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Abstract

In this study, the mathematical model for determining the blood glucose concentration during an intravenous
injection has been solved throw Volterra integral equation and using Chebyshev spectral method. The
method is based on the blending of the Chebyshev pseudo spectral method and its implementation procedure
reduces the Volterra integral equation to a system of algebraic equations that are easy to solve. For the practical
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application of the method, a mathematical model in medical science for determining the blood glucose
concentration during an injection has been solved. Tables and figures were generated to verify the accuracy
and convergence of the method. The results demonstrate that the method is efficient, convergent and accurate
to the exact solution.

Keywords: Numerical methods; Chebyshev collocation method; Volterra integral equations.

1 Introduction

Many applications of engineering, biology, applied science and medicine can be expressed mathematically and
solved by using single or system Volterra integral equations. In general, finding analytic solutions of Volterra
Integral equations are usually difficult so it is required to obtain an approximate solution. Therefore, Volterra
Integral equations have been of great interest by several authors and scientists. There are many analyticall
numerical methods have been introduced, discussed and modified for finding a solution for linear Volterra integral
equation, such as, Galerkin methods, Collocation methods, Taylor expansion, converting equation to a system
of algebraic equations, Legendre wavelets method, Taylor polynomials and Power series method and expansion
method [1–9]. Recently, Chauhan and Aggarwal [10] used Laplace transform for solving linear Volterra integral
equation of second kind, Aggarwal et. all [11] applied Shehu transform for handling Volterra integral equations
of first kind, Barycentric - Maclaurin interpolation method has been applied by [12] for solving Volterra integral
equations of the second kind, Khidir [13, 14] suggest a highly accurate technique for solving Volterra integral
equations based on the blending of the Chebyshev pseudo methods. Chebyshev spectral collocation methods
have been applied successfully in different fields of sciences because of their ability to give very high accurate
solutions of single or system of boundary value problems, this is because Chebyshev spectral methods are defined
everywhere in the computational domain [15–24]. Therefore, it is easy to compute a high accurate values of a
considered function at any point of the domain.

For some problems, it is impractical to use analytical methods because their solution process becomes too
cumbersome, and convergence to the true solution can be very slow or not possible at all. For, this reason
numerical methods are by far the most practical way of seeking solutions to the highly nonlinear systems.
Solutions for some integral equations using analytical methods are difficult to found, so the quest for the most
optimal method of solving problems is what drives, ever growing interest in the development of new methods
and the modification and improvement of existing analytical and numerical methods. The prime objective of
this paper is to present a new numerical method of solving integral equations that seeks to address some of
the aforementioned numerical difficulties. We propose a very simple, yet very accurate and convergent iterative
algorithm for solving linear integral equations.

In this work, we apply a new technique for solving linear Volterra integral equations that uses Chebyshev spectral
collocation method. The implementation of the method that convert the integral equation into a system of linear
algebraic equations by using the proposed operational integral matrix of known entries instead of the integration
operator.

The main advantages of this method are that (i) this technique suggests a standard way of choosing the linear
operator of the integral equation whereas the other related methods are choosing a linear operator to be simple
in order to ensure that the integral equation can be easily solved and (ii) this algorithm transforms the integral
equation into a system of linear algebraic equations that easier and faster to solve when compared to a system
of integral equations.

The applicability, accuracy, and reliability of the method are confirmed by applying the method on the field of
medical science for determining the glucose concentration in blood of a patient.
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The paper is organized as follow: in section 2, we introduce a description of the proposed method. In section
3, we applied the method for solving linear Volterra integral equation. The numerical results are discussed and
investigated in section 4. Finally, the paper is concluded in section 5.

2 Description of the Method

consider the following linear Volterra integral equation of the second kind given by

u(x) + λ

∫ x

0

K(x, t)u(t)dt = f(x), 0 ≤ x, t ≤ b, (1)

where unknown function u(x) is the solution to be determined, the kernel K(x, t) and the function f(x) are
given real valued functions,λ is a parameter. It is to be noted here that both the kernel K(x, t) and the function
f(x) are known functions.

