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ABSTRACT 
 

Ornamental plants are grown largely for their artistic value, floriculturists must prioritize the 
proliferation and improvement of quality traits, as well as the production of unique diversity. 
Micropropagation, clonal reliability and conservation are all crucial factors to consider. Application 
of in vitro techniques in ornamental plant such as in vitro embryo rescue, somatic hybridization, in 
vitro pollination and in vitro ploidy manipulation but to enhance, techniques like as embryo rescue 
and somatic hybridization are commonly employed. The creation of synthetic seed allows for 
season-independent seed producing and long-term seed preservation. Many factors influence 
ornamental plant tissue culture, including plant genotype, explants type, and the physical 
environment (light, temperature, humidity, and CO2), in addition to medium composition and growth 
regulators. We compiled and reviewed an overall update on cultivation factors, application 
procedures in ornamental plant tissue culture, in vitro plant enhancement approaches and future 
prospects in this study.  
 

 
Keywords: Explants type; ornamentals; in vitro culture; embryo rescue; hybridization; temperature; 

light. 
 

1. INTRODUCTION 
 
In general, the phrase "ornamental plant" or 
"ornamental" refers to plants that are grown 
primarily for their aesthetically pleasant traits 
such as shape, bark, leaves, flowers, fruit, or any 
combination. Globally, the feasible output of 
decorative plants is expanding [1]. The 
ornamental and floriculture sector in the United 
Kingdom is projected to be worth £2.1 billion in 
2005, with overseas commerce of £60-75 billion. 
Its economic worth has skyrocketed over the 
previous two decades, and there is a strong 
likelihood of further expansion in both the local 
and international markets [2]. Tissue culture 
system in ornamental flowers like roses has been 
established [3,4,5,6]. Recently, in in vitro flower 
induction in roses was demonstrated [7,8]. 
Tissue culture techniques are used for micro 
propagation and the generation of pathogen-free 
plants [9]. “Plant tissue culture has emerged as a 
promising method, forming the base of plant 
biotechnology. Growers want high-quality 
planting material to increase production. The 
effectiveness of the clonal propagation method is 
dependent on a variety of parameters, including 
genotype, medium, plant growth regulators, and 
explants type, all of which should be experiential 
during the process” [10]. “Naphthalene Acetic 
Acid (NAA) and Benzyl Adenine (BA) are the 
most often utilized growth regulators for 
ornamental plant micropropagation via 
organogenesis, embryogenesis, and axillary 
proliferation. The high frequency of direct 
embryogenesis has been studied in thin layer 
cultures of hybrid seed geranium (Pelargonium)”. 
[11]. Plants raised through micropropagation are 
of uniform quality, pathogen free, and can be 

produced much more quickly, with new cultivars 
becoming commercially available within 2 to 3 
years of development rather than the 5 to 10 
years required for conventional                    
propagation. They also produce uniformly 
superior seeds and have improved vigor and 
quality. Propagation via meristem has been 
identified as a mechanism of rapid regeneration 
in Caladium and the plants produced through this 
technology have a high export potential because 
they can be shipped internationally with few 
quarantine restrictions and have the potential to 
develop new cultivars of the species. Several 
studies have been conducted in recent years in 
order to produce semi-automatic systems that 
exploit the principle of development in temporary 
immersion with the goal of avoiding tissue hyper 
hydricity. Some systems of temporary immersion 
(TIS) have been employed on tropical plants 
[12,13] and fruit trees [14].  
 

2. APPLICATION OF In vitro 
TECHNIQUES IN ORNAMENTALS 

 

Plant tissue culture is widely known for its ability 
to produce disease-free plantlets through clonal 
replication. In vitro cultivation provides several 
opportunities for modifying plant materials to 
increase their quality. For hybridization, in vitro 
procedures including as micropropagation, 
embryo rescue and somatic hybridization are 
utilized. 
 

