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The deterioration or oxidation of themineral oil in transformers poses the risk of

short circuits. Convenient and effectivemethods are expected to be developed.

Carbon-based sensor arrays were used in this study to identify the quality

variations of mineral oil for oil-filled transformers by odors. The sensitive layers

of the odor-sensing system consisted of different types of GC stationary phase

materials and carbon black (CB) mixtures. We made a targeted selection of GC

materials by utilizing the polarities to make a sensor array based on the distinct

components of mineral oil such as alkanes and xylenes by gas chromatography

mass spectrometry (GC/MS) analysis. The response characteristics of the

sensitive layers were used to recognize the mineral oil odors by machine

learning. With laboratory air as the carrier gas, the system could distinguish

mineral oil that has been in use for over 20 years from new mineral oil with an

accuracy of about 93.8%. The identification accuracy achieved was about 60%

for three different concentrations of unused mineral oil and the oxidized

mineral oil created by the transformer’s leakage. When detecting the

oxidized mineral oil with a concentration of more than 50%, the accuracy

rate reached more than 80%. The odor-sensing system in this study will help

inspect mineral oils in the transformer and make leakage judgments in a

short time.
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Introduction

Oil-filled transformers use insulating oil to ensure insulation and cooling. It is known

that the insulating oil inside the transformer gradually deteriorates during transformer

operation, thus requiring periodic replacement (Karthik and Sree Renga Raja, 2012).

Continued operation in a degraded state can cause insulation breakdown (Danikas, 1990).

The life of insulating oil is often 10 years or more. The most widely used insulating oil is

mineral oil, extracted from petroleum (Kaplan et al., 2010). Replacement of insulating oil
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is done under circumstances when loss of conductivity or

oxidation occurs. Premature replacement is costly and wastes

insulating oil. Delayed replacement also increases the risk of

transformer failure and accidents. Periodic inspections are

usually performed once a year, and their analysis is expensive

(Amano, 2002). Regular inspections are also made to check a

certain concentration being at a cautionary level of total

combustible gases (TCG) or dissolved gases (Suwanasri et al.,

2008; Perrier et al., 2012; Mansour, 2015; Loiselle et al., 2020) in

the insulating oil. In addition, it is not easy to detect the

degradation inside transformers that is not visible. Thus, there

is a need for equipment with which we can frequently detect

mineral oil conditions in the transformers set in substations and

factories.

When an exothermic phenomenon occurs inside a

transformer due to insulation breakdown or local heating, the

insulating material undergoes a decomposition reaction that

generates hydrocarbon gas. The generation of gas due to this

abnormal phenomenon has been known for a long time. Since

the gas chromatography mass spectrometry (GC/MS) was put to

practical use, it has become commonly used as a management

tool for transformers (Rouse, 1998; Meshkatodd, 2008). In

general, measurement by GC/MS is difficult to perform in the

field due to the size and cost of the equipment.

There are some reports of sensor-based detection of volatile

gases in mineral oil, such as detection of hydrocarbons by

semiconductor gas sensors, solid oxide fuel cell gas sensors, and

MEMS hydrogen sensors (Ding et al., 2014; Zhang et al., 2018;

Kondalkar et al., 2021). Using a single gas sensor to detect specific

components is not easy for detecting the degradation of mineral oils.

On the other hand, Gamble and Smith (2009) reported that mice

could identify the odor of various mineral oils. The odor-sensing

system developed by our group has an array of 16 channel sensors

with carbon-based sensitive membranes and evaluates odors by

resistance changes (Wyszynski et al., 2017; Yatabe et al., 2021). The

sensitive membrane is a mixture of carbon black (CB) and the

stationary phasematerial of theGC column; there is a wide variety of

GC materials, and the polarity is determined by the McReynolds

constant. GC materials were selected based on properties ranging

from low to high polarity. Sensitive membranes can absorb gas and

then cause a change in electric resistance due to the swelling effect,

which can be used to identify the burning smell of wires (Liu et al.,

2021). Studies using quartz crystal microbalance (QCM) sensors,

SnO2 gas sensor arrays for odor identification of volatile plant oil

(VPO), or vegetable oils such as olive oil have been reported

(Matindoust et al., 2016; Okur et al., 2020). However, there are

no reports on odor detection and identification of mineral oil using

gas sensor arrays.

