3}, +1, a, = 0.6527, 5.0642
a; = —0.5321,
a, = —1.
{vs, val. a* —2a® —3a%+ 2a a, = 2.7321, 5.4642
+ 2. a, =1,
a; = —0.7321,
a, =—1.
Banner graph U3 U2 {v,, vs). —a® + 2a* + 3a3 a; = 2.5962, 5.5576
—3a? a, =1.1826,
—2a. az = 0,
U3 on a, = —0.5157,
as = —1.2631.
(3,2) Tadpole graph {v1,v,}, —a® + 2a* + 3a® a, = 2.5962, 5.5576
—3a? a, =1.1826,
—2a, a3=0,
a, = —0.5157,
as = —1.2631.
{v4, vs}. —a’ +2a* + 3a® 6.0164
— 4a?
—a
+ 1.

195



Rehman and Ismayil; Asian Res. J. Math., vol. 19, no. 10, pp. 187-199, 2023; Article no.ARJOM.105802

Graph Figure Minimum TED set Characteristic equation  Roots a(G) Energy
:Pn (G: a) IEted (G)
a, = 2.5231,
a, =1,
as; = 0.4851,
a, = —0.5669,
as = —1.4413.
Kite graph v {vy, 14} —a® + 2a* + 3a3 a; = 2.5962, 5.5576
. -3a?  a, =1.1826,
va ‘ 2 - 2a. a; =0,
a, = —0.5157,
b4 as = —1.2631.
Dart graph u {v,,v3}, —a® + 2a* + 6a®, a; = 3.6458, 5.2916
a, =0,
" " " a; = —1.6458.
{vy, 14} —a® + 2a* + 6a® a; = 3.6458, 6.41
s —2a%? a,=0.7018,
—2a. az = 0,
a, = —0.4685,
as = —1.7365.
Cricket graph U1 V2 {3, 14}, —a’ + 2a* + 6a®, a; = 3.6458, 5.2916
s v s a; = —1.6458.
{v,, v} —a® + 2a* + 6ad a; = 3.5032, 6.41
—2a?  a, =0.7018,
— 2a. az = 0,
a, = —0.4685,
as = —1.7365.
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Graph Figure Minimum TED set Characteristic equation  Roots a(G) Energy
:Pn (G: a) IEted (G)
Pentatope graph /"\ {v1, 5, V3, V4, Vs ). —a® + 5a*. a; =5, a,=0. 5
Johnson solid skeleton {vy,v3}. —a® + 2a* + 6ad. a, = 3.6458, 5.2916
12 graph a, =0,
a; = —1.6458.
Fish graph {v,,v3}, a® —2a’ —4a* +4a® a, = 27321, 6.2926
+4a?, a, = 1.4142,
az; =0,
a, = —0.7321,
as = —1.4142.
{vs, V5 ). a, = 2.5772, 6.7824
ab —2a® —4a*+6a® a,=1.292,
+2a?  az =0.522,
- 2a. a, =0,
as = —0.6677,
ag = —1.7235.
A graph (1 (5 {v1,vs,v6}, a®—3a®—3a*+9a® a; =3.0233, 6.823
+ a? a, = 1.3883,
—4a az =1,
-1, a, = —0.2853,
Us U4 as = —0.5198,
ag = —1.6065.
1}'_) 1;'6 a®—3a® - 3a* + 10a?
' {v,, Vs, Vg . —a? 7.5092
— 3a.
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Graph Figure Minimum TED set Characteristic equation  Roots a(G) Energy
:Pn (G: a) IEted (G)
a, = 2.9446,
a, = 1.541,
as = 0.769,
a, =0,
as = —0.4862,
ag = —1.769.
4-polynomial graph v e Y {v3, v, ). a® —2a® —4a* +4a® @, = 2.7321, 6.2926
/ ; / : / + 4% a, = 1.4142,
/ a; =0,
U4 Us Ve a, = —0.7321,
as = —1.4142.

3-prism graph {vy,vs, 6}, a®—3a®—3a*+ 11a® a; = 2.5616, 8.5952
+3a% a,=1618,
—9a a; = 1.618,
— 4, a, = —0.618,
as = —0.618,
a = —1.5616.

a®—3a® —3a* +11a® a; = 2.5616,
{v2, v3,v4}. +3a2 a,=1.618, 8.5952
—9a  az =1.618,
— 4. a, = —0.618,
as = —0.618,
a, = —1.5616.
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6 Conclusion

In this paper minimum transversal eccentric dominating energy of a graph is introduced. The transversal
eccentric dominating energy of some standard graphs are calculated. Results related to the upper and lower
bounds of the energy of standard graphs are stated and proved.
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