2.1 Plant Improvement by the Application 
of In vitro Embryo Rescue 

 
Developing a viable plant from an embryo is 
referred to as embryo culture or embryo rescue 
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(Fig. 1). Hannig pioneered the embryo culture 
technique by growing mature embryos of a few 
Brassicaceae plants on sugar-supplemented salt 
media [15]. Dietrich revealed in 1924 that both 
mature and immature embryos may be saved. 
[16]. In 1925, the first interspecific hybridization 
was described in the perennial flax (Linum 
perenne L. x Linum austriacum L.) through 
embryo rescue from nonviable seeds [17]. Since 
its discovery, embryo rescue has been employed 
for interspecific hybridization in a wide range of 
crops, including floral, decorative, medicinal, and 
woody plants [18,19]. 
 
“It allows for the culture of the ovary, ovule, and 
embryo” [20,21]. “The success of embryo rescue 
depends on various factors, such as size and 
age of the embryo, intactness of embryo, 
excision procedure, sterilization, culture medium, 
supplementation in culture medium, light, 
temperature, etc. It has been used in crop 
improvement by intraspecific/ interspecific/ 
intergeneric hybrid development, haploid/double 
haploid production, overcoming embryo abortion, 
overcoming seed dormancy, overcoming self and 
cross-incompatibility, shortening the breeding 
cycle, propagating rare plants, etc”. [22,23]. For 
example, breeding cycles were shortened by 
embryo rescue in rose [24], and lily [25]. 
Interspecific hybrids were developed in 
chrysanthemums by embryo rescue                 
tolerant [26,27], salt-tolerant [28], aphid 
resistance [29], and heterotic [30,31] 
characteristics. A new flower shape and cold-
tolerant intraspecific (Campanula carpatica 
‘White’) and interspecific (C. medium and C. 
formanekiana) hybrid, respectively, were 
developed in bellflowers [32]. Interspecific 
hybrids, haploids, or double haploids were 
developed in rose [33], tulip [34], lisianthus [35], 
lily [36] and ornamental alliums [37,38]. Embry 
rescue has been widely studied for crop 
improvement, while its current research has been 
reduced by the rapid evolution of advanced 
molecular breeding. 
 
“Furthermore, embryo rescue is commonly 
employed to overcome post-fertilization barriers 
in plants, although many ornamentals have pre-
fertilization barriers that may be overcome by in-
vitro pollination. Plant reproductive cells             
(stigma and anther) are separated and                
united under controlled circumstances to               
form a zygotic embryo with in-vitro pollination. 
The in-vitro approach has been used for 
blooming and pollination in several ornamentals” 
[39,40]. 

2.2 Plant Improvement by Somatic 
Hybridization and In vitro Pollination 

 
Somatic hybridization has been shown to be a 
significant source of genetic diversity, also known 
as somaclonal variation. Many somaclones are 
thought to be better hybrids. The donor-recipient 
approach and cytoplast-protoplast fusion are the 
two most common strategies for producing 
somatic hybrids. In cytoplast-protoplast fusion, 
protoplasts are allowed to fuse in order to 
combine somatic cells from various cultivars, 
species, or genera (Fig. 2). 
 
“Somatic hybridization occurs when the nuclear 
genome of one parent is combined with the 
mitochondrial and/or chloroplast genome of the 
other parent. The donor-recipient fusion 
approach, which transfers particular genes or 
chromosomes, is an alternative and better way 
of somatic incompatibility” [41,42]. Fusogens are 
chemicals that are utilized for protoplast fusions. 
Common fusogens include sodium nitrate 
(NaNO3), calcium nitrate (CaNO3), dextran 
sulfate, polyvinyl alcohol, and polyethylene 
glycol [43]. Somatic hybridization through 
protoplast fusion can produce symmetric or 
asymmetric hybrids, known as somatic hybrids 
or cybrids (Fig. 2). The first asymmetric hybrid 
was discovered by somatic hybridization of 
Nicotiana tabacum (tobacco) and Petroselium 
hortense (parsley) [44,45]. Many wild plant 
species have important features, including 
disease and pathogen resistance, which can be 
transmitted to cultivated crop species. Somatic 
hybridization allows desired features to be 
transferred to boost yield, resistance, tolerance, 
and so on [46,47]. It enables breeders to 
generate unique hybrids using an asexual 
technique rather than traditional breeding (Fig. 
2). 
 