In this study, we attempted to develop two mineral oil odor

identification options. First, to identify degraded mineral oil for

real-time monitoring of transformers; second, to detect the odor

of oxidized mineral oil for detecting insulating oil leaks. Mineral

oil is extracted from petroleum and hence is complex in

composition. Consequently, we analyzed the vapor

composition of various mineral oils using GC/MS. Degraded

and unused mineral oils were then measured with the odor-

sensing system with 16 channels. In addition, the possibility of

detecting mineral oils with intermediate degrees of degradation

was evaluated. Finally, an attempt was made to identify oxidized

mineral oil from multiple concentration gradients using the odor

sensing system.

Materials and methods

Chemicals and reagents

The unused mineral (UM) oil was a commercially available

product. The deteriorated mineral (DM) oil sample was taken

from transformers that had been in normal operation for over

20 years. Oxidized mineral (OM) oil was prepared according to

the testing methods of electrical insulating oils (JIS C2101). The

acid value of the OM oil sample was 0.06 mg KOH/g. O.D.O

(Nisshin Oillio Group, Ltd., Japan), tetrahydrofuran (THF,

Fujifilm Wako Pure Chemicals), and carbon black (Sigma-

Aldrich) were also obtained.

Composition analysis

A PAL auto sampler system was used for sample pre-

treatment. The parameters for sample pre-treatment were as

follows: sample volume, 100 μl; SPME Fiber, 65 um DVB/PDMS

TABLE 1 GC materials for the sensor array of odor-sensing system.

CH Material
of sensor array

Abbreviation

1 Tetrahydrohyethylenediamine THEED

2 Dimethylpolysiloxane gum OV-1

3 50% phenyl–50% methylpolysiloxane OV-17

4 Diethylene glycol succinate DEGS

5 Poly (ethylene succinate) PES

6 Biscyanopropyl polysiloxane OV-275

7 DC-710 DC-710

8 SP-2330 SP-2330

9 SP-2340 SP-2340

10 PE/F68 PE/F68

11 Reoplex 400 Reoplex400

12 Poly [di (ethylglycol)adipate] PDEGA

13 Apiezon L Apiezon L

14 Poly (ethylene glycol) 20,000 PEG20 K

15 Poly (ethylene glycol) 20 M PEG20 M

16 Dimethylpolysiloxane gum SE-30
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(Sigma-Aldrich, Bellefonte, PA, United States); agitator

temperature, 30°C; and extraction time, 20 min. GC/MS

QP2010 SE (Shimadzu Corporation, Kyoto, Japan) was used

for the composition analysis of oil samples. The parameters for

GC/MS operation were as follows: carrier gas, helium; injector

temperature, 240°C; sample injection time, 1 min; column, HP-

VOC (90 m × 0.25 mm i.d., 0.25 μm film thickness, Agilent

Technologies, Inc., Santa Clara, CA, United States); injection

mode, splitless; oven temperature, from 40°C (3 min) to 260°C

(44 min), with a heating rate of 10°C/min; GC/MS interface

temperature, 240°C; and mass spectrometer, quadrupole.

Instrumentation and methodology

The sixteen kinds of GC materials are shown in Table 1. The

sensitive layers of the sensing array were made with reference to

our previous studies using those 16 kinds of GC materials (Liu

et al., 2021). Sensitive layers were made with a 1 to 1 ratio of GC

materials to carbon black. The sensor array was annealed by

heating at 170°C for one hour under vacuum conditions.

The odor-sensing system used in this study contains

several parts, such as analog-to-digita (A/D) converters,

sensor chamber, pump, and solenoid valves, shown in

Figure 1. The sensor array with 16 channels was mounted

in the sensor chamber. The sensor array is connected to A/D

converters and controlled by a computer unit. The flow path

was switched by solenoid valves, which alternate the flow of

reference gas and sample into the sensor chamber during the

measurement process. When the odor-sensing system is in

standby mode, the flow path is switched to blank (air) and the

incoming and outgoing gases of the sensor chamber pass

through moisture and VOC (volatile organic compounds)

removal filters to speed up the reset of the sensor array. In

the measurement, the sample and the reference gases were

alternately introduced into the sensor chamber every 60 s as

one cycle. Each type of oil sample is measured for 10 cycles, and

a total of 3 sets of measurements are performed. Except for the

first cycle of each set, the data from the remaining 27 cycles

were used as the dataset. The data were recorded at a sampling

rate of 100 times/s for data analysis.