To illustrate the idea of the algorithm, we assume that the kernel K(x, t) can be expressed as a product of two
functions namely w(x) and v(t), consequently. Equation (1) can be obtained as follows:

u(x) + w(x)

∫ x

0

v(t)u(t)dt = f(x). (2)

Now, let us expressed the integral term of the integral equation above as∫ x

0

v(t)u(t)dt = Φ(x). (3)

One approach is to note that the integral equation (3) is an initial value problem obtained as

dΦ

dx
= v(x)u(x), with Φ(0) = 0. (4)

This differential equation is very simple and can be solved using any method, her we used the Chebyshev spectral
collocation method, the functions Φ(x), v(x) and u(x) are approximateed as a truncated series of Chebyshev
polynomials given by the form [25–27]

Φ(x) ' Φ(xj) =

N∑
k

Φ̃kTk(xj),

u(x) ' u(xj) =

N∑
k

ũkTk(xj),

v(x) ' v(xj) =

N∑
k

ṽkTk(xj),

where Tk is the kth Chebyshev polynomial and , Φ̃, ũ, ṽ are the Chebyshev coefficients and xj are the Gauss-
Lobatto collocation points [27] defined by

xj =
1

2
xN (1− cos

jπ

N
), j = 0, 1, 2, ..., N, (5)

where N + 1 is the number of collocation points (the nodes). The derivative of Φ at the collocation points is
represented as

dΦ

dx
'

N∑
k=0

DjkΦ = DΦ, (6)
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where D the Chebyshev spectral differentiation matrix whose entries are given by [25]

D00 = 2N2+1
6

,

Djk = cj
ck

(−1)j+k

xj−xk
, j 6= k, j, k = 0, 1, 2, ..., N,

Dkk = xk
1−x2

k
, k = 1, 2, ..., N − 1,

DNN = − 2N2+1
6

 , (7)

here c0 = cN = 2 and cj = 1 with 1 ≤ j ≤ N − 1.

Substituting the above assumptions in equation (4) yields a system of algebraic equations expressed as the
following matrix equation 

D0,0 ... D0,N

D1,0 ... D1,N

...
...

DN,0 ... DN,N




Φ0

Φ1

...
ΦN

 =


v0
v1
...
vN



u0

u1

...
uN

 , (8)

where Φi = Φ(xi), ui = u(xi) and vi = v(xi). The solution of this system for Φ(xi) is obtained by
Φ0

Φ1

...
ΦN

 =


1 0 0 ... 0
D1,0 D1,N

...
...

...
...

...
DN,0 DN,N


−1 

v0
v1
...
vN




u0

u1

...
uN

−

u0v0
u0v0

...
u0v0

 . (9)

Here we observe that the first row of Chebyshev differential matrix D in equation above is replaced by the
row [1, 0, 0, ...] and we subtracted the vector [u0v0, u0v0, ..., u0v0]T , this is caused by imposing the condition
Φ(0) = 0 into the system of linear equation (8). According to the integral equation (3) and equation (9), we
introduce the following integral operator L[v](u) defined as

L[v(x)]u(x) = u(x0)v(x0) +

∫ x

0

v(x)u(x)dx, (10)

where u = [u0 u1 ... uN ]T , [v] = [ v0 v1 ... vN ]T and

L =


1 0 ... 0
D1,0 ... D1,N

...
...

DN,0 ... DN,N


−1

. (11)

The integral operator L is a square matrix of size (N + 1)× (N + 1).

2.1 The linearity of the operator L

It is clear that the operator defined by equation (10) is a linear operator since it is a an integral operator,∫ x

0

n∑
i=1

Vi(x)Vi(x)dx =

n∑
i=1

L[Vi(x)]Ui(x)−
n∑
i=1

Ui(x0)Vi(x0) (12)

2.2 Existence and uniqueness of the operator L

In this sub-section, we show that the operator L is exist and unique.