Somatic hybridization has been applied for the 
genetic improvements of various flowering and 
ornamentals, such as rose [48], Dendrobium 
[49], chrysanthemum [50], dianthus [51], gentin 
[52], iris [53] and Saintpaulia [54]. 
 
“Somaclonal variants or somatic hybrids can be 
confirmed by morphological, biochemical, protein 
marker, cytogenetic, and molecular analyses. 
Restriction fragment length polymorphism 
(RFLP), simple sequence repeat (SSR), 
amplified fragment length polymorphism (AFLP), 
methylation-sensitive amplification polymorphism 
(MSAP), transposon-based marker systems, and 
Next-Generation Sequencing (NGS) have been 
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Fig. 1. Process of embryo rescue from immature (or non-viable) seed after hybridization[92] 
 
 
 

 
 

Fig. 2. Illustration of somatic hybrid or cybrid development through protoplast fusion. 
Here, NaNO3; sodium   nitrate, Ca (NO3)2; calcium nitrate, PA; polyvinyl alcohol, DS; 

dextran sulfate, polyethylene glycol (PEG).[92] 
 
applied for the validation of somatic hybrids at 
the molecular level in several ornamentals. 
Somaclonal variation is highly dependent on the 
PGRs” [55]. The problems in separating 
protoplasts (mentioned in Section 3.2), creating 
unanticipated and useless variations, newly 
created variants that are not original, and so on 
are the fundamental limits of somatic 
hybridization [56]. 
 

2.3 Production of Synthetic Seeds 
 
A synthetic seed or artificial seed is any 
encapsulated plant tissue, somatic embryos, or 
other micropropagules (Fig. 3). Synthetic seeds 
have several advantages over natural seeds, 
including season-independent seed production, 
genetic uniformity, maintaining hybrid vigor, long-
term storage capacity, rapid multiplication, 
freedom from vegetative and seed-borne 

pathogens, high-volume low-cost propagation, 
ensuring quality plant materials and shortening 
life cycles. [57,58]. “ In ornamentals, somatic 
embryos, nodal segments, and branch tips are 
commonly employed as explants s for the 
generation of synthetic seeds, although callus is 
seldom used and PLBs are mostly used in 
orchids to produce synthetic seeds. Synthetic 
seeds have been generated in Caladium bicolor 
(caladium), Eustoma grandiflorum (lishianthus), 
Pinus patula (pine), Genista monosperma (bridal 
broom), Hyoscyamus muticus (Egyptian 
henbane), and Clitoria ternatea (bluepea or 
bluebellvine) from the somatic embryo; 
Gypsophila paniculata (gypsophila), Saintpaulia 
ionantha (saintpaulia), Urginea altissima (tall 
white squill), and Taraxacum pieninicum 
(Mniszek pieninski) from shoot tip; Rosa 
damascena f. trigintipetala (Damask rose), 
Syringa vulgaris (lilac), Nerium oleander 
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(oleander), Centella asiatica (Asiatic pennywort), 
Eclipta alba (false daisy), Eryth- rina variegata 
(tiger’s claw), Photinia fraseri (red tip photinia), 
Ruta graveolens (rue), Salix tetrasperma (Indian 
willow) from axillary buds/nodes, Anthurium 
andreanum (anthurium) from callus, Lilium 
longiflorum (easter lily) from bulb, and different 
species of orchids from PLBs (Cymbidium 
giganteum, Vanda coerulea, Geodorum 
densiflorum, Coelogyne breviscapa, Cremastra 
appendiculata, Flickingeria nodosa, Spathoglottis 
plicata, etc.)” [57,58]. 
 
“In vitro synthetic seeds in ornamentals enable 
season-independent seed synthesis, long-term 
storage, and timely supply to growers. 
Concentrations of sucrose, sodium alginate (Na-
alginate), and calcium chloride (CaCl2) are 
critical for the synthesis of artificial seeds in 
ornamentals. Concentrations of 2-3% sucrose, 2-
3% Na-alginate, and 50-100 mM CaCl2 were 
discovered to be beneficial for synthetic seed 
formation in ornamentals” [57,58]. 
 