An average moving method was used for smoothing the raw

data before feature selection.We carried out a baseline shift based

on the average of the 1 s data before and after each cycle of the

measurement. The data at 5-s intervals after the introduction of

the sample and the reference gases for 25 s were selected as

features. The maximum values of each channel when measuring

the samples were also used as features. In this way, 11 features

from each channel were selected. Six features were from the

sample introduction and five features were from the

reintroduction of the reference gas. Each cycle of the

measurement with 16 channels has 176 features in total. As

shown in Table 2, we prepared two datasets of different samples

in this study.

Principal component analysis (PCA) was used to observe the

distribution of data in dimensionality reduction. In this study, we

used Python (Version 3.7.11) and the open-source Scikit-Learn

package (Version 1.0.2, http://scikit-learn.org/) for machine

learning. Six classifiers in the Scikit-Learn package were used,

including a linear kernel support vector machine (SVM)

classifier, a k-nearest neighbors (KNN) classifier, a decision tree

classifier, a random forest classifier, a multi-layer perceptron (MLP)

classifier, and a logistic regression classifier. The initial parameters of

the classifiers were as follows: SVM,

C = 1, with the linear kernel; KNN, number of neighbors kN = 5,

with distance weight function; decision tree, where the best split at

each node was chosen, maximum depth = 5; random forest, number

of trees in the forest = 50, maximum depth = 5; MLP, hidden layer =

10, with rectified linear unit (ReLU) transfer function and limited-

memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm;

and logistic regression, C = 1. Oil samples in all datasets were trained

and tested at a ratio of 2:1 for each classifier.

FIGURE 1
Instrumentation of the odor-sensing system.
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Results and discussion

Composition analysis of mineral oil

Figure 2 shows the composition analysis results of mineral oils

using the GC/MS, where the retention time is 1) 4.0–18.0 min and

2) 2.5–35.0 min. Measured mineral oils are the unused mineral oil,

the deteriorated mineral oil, and the oxidized mineral oil.

Identified chemicals are shown in Figure 2A and Table 3. The

results imply that the UM (unused mineral) oil is characterized by

a high content of some ketones. The DM (deteriorated mineral) oil

shows a higher content of aromatic compounds such as toluene

and xylene than the other two oils, whereas the oxidized mineral

oil shows a lower content of alcohols and a higher content of acids.

All the different types of mineral oil contain significant amounts of

carbon-containing compounds, and the content of alkanes does

not change significantly in the various oil samples. Many

carbonaceous compounds with higher molecular weights appear

at the retention time from about 23.0–32.5 min in Figure 2B. Due

to the large variety of isomers, it is difficult to accurately speculate

on the composition contained. From the GC/MS results in

Figure 2A, it is possible to understand the presence of different

characteristics in the samples by the content and type of low

boiling point components. But all oil samples contain a high

number of similar substances that may make identification of

the gases difficult.

Basic response of sensor array

Figure 3 shows one example of response of the sensor array to

oxidized mineral oil (from 2 to 7 measurement cycles). The

vertical and horizontal axes indicate the intensity of each channel

response and the number of measurement rounds of the sample

(each horizontal cell indicates one test of measurement for 120 s),

respectively. When measuring samples, the sample and the

reference gases were alternately introduced into the sensor

chamber every 60 s. Each sample was measured for 10 cycles,

and a total of 3 sets of measurements were performed. Each

measurement cycle was preceded by the passage of the sample

(from major to minor grid lines) and then the reference gases

(from minor to major grid lines). The data in pink are the raw

TABLE 2 Datasets of oil samples in this study.

Dataset a Dataset B

Sample UM oil, DM oil, MM oil (the mixture of UM and DM oil) Air, 25% OM oil, 50% OM oil, 100% OM oil

Number of features 176 176

Sample size 81 108

FIGURE 2
Composition analysis results of mineral oils; the retention time is (A) 4.0–18.0 min and (B) 2.5–35.0 min.
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TABLE 3 Components detected by GC/MS.