175



Khidir et al.; J. Adv. Math. Com. Sci., vol. 38, no. 10, pp. 172-184, 2023; Article no.JAMCS.106860

Theorem
(i) Any square matrix A is invertible (nonsingular) if and only if the determinant of (A) is non zero.
(ii) If A is an invertible matrix, then its inverse is exist and unique.
Proof:
According to the theorem above, the existence and uniqueness of the linear operator L depends on the existence
and uniqueness of inverse of matrix 

1 0 ... 0
D1,0 ... D1,N

...
...

DN,0 ... DN,N


The determinants of matrix above have been computed on the domain x ∈ [0, b] for N = 5, 6, 7, ..., 100. In Fig.
1, we plotted the computed determinants for different values of b varied N . We observe that from the Figure all
the determinants are not equal zero and it is notice that all the determinants is greater than or equal 1 i.e. the
inverse of the operator L is exist and unique.

10 20 30 40 50 60 70 80 90 100
10

0

10
50

10
100

10
150

10
200

10
250

N

d
et
(L

)

 

 

b = 1
b = 2
b = 3
b = 4
b = 5

Fig. 1. The determinatns (det) of the matrices L.

The general idea underpinning the use of the proposed method is to convert the linear Volterra integral equation
into a system of linear algebraic equations that replace the integral parts in the integral equation by the integral
matrices operators. The obtained linear algebraic equations can easily be solved with the help of symbolic
computation software such as Maple, Mathematica, MATLAB, or other symbolic computer packages.

3 Application

For a physical explanation of the present scheme, we consider a problem from the field of medical science for
determining blood glucose concentration of a patient at any time. Mathematically, this model can be written in
terms of linear Volterra integral equation as [28–31]

C(t) + k

∫ t

0

C(x)dx− α

V
t = Ci, with C(0) = Ci (13)

where:
C(t) is the blood glucose concentration at time t,
k is the constant velocity of elimination (in 1/min).
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α is the proportion of the of infusion (in mg/min).
V is the volume in which glucose is distributed (in dL).
Ci is the initial concentration of glucose in the blood (in mg/dL).

Applying the proposed algorithm on equation (13) and according to the assumptions (6) and (10) and using
the integral matrix L defined by equation (10), one can transformed the integral equation (13) into a system of
linear algebraic equations given by

−→
C + k

−→
L
−→
C = Ci +

α

V

−→
t + kCi, (14)[−→

I + k
−→
L
]−→
C = Ci +

α

V

−→
t + kCi, (15)

−→
A
−→
C =

−→
f . (16)

where:−→
C : is unknown vector column of size (N + 1)× 1,
−→
I : is an identity matrix of size (N + 1)× (N + 1),
−→
t : is known column vector of size (N + 1)× 1 and defined by

−→
t = [t0, t1, ..., tN ]T , T stands to transpose,

−→
f : is known column vector of size (N + 1)× (N + 1) and defined by

−→
f = Ci + α

V

−→
t + kCi.

A =
−→
I + k

−→
L .

Thus, the final solution of the Volterra integral equation (13) is obtained as

−→
C =

−−→
A−1−→f . (17)

The solution given by equation (17) gives the values of blood glucose concentration C(t) at time t for various
values of glucose concentration at initial state Ci, the rate of infusion α and constant velocity of elimination k
and the volume V in which glucose is distributed,.

4 Results and Discussion

In this section we present and analyze the obtained results of determine the blood glucose concentration which
is modeled by solving the linear Volterra integral equation. Implementation of the numerical schemes was
performed using personal computer of 2.5 GHz CPU speed including Matlab software to perform the simulation
results. The values of blood glucose concentration are computed plotted at different values time, constant
velocity of elimination, the proportion of the of infusion, the volume in which glucose is distributed, and initial
concentration of glucose in the blood. The accuracy of the method is demonstrated by presenting infinity error
norms CE(t) between exact and approximate results. The computational times for all obtained results have
been generated to confirm the speed and computational efficiency of the current technique. All the results are
showed in Tables 1-5 and Figs. 2-6.