Synthetic seeds have some limitations over the 
advantages: low efficient root systems, 
development of non-synchronous seeds from the 
somatic embryo (the most effective plant material 
for synthetic seed development), deviation from 
the normal structure, loss of embryogenic 
potential with time, etc. Synthetic seed 
technology can be used more effectively in the 
commercial ornamental plant propagation sector 
after resolving these limitations. 
 

2.4. In vitro Ploidy Manipulation  
 
In vitro ploidy modification is a method of 
promoting genetic diversity by raising or lowering 
the number of chromosomes (Fig. 4). Polyploidy 
induction is employed for ornamental crop 
development and can extend breeding chances 
to enhance decorative features, environmental 
tolerances, and restore fertility in broad hybrids 
[59]. For chromosomal doubling, the most often 
utilized antimitotic drugs are colchicine and 
oryzalin [60]. Two ginger lily lines, Hedychium 
gardnerianum Shepard ex Ker Gawl. and H. 
coronarium J. Koenig, were employed for 
chromosomal doubling using colchicine or 
oryzalin, and the tetraploid ginger lily was 
effectively created [61]. “Forty—eight tetraploids 
were developed in ornamental aroid plants using 
colchicine (Caladium × hortulanum Birdsey) that 
showed variation in leaf shape, color, and 
thickness compared to the wild type” [62]. 
“Tetraploid anise hyssop (Agastache foeniculum 

L.) was induced by the application of colchicine, 
which showed a wide range of variation 
compared to diploid plants in their 
morphophysiological characteristics [63]. 
Polyploid has also been inducted in Dendrobium, 
Phalaenopsis, Epidendrum, and Odontioda 
orchids by the application of oryzalin” [64]. In 
vitro-generated polyploids of rose, lilies, phlox, 
petunia, bellflowers, rhododendron and other 
plants showed a wide range of phenotypic 
differences. Aside from antimitotic agents, ploidy 
modification is affected by species, explants  
kinds, antimitotic agent exposure technique, 
antimitotic agent exposure length, and so on. 
 

3. GENOTYPE  
 
“Genotype is one of the most important factors 
affecting tissue culture” [65]. “Genotypic 
differences between six genotypes of Primula 
vulgaris were achieved in callus induction rate, 
type of callus, root formation during the callus 
phase, and shoot regeneration rate” [66]. Shen et 
al. (2008) found significant differences in callus 
and shoot formation from leaf explants s among 
four Dieffenbachia cultivars [67]. Also, Gheisari 
and Miri (2017) observed that hormonal 
requirement for callus induction and direct bulblet 
regeneration of two lisianthus varieties was 
different.  
 

3.1 Source of Explants  
  
Explants  source, both in vitro and in vivo, is also 
vital for regeneration. In vitro explants  is thought 
to be the best method for organogenesis. Cactus 
plants grown outdoors or in greenhouses can be 
utilized as explants  sources to generate in vitro 
cultures; in vitro plants raised from seeds can 
also be used as starting material for cactus 
micropropagation [68]. 
 

3.2 Type of Explants   
 
The precise selection of explants  material can 
have a significant impact on tissue culture 
success [69, 70]. This might be owing to the 
varying levels of endogenous hormones found in 
various plant sections. Explants  types such as 
leaf, petiole, hypocotyl, epicotyl, embryo, 
internode, and root had a substantial impact on 
plant tissue culture [71,72]. Bulb scale segments 
are the most commonly utilized explants  source 
for in vitro multiplication of geophytes ornamental 
plants such as Fritillaria imperialis, Hyacinthus 
orientalis and Polianthes tuberose. Explants  
supplies such as ovary, flower stalk, leaf stalk, 
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and mature seeds are also utilised for bulb 
growth [73]. Petal explants  of P. tuberose was 
implemented to initiate globular and heart 
somatic embryos that after 3 weeks developed 
as torpedo and cotyledonary embryos. Axillary 
branching using axillary bud and stem node, as 
in other plants, is the majority common explants  
type utilized for direct shoot propagation of 

Dieffenbachia [74]. The majority of the strategies 
established for in vitro multiplication of 
Phalaenopsis include seedling propagation or 
cultured the dormant buds located at the base of 
the inflorescence. The most widely utilized 
explants  for regeneration is the leaf [75]. The 
greatest rate of regeneration was seen in 
chrysanthemum cv. Borami leaf explants s [76].