Retention time (min) Name or type Unused mineral oil Deteriorated mineral oil Oxidized mineral oil

3.91 Carbon dioxide ○ ○ ○
5.12 Acetaldehyde ○ ○ ○
6.06 Ethanol ○ ○ ○
6.89 Formic acid – ○ ○
6.97 Acetone ○ ○ ○
7.03 Propanal – – ○
8.40 1-Propanol – – ○
8.79 Acetic acid – ○ C

9.22 Boric acid – – ○
9.55 2-Butanone ○ ○ ○
10.18 1-Propanol, 2-methyl- ○ – –

11.13 1-Butanol – ○ ○
11.38 Silanediol, dimethyl- ○ ○ ○
11.54 2-Propanol, 1-methoxy- ○ – –

11.90 2-Pentanone – – ○
11.91 Heptane – ○ –

12.20 Pentanal – – ○
12.89 Cyclohexane, methyl- – ○ ○
13.22 Methyl Isobutyl Ketone ○ – –

13.54 Heptane, 2-methyl- – ○ –

13.61 Butanoic acid – – ○
13.74 1-Pentanol – – ○
14.11 Toluene ○ C ○
14.36 Octane ○ ○ ○
14.70 Hexanal – – ○
15.81 Octane, 2-methyl- ○ ○ ○
15.96 2-Heptanone – – ○
16.00 Octane, 3-methyl- ○ ○ ○
16.33 p-Xylene – ○ –

16.48 m-Xylene – ○ –

16.56 Nonane ○ ○ ○
16.93 Heptanal – – ○
17.09 o-Xylene – ○ –

17.87 Nonane, 2-methyl- ○ ○ ○
18.04 Nonane, 3-methyl- ○ ○ ○
18.28 Benzene, propyl- – ○ –

18.40 Benzene, 1-ethyl-4-methyl- – ○ –

18.45 Benzene, 1-ethyl-3-methyl- – ○ –

18.57 Decane ○ ○ ○
18.86 Benzene, 1-ethyl-2-methyl- – ○ –

19.13 Mesitylene – ○ –

19.65 Decane, 4-methyl- ○ ○ ○
19.76 Decane, 2-methyl- ○ ○ ○
19.81 Benzene, 1,2,3-trimethyl- – ○ –

19.91 Decane, 3-methyl- ○ ○ ○
20.12 Benzene, 1-methyl-3-propyl- – ○ –

20.21 Benzene, 1,3-diethyl- – ○ –

20.40 Undecane ○ ○ ○

(Continued on following page)
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TABLE 3 (Continued) Components detected by GC/MS.

Retention time (min) Name or type Unused mineral oil Deteriorated mineral oil Oxidized mineral oil

20.52 Benzene, 1-methyl-2-propyl- – ○ –

20.70 1-Decanol, 2-ethyl- – – ○
20.82 Benzene, tert-butyl- – ○ –

21.49 Undecane, 2-methyl- ○ ○ ○
21.64 Undecane, 3-methyl- ○ ○ ○
22.09 Dodecane ○ ○ ○
23.66 Tridecane ○ ○ ○
25.12 Tetradecane ○ ○ ○
26.50 Pentadecane ○ ○ ○

–: Not detected; ○: detected; C: detected to a large quantity.

FIGURE 3
Responses of sensors with 16 types of GC materials to oxidized mineral oil. The interval from major grid to minor grid lines indicates that the
sample gases were alternately introduced into the sensor chamber. (A) THEED; (B)OV-1; (C)OV-17; (D) DEGS; (E) PES; (F)OV-275; (G) DC-710; (H)
SP2330; (I) SP-2340; (J) PE/F68; (K) Reoplex400; (L) PDEGA; (M) Apiezon L; (N) PEG20K; (O) PEG20M; (P) SE-30.
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data and the data in blue were smoothed using the moving

average method. The responses of channels rose slowly with

exposure to the sample gas. The first measurement cycle of each

channel was not very stable because the flow path was switched

from blank to the sample gas. We omitted the first cycle data

when analyzing the sensor response. Therefore, the sample size of

each type of oil was 27 in the dataset for further analyses. We

found some channels showed responses with triangle waveforms,

while other channels hardly showed any response.

Deterioration evaluation of mineral oil

If it is possible to distinguish between unused and

deteriorated mineral oil, we can evaluate the degree of

deterioration of the mineral oil. Thus, the identification of

unused mineral (UM) oil, deteriorated mineral (DM) oil, and

their mixed mineral (MM) oil was carried out.