Table 1 shows the maximum absolute errors for C(t) between the present and exact solutions at selected values of
the parameters Ci, α, V and k. Also, the times taken for the computation have been presented. A striking feature
of the proposed method is that a high level of accuracy is achieved and also the method gives very small errors
without using any iterations to decrease the error as applied in most of the iterative methods. Also, the present
algorithm is computationally fast as accurate results are generated in a fraction of a second as it shown in Table 1.

In Fig. 2. we display a comparison between the exact and numerical results of C(t) at various values of the
parameters Ci, α, V and k. The figures indicate that there is very good match between the two sets of results
even at no iteration of the current technique compared with the exact results.
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Table 1. Comparison between maximum absolute errors of C(t) with various choices of Ci, α, V
and k.

Paramenter C(t) CPU time (sec)

320 4.647e− 012 0.006

Ci 324 4.803e− 012 0.008

328 4.675e− 012 0.009

280 4.647e− 012 0.013

α 282 4.647e− 012 0.015

284 4.832e− 012 0.017

45 4.647e− 012 0.023

V 47 4.576e− 012 0.025

49 4.420e− 012 0.026

0.058 4.420e− 012 0.029

k 0.060 4.349e− 012 0.030

0.062 4.292e− 012 0.031
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Fig. 2. Comparison between the numerical and exact solutions.
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In Table 2, we presented the results of blood glucose concentration C(t) for various values of Ci and time t with
fixed values of α, V and k.

From Table 2, it can be observed that, as time increases, blood glucose concentration decreases for all selected
values of initial concentration Ci.

It is also notice that the time for achieving normal blood glucose concentration C(t) increases as the initial
concentration of glucose Ci decreases, this results is supported by the graph, which is plotted in Fig. 3.

Table 2. Blood glucose concentration C(t) for various values of Ci and time t with α = 280, V = 45
and k = 0.058.

Time initial concentration of glucose Ci

t 320 325 330 335 340

0 320.00 325.00 330.00 335.00 340.00

10 226.38 229.18 231.98 234.78 237.58

20 173.96 175.53 177.10 178.67 180.23

30 144.62 145.49 146.37 147.25 148.13

40 128.18 128.68 129.17 129.66 130.15

50 118.98 119.26 119.53 119.81 120.08

60 113.83 113.99 114.14 114.30 114.45

70 110.95 111.04 111.12 111.21 111.29

80 109.33 109.38 109.43 109.48 109.53

90 108.43 108.46 108.48 108.51 108.54

CPU time 0.675/sec
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Fig. 3. Blood glucose concentration C(t) for various values of Ciand time t with α = 280, V = 45
and k = 0.058.

The result of blood glucose concentration C(t) is showed in Table 3 for various values of rate of infusion (α) and
time t when the parameters Ci, V and k are consider as fixed at 280, 45 and 0.058, respectively. It is clear that,

179



Khidir et al.; J. Adv. Math. Com. Sci., vol. 38, no. 10, pp. 172-184, 2023; Article no.JAMCS.106860

as time t increases, blood glucose concentration C(t) decreases for all selected values of rate of infusion (α). Fig.
4 confirms and supports the results obtained by Table 3.

Table 3. Blood glucose concentration C(t) for various values of α and time t with Ci = 280, V = 45
and k = 0.058.

Time rate of infusion α

t 280 281 282 283 284

0 320.00 325.00 330.00 335.00 340.00

10 226.38 229.18 231.98 234.78 237.58

20 173.96 175.53 177.10 178.67 180.23

30 144.62 145.49 146.37 147.25 148.13

40 128.18 128.68 129.17 129.66 130.15

50 118.98 119.26 119.53 119.81 120.08

60 113.83 113.99 114.14 114.30 114.45

70 110.95 111.04 111.12 111.21 111.29

80 109.33 109.38 109.43 109.48 109.53

90 108.43 108.46 108.48 108.51 108.54

CPU time 0.705/sec
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Fig. 4. Blood glucose concentration C(t) for various values of α and time t with Ci = 230, V = 45
and k = 0.058.