 

 
 

Fig. 3. Production and application of synthetic seeds. The numbers in the figure represent the 
ending point of each step, such as the production of synthetic seeds (1), short-term storage of 

synthetic seeds (2), synthetic seeds for transportation (3), long-term storage of synthetic 
seeds (4), and plantlet generation from synthetic seeds (5).[92] 

 

 
 

Fig. 4. In vitro chromosome doubling (ploidy manipulation) for genetic diversification [92] 
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Fig 5. Factors Affecting on Tissue culture techniques 
 

3.3 Orientation of Explants  
 
“Orientation of mother plant in the culture 
medium also affects the shoot proliferation and 
regeneration effectiveness. In general, 
regeneration efficiency is higher in horizontal 
position as compared to vertical due to little 
contact of explants  to medium in vertical 
position. The effect of explants  location in the 
multiplication of Dieffenbachia was evaluated. 
The highest number of shoots was obtained with 
sub-apical segments placed vertically” [77]. 

 
4. MEDIUM FACTORS  
 

4.1 Media  
 
“The type of tissue culture medium selected 
depends upon the species to be cultured. Some 
species are sensitive to high salts or have 
different requirements for macro- and 
micronutrients” [78]. Even tissues from different 
areas of a plant may have differing growing 
needs. For micropropagation, many basal media 
such as White, Nitsch & Nitsch, and B5 
(Gamborg) have been used, but the most 
generally used culture medium is (MS medium), 
since it includes all of the required nutrients for in 
vitro growth. In comparison to many other 
formulations, it is classed as a high salt medium, 
with high quantities of nitrogen, potassium, and 
several micronutrients, notably boron and 
manganese. However, due to the high salt 
concentration, this nutrient solution is not always 
appropriate for in vitro plant growth and 
development. B5 medium proved to be suitable 
or direct shoot regeneration of lisianthus. Also, 
the use of dilute media formulations has 
sometimes promoted better formation of shoot 

and especially roots, since high concentration of 
salts may inhibit root growth, even in presence of 
auxins in the culture medium. Phalaenopsis 
orchid explants s' capacity to create shoots. They 
concluded that 12MS culture medium provided 
optimal axillary shoot multiplication and seedling 
development [79, 80]. 
 

4.2 Carbon Source 
 
Carbohydrate is a fundamental component of 
any nutritional medium, and its inclusion is 
required for in vitro culture growth and 
development [81]. “Sucrose is by far the most 
often utilized carbon source for a variety of 
reasons. It is inexpensive, widely accessible, 
autoclavable, and easily digested by plants. MS 
medium supplemented with 0.1 mg/l NAA + 0.1 
mg/l BA and 60 g/l sucrose was shown to be 
better for Lilium ledebourii bulblet regeneration. 
Other carbohydrates, such as glucose, maltose, 
and galactose, as well as the sugar-alcohols 
glycerol and sorbitol (particularly in the Rosaceae 
family), can be employed. Primula sp. seed 
germination rate and percentage are greater in 
MS medium containing 10 g/l sucrose than in 
glucose” [82]. 
 

4.3 Complex Organic Compounds  
 
“These are a group of undefined supplements 
such as casein hydrolysate, coconut milk, orange 
juice, tomato juice, grape juice, pineapple juice, 
banana puree, etc. These compounds are often 
used when no other combination of known 
defined components produces the desired 
growth or development. Some of them are used 
as organic sources of nitrogen such as casein 
hydrolysate, peptone, tryptone, and malt extract. 
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These mixtures are very complex and contain 
vitamins as well as amino acids. The highest 
seed germination percentage, PLB development 
and seedling growth of Phalaenopsis obtained 
with MS or ½MS media containing 100 mg/l 
coconut water and 1-2 g/l peptone” [83]. 
Polyamines, particularly spermine and 
spermidine, are sometimes beneficial for somatic 
embryogenesis and direct regeneration. 
 