First, PCA analysis was performed using the standardized

obtained dataset in Table 2. Figure 4 shows that there is fair

discrimination among these three samples along the PC1 axis. In

particular, UM oil and DM oil are clearly separated on the PC1 axis.

PC1 and PC2 explain nearly 85%of the variance. As can be seen from

the GC/MS results, DM oil contains a higher number of benzene-

based compounds such as toluene and xylene than that of UM oil.

These differences in characteristics may affect the PCA results.

Next, the classifications of two classes and three classes were

carried out using six classifiers. The two classes are UM oil and

DM oil. The three classes are UM oil, MM oil, and DM oil. The

results are shown in Table 4. In the classification of the two

classes, the accuracy was achieved at an average of 93.8%. The

PCA results in Figure 4 show that UM oil and DM oil can be

clearly separated on the PC1 axis. We consider the separation as

the cause for high classification accuracy using these classifiers. In

the classification of the three classes, the accuracy was achieved at

an average of 74.3%. The addition of MM oil, which is an

intermediate state between UM oil and DM oil, made

identification difficult and reduced the identification accuracy,

but the accuracy was still 70% or more, so the degree of oil

deterioration can be evaluated by this method.

Detection of oxidized mineral oil

Mineral oil will be oxidized when exposed to air. One

indicator to evaluate the degree of oxidation is the oil’s acid

value, which is expressed as the amount of KOH needed to

neutralize 1 g of oil. The acid value of the oxidized mineral (OM)

oil in this experiment was 0.06 mg KOH/g. To detect the oil

leaking from the transformer, the OM oil was evaluated in four

concentrations of 100%, 50%, 25%, and 0%. The samples were

diluted with O.D.O., which is an oil that does not generate VOCs.

The sample of 0% was only O.D.O., which is listed with “Air” in

the graph legend.

FIGURE 4
PCA results for the unused mineral (UM) oil, the deteriorated
mineral (DM) oil, and the mixture of UM and DM mineral (MM) oil.

TABLE 4 Accuracy rate of oxidized mineral oil in different concentration percentages.

Classifier Parameter UM vs. DM oil
[%]

UM vs. MM vs.
DM oil [%]

SVM (linear) C = 1 94.4 79.0

KNN (with distance weighting) kN = 5 92.6 69.1

Decision tree Maximum depth = 5 100 74.1

Random forest Maximum depth = 5 92.6 70.4

MLP (with L-BFGS algorithm) Hidden layer = 10 90.7 76.5

Logistic regression C = 1 92.6 76.5

Average — 93.8 74.3
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First, PCA was carried out using the standardized obtained

dataset in Table 2. Figure 5 shows the PCA results. PC1

(70.1%) and PC2 (4.3%) described previously account for

75% of the total variance of the dataset. The dots of air are

clustered in the positive direction of PC1 compared to those of

the OM samples, and are clearly distinguishable from the

results of OM oils. Furthermore, dots of OM oil with different

concentrations are clustered on the left side of PC1 and tend to

be distributed along PC2 with the concentrations. However,

there are some overlapping areas in the results for the three

different concentrations of OM oils. The discrimination of

OM oils with the different concentrations was difficult as a

result of PCA analysis.

Next, the discrimination of the samples for the four classes in

Table 2 was performed using classifiers. We tried to get better

results by using different parameters. The parameters and results

of different classifiers are presented in Table 5. The linear SVM

classifier obtained the highest classification accuracy rate of about

70% (C = 1 and 100). The accuracy rates of KNN, random forest,

MLP classifier, and logistic regression were about 60% for

different parameters. The result for the decision tree classifier

was only 52% when the maximum depth = 5. As suggested by the

results of PCA analysis, it was not possible to obtain high

FIGURE 5
PCA results for different concentrations of oxidized mineral
(OM) oil.

TABLE 5 Accuracy rates by four-class classification of oxidizedmineral oil in different concentration percentages (Air vs. 25% vs. 50% vs. 100%OMoil).