In Table 4. presents the computed results of blood glucose concentration C(t) for various values of the volume
V and time t with fixed values of Ci = 320, α = 280 and k = 0.058. From Table 4, it can be noted that, as
time increases, blood glucose concentration decreases for all selected values of volume V . The same conclusion
is confirmed by the graph 4.
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Table 4. Blood glucose concentration C(t) for various values V and time t with Ci = 320, α = 280
and k = 0.058.

Time volume V

t 45 46 47 48 49

0 320.00 320.00 320.00 320.00 320.00

10 226.38 225.36 224.37 223.43 222.53

20 173.96 172.36 170.83 169.36 167.95

30 144.62 142.69 140.85 139.09 137.40

40 128.18 126.08 124.07 122.14 120.29

50 118.98 116.78 114.67 112.65 110.71

60 113.83 111.57 109.41 107.33 105.35

70 110.95 108.66 106.46 104.36 102.34

80 109.33 107.02 104.81 102.69 100.66

90 108.43 106.11 103.89 101.76 99.72

CPU time 0.686/sec

Table 5 concluded that, as time increases from 0 to 90, blood glucose concentration C(t) decreases at various
values of velocity of elimination k when the other parameters Ci, α and V are fixed at 320, 280 and 45,
respectively. Fig. 6 plotted the blood glucose concentration C(t) against time t for selected values of velocity of
elimination k when Ci = 320, α = 280 and V = 45. From Fig. 6, it is clear that as time t increases, the blood
glucose concentration C(t) decreases for all selected values of velocity of elimination k.

Table 5. Blood glucose concentration C(t) for various values of k and time t with
Ci = 320, α = 280 and V = 45.

Time velocity of elimination k

t 0.058 0.060 0.062 0.064 0.066

0 320.00 320.00 320.00 320.00 320.00

10 226.38 222.41 218.51 214.69 210.94

20 173.96 168.85 163.92 159.16 154.57

30 144.62 139.46 134.55 129.88 125.44

40 128.18 123.33 118.75 114.44 110.38

50 118.98 114.47 110.25 106.30 102.60

60 113.83 109.61 105.68 102.01 98.58

70 110.95 106.95 103.22 99.75 96.50

80 109.33 105.48 101.90 98.55 95.43

90 108.43 104.68 101.19 97.92 94.87

CPU time 0.725/sec
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Fig. 5. Blood glucose concentration C(t) for various values of V and time t with Ci = 320, α = 280
and k = 0.058

0 10 20 30 40 50 60 70 80 90

100

150

200

250

300

t

C
(t
)

 

 

k = 0.058

k = 0.060

k = 0.062

k = 0.064

k = 0.066

20 25 30
140

150

160

170

Fig. 6. Blood glucose concentration C(t) for various values of k and time t with Ci = 320, α = 280
and V = 45.

5 Conclusion

In this study, authors fruitfully applied new technique for solving linear Volterra integral equation. The technique
suggested a new matrix used instead of the integral operator together with Chebyshev pseudospectral method.
The using of this operational integral matrix allow us to replaced the integral equation to a system of linear
algebraic equations. The efficient and reliability of the method are confirmed and applied on medical field during
an intravenous injection for finding the concentration of blood glucose for patient at any particular time. This
method gives the solution of problem of blood glucose concentration and provides us the required duration to
achieve normal blood glucose concentration, which is very important for patients with diabetes mellitus. The
numerical solutions have been shown in tables and graphs and also compared with the exact solutions. It found
that the technique is very accurate and easy to apply and it is sufficient to give good agreement with the exact
solution. Also, we can conclude that from this study, as time increases, blood glucose concentration decreases at
all values of the constant velocity of elimination, the proportion of the of infusion, the volume in which glucose
is distributed, and the initial concentration of glucose in the blood. Finally, the proposed method described
above is useful method in solving Volterra and Fredholm integral equations and can be generalized for non linear
Volterra-Fredholm integro-differential equations.
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