5. CULTURE CONDITIONS AND 
ENVIRONMENT FACTORS  

 

5.1 Gas Exchange and Relative Humidity 
 
“The culture vessel is typically a closed system, 
although depending on the kind of vessel, the 
closure, and how firmly they are sealed together, 
some gas exchange may occur. The vessels' 
sealing must allow for enough ventilation to 
prevent severe ethylene buildup and CO2 
depletion. The use of tightly closed containers 
that impede gas exchange may have a 
detrimental impact on proper plant growth and 
development during in vitro culture. Several 
studies have demonstrated the benefits of 
utilizing closures with filters or vented containers, 
which enable gas exchange and hence increase 
photosynthetic capability, multiplication rate, and 
plant survival following transfer to ex vitro 
settings” [84]. 
 
The relative humidity within the culture vessels is 
typically quite high, resulting in a poorly 
established epicuticular wax layer and 
dysfunctional plantlet stomata. As a result, 
various methods for reducing relative air humidity 
inside the vessel have been tested, such as 
opening culture containers for a few days prior to 
acclimatization, using special closures that 
facilitate water loss, or cooling container bottoms, 
which increases condensation of water vapors on 
the gel surface. Furthermore, relative humidity 
management during in vitro acclimation is an 
important role in improving the morphological 
characteristics of plantlets when transplanted in 
vivo [85]. 
 

5.2 Light 
 
The three features of light, which influence in 
vitro growth characteristics such as stem 
elongation, leaf size and plant anatomy, are 
wavelength, flux density and photoperiod. 
Tapingkae investigated the effects of light quality 
and quantity on growth and development of 
Anigozanthos bicolor and Zieria fraseria grown in 

vitro. Three white light intensities of 40, 80 and 
200 µmol m-2s-1; light of five spectral quantities: 
white (390-760 nm), blue (450-492 nm), green 
(492-550 nm), yellow (550-588 nm) and red 
(647-770 nm); and five light-dark cycles: 4L2D, 
6L6D, 12L12D, 16L8D and 24L were applied. 
Total rhizome number and dry weight of A. 
bicolor plantlets after 6 weeks of growth was 
positively affected by high light intensities of 80 
to 200 µmol m-2s-1 and short light-dark cycle of 
4L2D. The light spectrum was not critical for 
rhizome production in A. bicolor. Shoot dry 
weight of Z. fraseria was highest in plantlets 
grown under 200 µmol m-2s-1 irradiance. Shoot 
length was positively affected by blue light. Light 
cycle had no effect on the productivity but shorter 
photoperiods reduced shoot length. The Red (R) 
and Blue (B) LED light on the in vitro 
multiplication of Rosa sp. were used and 
responses compared with explants  grown under 
16/8 h (light/dark) fluorescent light. Shoots under 
RB LED (16:4) showed the greatest growth and 
elongation [86]. 
 
Several studies found that light promoted root 
development and shoot growth, while darkness 
promoted root formation. Lisianthus calli grown in 
the light (1200 lux) had a higher fresh weight and 
were green, but calli cultivated in the shade   
were yellow. The breakdown of endogenous IAA 
causes the diminished rooting in the             
presence of light. Shoots from proliferating 
cultures were sometimes moved to root induction 
media with auxin for 4-7 days in the dark before 
being switched to the same medium without 
auxin and incubated under light for root 
elongation. 
 

5.3 Temperatures 
 
Temperature influences several physiological 
activities, including respiration and 
photosynthesis. The most frequent temperature 
range for cultivation has been 20°C to 27°C, 
however ideal temperatures vary greatly 
depending on genotype. Prior to in vivo 
transplanting, air temperature is stated as a 
significant element in determining in vitro growth 
and development of Phalaenopsis plantlets. 
Plantlets of Phalaenopsis acclimatized to varied 
air temperatures (152, 252, and 352 °C) were 
transplanted immediately to in vivo habitats for 
14 days. Plantlets acclimatized to low air 
temperature retained higher levels of chlorophyll 
a, chlorophyll b, total chlorophyll, and total 
carotenoid content than those acclimatized to 
high temperature.  
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5.4 Plant Growth Regulators (PGRs)  
 
