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In this paper, the complete discrimination system method is used to construct the exact traveling wave solutions for fractional
coupled Boussinesq equations in the sense of conformable fractional derivatives. As a result, we get the exact traveling wave
solutions of fractional coupled Boussinesq equations, which include rational function solutions, Jacobian elliptic function
solutions, implicit solutions, hyperbolic function solutions, and trigonometric function solutions. Finally, the obtained solution

is compared with the existing literature.

1. Introduction

The coupled system is composed of two or more differential
equations (include ordinary differential equations, partial
differential equations fractional partial differential equations,
and stochastic partial differential equations) [1-3]. It is a
very important class of mathematical and physical equa-
tions. In recent years, coupled systems have been widely
studied by scholars because they come from physics, chem-
istry, communication, and engineering [4-8]. Among them,
constructing the exact traveling wave solution of this kind of
coupled system is a very important topic. Many meaningful
methods have been proposed to solve the exact solutions of
coupled systems, including Lie symmetry analysis [9], the
method of dynamical systems [10, 11], Fan subequation
method [12], generalized Jacobi elliptic function expansion
method [13], extended modified auxiliary equation map-
ping method [14], and extended modified auxiliary equa-
tion mapping method [15].

The fractional coupled Boussinesq equations [16, 17]
are a very important coupled system, which is usually

used to simulate nonlinear shallow water surface wave
phenomena.

0<afB<1,b#0.

Diu(t, x) + fov(t, x)=0,
u(t, x) =0,
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(1)

In [16], Muhannad et al. constructed the traveling wave
solutions of fractional coupled Boussinesq equations by
using the modified extended Tanh method. In [17], Khatun
et al. obtained some explicit solutions of fractional coupled
Boussinesq equations by the double (G'/G, 1/G) expansion
method. The work of references [16, 17] is based on the
Jumarie’s modified Riemann-Liouville derivative to study
fractional coupled Boussinesq equations. Unfortunately,
many literatures [18-20] have reported that the Jumarie’s
modified Riemann-Liouville derivative do not satisfy the
chain rule and Leibniz formula. Therefore, it is urgent to
find a new fractional derivative that can not only satisfy
the chain rule but also obey Leibniz formula. In [21], Khalil
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et al. gave the definition and properties of the fractional
derivative named conformable fractional derivative, which
satisty the above two conditions. The main purpose of this
paper is to attain the exact traveling wave solutions of
fractional coupled Boussinesq equations in the sense of
conformable fractional derivative by using the complete
discrimination system method [22-24].

Next, we review the definition of conformable fractional
derivatives.

Definition 1. Let f :[0,00) — R. Then, the conformable
fractional derivative of f of order « is defined as

f(t+et"™) = f(1)
3

DIf(t) = lim

e—0

Wt €]0,4+00), a € (0, 1].
(2)

The function f is a-conformable differentiable at a point ¢ if
the limit in Equation (2) exists.

Theorem 2. Assume that f, g : (0,00) — R be differentiable
and also « differentiable functions, then chain rule holds

Di(feg)(t)=t""g()"g" (OD;(f(t)] Ly (3)

The structure of this paper is as follows. In Section 2, we
simplify Equation (1) to nonlinear ordinary differential
equations by fractional traveling wave transformation. Then,
the complete discrimination system is used to construct the
classification of all single traveling wave solutions of frac-
tional coupled Boussinesq equations. In Section 3, we give
a summary.

2. Exact Solutions of System (1)

Now, we introduce the transformation

xP t*
E:F_C;’ (4)

where ¢ is constant.

Substituting (4) into Equation (1) and integrating it with
respect to &, we obtain

c—cu+v=0,
(5)

!
¢, —cv+au*—bu'' =0,

where ¢, and ¢, are integral constants.
From the first equation of Equation (5), we have

v=cu—c. (6)

Substituting (6) into the second equation of Equation (5),
we obtain

2 2 "_
G+eac—cu+au —bu'=0. (7)
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Multiplying Equation (8) by u' and integrating it with
respect to &, we obtain

2 2a c 2¢, +2¢,c¢

(u’) :%u3—3u2+%u+2c3, (8)

where ¢; is the integral constant.

Suppose ¢ = (2a/3b)’u, b, =—(c*/b)(2a/3b) ">, b, =
(2¢, + 2¢,¢/b)(2a/3b) 7, and b, = 2c,. Hence, Equation (8)
can be changed to

(¢') =9+ 0.6 + b9 + by ©)
Assume that f(¢) =¢* + by¢® + by + by, A=-27(2b5/

27 + by — byb,/3)* = 4(b, — b2/3)’, and D, = b, — b%/3. Then,
Equation (9) can be written in the following integral form:

X 20\ 13 L d¢
(5) G Eo>—j¢¢3+b2¢2+bl¢+%, (10)

where &, is the integration constant. Then, we will obtain the
classification of all solutions of Equation (10).

Case 1. If A=0 and D, <0, then f(¢) =0 has a double real
root and a single real root. Denote F(¢) = (¢ —y,)*(¢ —y,),
where y, #y,. When ¢ > y,, we have

a4
J(@=7)*(¢-7,)

L VA P i 2 SV
> 1 2)
VY= Y2 VOVt VI Y,
2 arctan =72 Y1 <Y;-

vY2—" YZ_YI’

Then, the solution of Equation (8) is

2a -1/3
uy (1, x) = <@> {(Y1 ~7,) tanh’

— 13 /. B a
[ 6) G e onforons

2a -1/3
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V=7, (2a\'? (xF  t*
[%(;) F—C;—fo Y V12V
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20\ 13
us(t, x) = <%> {(—yl +7,) tan?