PGRs regulate and govern the beginning and 
growth of shoots and roots on explants s and 
embryos, as well as cell division and expansion. 
Plant growth regulators are classified into various 
groups, including cytokinin, auxins, gibberellins, 
ethylene, and abscisic acid. The production of 
adventitious shoots and roots frequently need a 
balance of auxin and cytokinin. High amounts of 
auxin relative to cytokinin increased root 
development, whereas high levels of               
cytokinin compared to auxin stimulated shoot 
formation. In lisianthus and gladioli, for example, 
maximal callus induction was observed on MS 
medium supplemented with 2 and 10 mg/l NAA, 
respectively [87], whereas the highest                  
shoot regeneration was achieved with MS 
medium containing 5 mg/l BA+0.1 mg/l NAA and 
4 mg/l Kin+0.5 mg/l NAA (19, 39). Similar                   
results have been obtained for callus induction   
of fritillary and bulblet regeneration of hyacinth. 
The balance of growth regulators depends  on 
the objective of the cultivation in vitro (as e.g., 
shoot, root, callus or suspension culture)                  
and on the micropropagation phase               
considered (initiation, multiplication or rooting) 
[88].  
 

6. FUTURE ASPECTS  
 
Tissue culture techniques have been adjusted in 
recent decades to promote plant growth, 
biological activity, transformation and secondary 
metabolite synthesis due to development and a 
desire to grow on a large scale. A considerable 
advancement in strategies has been sought to 
deal with the problem of low concentrations of 
secondary metabolites in entire plants. The 
sterile plantlets will solve the contamination 
problem and shorten the sterilizing             
procedure. Secondary metabolites and 
medicinally relevant chemicals have found in 
vitro propagation to be quite effective for 
selective metabolite formation. 
 
In recent years, researchers have begun to 
examine ornamentals at the molecular level, 
including genetic modification, utilizing in vitro 
technologies [89]. Agrobacterium tumefaciens-
mediated transformation has been used to   
create transgenic ornamental species in around 
40 genera [90], but only a few ornamentals, such 
as Phalaenopsis and petunia, have acceptable 
and effective transformation strategies. Many 
genes and transcriptions are involved in                
the in vitro organogenic callus, shoot, root, 

somatic embryos, and PLBs, and their 
transcriptions are also controlled by the 
exogenous administration of various growth 
regulators [91]. 
 

7. CONCLUSION 
 
The role of plant tissue culture in ornamental 
crops has been significant, offering various 
benefits, applications, and promising future 
prospects. Plant tissue culture has revolutionized 
the cultivation of ornamental crops by providing a 
reliable and rapid means of propagation. It 
enables mass production of genetically identical 
plants, reducing the time and space required for 
traditional methods like seed germination or 
cutting propagation. Tissue culture techniques 
allow for the selection and propagation of 
desirable traits in ornamental plants, such as 
colour variations, disease resistance, and novel 
shapes. Conservation plays a crucial role in the 
conservation of endangered and rare ornamental 
plant species by preserving genetic diversity and 
enabling their reintroduction into the wild. Tissue 
culture can be used to eliminate pathogens from 
ornamental plants, creating disease-free stock 
for growers and maintaining the health of plant 
collection. Some ornamental plants are valuable 
for their secondary metabolites, and tissue 
culture can be used for the controlled             
production of these compounds. Integration with 
genomics and molecular techniques will enable 
the precise manipulation of ornamental plant 
genomes, leading to the creation of unique               
and superior cultivars.  Advances in automation 
and bioreactor technology will enhance the 
scalability and efficiency of ornamental crop 
production through tissue culture. The 
ornamental plant market continues to grow, and 
tissue culture will play a vital role in                 
meeting the demand for new and improved 
varieties. Tissue culture can contribute to the 
development of environmentally sustainable 
practices by reducing the need for                  
chemical treatments and the environmental 
impact associated with traditional cultivation 
methods. 
 
In conclusion, plant tissue culture has emerged 
as a fundamental tool in the ornamental crop 
industry, providing solutions to various 
challenges and offering opportunities for 
innovation. As technology and research in this 
field continue to advance, we can anticipate an 
even more prominent role for tissue culture in the 
cultivation and conservation of ornamental 
plants. 
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