PG G| e
(12)

Remark 3. Whena=3,b=1,c=+/5B=1/3,¢,=/5,¢,=3,
¢;=-2, and &, =0, three-dimensional diagram and two-
dimensional diagram of the solution u, (¢, x) of Equation (1)
are drawn in Figure 1, respectively.

Case 2. If A=0 and D, =0, then f(¢) =0 has a triple real
root. Denoting F(¢) = (¢ — y)°, then we have

- « -2
uy(t,x,2) :4(%) " (% - c% —£0> +7. (13)

Case 3. If A>0 and D, <0, then f(v) =0 has three different
real roots, y,, y,, and y;, and y; <y, < ;.

If y, < ¢ <y,, taking the transformation ¢ =y, + (y, -
y,) sin’{, then we obtain

d
L(E-E)= J%
_ J 2(y, = vy) sin { cos {d{
V3 = V1 (v, —yy) sin{ cos {4/1 — m? sin®{
_ 2 J d¢
VY=V /1 -m2 sinz(’
(14)

where m* =y, —y,/y; —y,.
From the definition of Jacobi function and (14), we have

¢=V1+<V2_V1)5”2 (%(E‘%))”")' (15)

Then, the solution of the corresponding Equation (8) is

2a)\ 13
us(t, x) = (%) [Vl +(y,— yl)snz

()G e

2.0

Uy

0 20 40 60 80 1900 8 6
t X

(a) Perspective view of the wave

1.9
1.8
1.7 4
1.6
1.5+
1.4+
1.3
1.2 4
1.1+

1.0

10

[=}
o A
'S
[e)}
©

= o) =
1]

RS

(b) The wave along x

Figure 1: The solution u;(t,x) at a=3, b=1, c=+/5, B=1/3,
o =4/5, =3, ¢c3=-2, and &, =0.

If ¢>7y,, take the transformation ¢ =—y, sin’( +y,/
cos*(. Similarly, the solution of the corresponding Equation
(8) is

ug(t, %) = (E

5 a) 13 [y — 52 (\/)W/z(zmsb)”3 (xPIB - c(t%/a) ~ &), m)
cn? (le(Za/Sb)l/s (xPIB — c(t%/a) — &), m)

(17)



where m* =y, —y,ly; -y,

Case 4. If A<0, then f(¢)=0 has only real root. Denote
E($) = (¢—y)(®* +p +q), where p* — 49 <0.
If ¢ >y, taking the transformation ¢ =y + /y2 +py +¢

tan?(/2, then we obtain
d
E - Eo = J ¢
V@=1) (¢ +ps+a)
V/¥? +py + q tan {/2/cos*¢/2d{

- j (y* + py + q)*" tan {/2/c0s?{/21/1 — m? sin2{

~ 1 J d¢
(y*+py+ q)”4 1 —m? sinzC’

(18)
where m* =1/2(1 -y + p/2/\/y* + py + q).

2\/y+py+q
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From the definition of Jacobi function and (18), we have

en((y? +py+q)" (€~ &), m) =cos .

2Vyitpy+ta (19)
P-y+ /Y +py+q

cos (=

Then, if ¢ >y, the solution of the corresponding
Equation (8) is

2VY +pytq
tren((y+py+a)E-&)m)  (20)

-y +py+gq.

$,(&)=y+

Similarly, the solution of the corresponding Equation
(8) is

. (t x) _ (%)—1/3 -
7A" 3 1+ Cl’l((}/z +py+ q)1/4(2a/3b)71/3 (X‘B//J’ - C<ta/“) - Eo)’ m)

VYLV, [2a\ P [xF e
¢ (yl—yz)tanhzl ! 2(%) __C;_go TVt Y12V

2

e (=y1 +72) tan’ [ D

-2

2a\ 2P /P t*
vy(t, X, 2) 246(317) (/3 —c; —EO> +ey+c,

2

Vit (Z_a
3b

[ NPT D)
¢ Y1+(V2_V1>S”2< B (3_2

—\/V2+PV+‘1]- (21)

B

5"
1 (3) - (?)“’l{m ) cot? [W ()" (- _go)] w} I
)" ) (-] encn

(22)

)€

(75 — y,5m? (m/2(2a/3b)”3 (xP1B — c(t%1a) ~ &), m)
Cc + ¢,
cn? (\/le(zamb)“ (xP1B - c(1/a) - &), m) 1

2\/y2+py+q

2a\ "3
v, (t,x) = b cly+

1+cn ((yz +py+ 51)1/4(261/317)’”3 (xl3/[3 —c(t%e) - 50), m)

-/7? +py+q] +c.

tions of Equation (1) have been obtained by the complete
discrimination system method, and we can easily obtain
the solutions of v of Equation (1) by using (6).

Remark 4. In the time-space fractional coupled Boussinesq
equations, the unknown functions u and v satisfy the rela-
tionship v=cu —¢,. In the paper, the traveling wave solu-
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Remark 5. The solutions obtained in references [16, 17]
mainly focus on hyperbolic function solutions and trigono-
metric function solutions. However, in this paper, not only
the trigonometric function solution and hyperbolic function
solution but also the Jacobian function solution and implicit
function solution are obtained. Therefore, a new solution is
obtained in this paper.

3. Conclusion

The fractional coupled Boussinesq equations, which are
usually used to simulate nonlinear shallow water surface
wave phenomena, are studied by the complete discrimina-
tion system method. A series of new exact solutions are
obtained, including rational function solutions, Jacobian
elliptic function solutions, implicit solutions, hyperbolic
function solutions, and trigonometric function solutions.
Compared with the existing literature [16, 17], the implicit
function solutions and Jacobian function solutions obtained
in the paper are new solutions. Moreover, the complete dis-
crimination system method can also be used to find the exact
traveling wave solutions of other coupled systems. In future
research work, we will focus on the exact traveling wave
solution of more complex coupled systems.
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