Classifier Parameter Accuracy rate [%] Average [%]

SVM (linear) C = 0.01 65.7 70.1

C = 1 72.2

C = 100 72.2

KNN (with distance weighting) kN = 1 52.8 56.8

kN = 3 59.3

kN = 5 58.3

Decision tree Maximum depth = 1 42.6 47.2

Maximum depth = 3 46.3

Maximum depth = 5 52.8

Random forest Maximum depth = 5 — 59.3

MLP (with L-BFGS algorithm) Hidden layer = 10 59.3 61.1

61.1

63.0

Logistic regression C = 0.01 62.0 63.9

C = 1 64.8

C = 100 64.8
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discrimination accuracy in the classification of four classes.

Therefore, it is difficult to quantitatively detect the amount of

oil leaking at present. The discrimination of air and OM as the

classification of two-class was then carried out for the purpose of

detecting whether oil is leaking or not. Table 6 shows the results.

The accuracy of 25% OM is lower than 70%. However, the

accuracy of 50% and 100% is higher than 80%. Thus, it is

suggested that if the amount of leaking oil is large to some

extent, it can be detected.

Finally, the feature importance values were calculated using

the mean decrease impurity in the case of a random forest

classifier (Breiman, 2001) to improve the accuracy of the

discrimination of the OM oil. Figure 6 shows the results. By

knowing the importance of features, we can expect to improve

the accuracy by changing the material of the less important

channel and developing the material of higher importance

channel. To better compare the differences between sensor

materials, we selected 11 features of each sensor channel in an

unsupervised way. Figure 6A shows the importance values of

11 type features. The error bars were calculated by cross-

validating the dataset. The importance of each feature type

was obtained by summing 16 channels. S1 to S5 and Max are

TABLE 6 Accuracy rates by two-class classification of oxidized mineral oil.

Classifier Parameter Air vs. 25% OM
oil [%]

Air vs. 50% OM
oil [%]

Air vs. 100% OM
oil [%]

SVM (linear) C = 1 66.7 81.5 100

KNN (with distance weighting) kN = 5 63 87 88.9

Decision tree Maximum depth = 5 70.4 85.2 81.5

Random forest Maximum depth = 5 74 88.9 90.7

MLP (with L-BFGS algorithm) Hidden layer = 10 64.8 87 96.3

Logistic regression C = 1 64.8 85.2 100

Average - 67.3 85.8 92.9

FIGURE 6
Feature importance for different concentrations of oxidized mineral (OM) oil by random forest classifier. (A) Cumulative by feature type.
S1–S5 and Max depict features of sampling, R1–R5 depict features of from reference measurement; (B) Cumulative by sensor array channel.
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features from sample measurement, and features R1 to R5 are

features from the reference measurement. All features have

importance values of more than 6%. Feature S5 has a higher

importance value at about 14%. Changes in the sensor array’s

response as it absorbs or releases the sample gas all contribute to

the classification. As shown in Figure 6B, the feature importance

of all channels was more than 3% for the classification of OM oil.

There was no channel which has particular low importance.

Channels with high-polarity GC materials (CH1:THEED, CH12:

PDEGA, and CH15:PEG20 M) and low-polarity GC materials

(CH13:Apeizon L and CH16:SE-30) had better performance in

this study. But channels with medium-polarity GC materials

share less importance values. To improve the accuracy, we will

change the material of channels which have lower importance in

our future work.

Conclusion

The results imply that the UM (unused mineral) oil is

characterized by a high content of some ketones. The DM

(deteriorated mineral) oil shows a higher content of aromatic

compounds such as toluene and xylene than the other two oils.

In contrast, the oxidized mineral oil shows a lower content of

alcohols. All the different types of mineral oil contain significant

amounts of carbon-containing compounds. Due to the complex

composition of mineral oils, odor identification is challenging.

The classification of the two classes of UM oil and DM oil

can achieve an accuracy rate of about 93.8%. It is enough to

distinguish the DM oil. The accuracy rate decreases to about

75% in the three-class classification of UM oil, MM oil, and

DM oil. For mineral oils with intermediate degrees of

deterioration, the recognition accuracy can be expected to

improve.

The sensor array used in this study can distinguish very

accurately between the presence or absence of mineral oil odors.

We could find that the accuracies reach more than 80% for

concentrations above 50%. The accuracy decreases when

distinguishing between different concentrations of OM

(oxidized mineral) oil. The average accuracy rate of the

classification of three concentration-level mineral oils and the

air was nearly 60% by six classifiers. The accuracy rate could

reach about 70% when using the linear SVM classifier only. This

is probably due to the similarity of the gases playing a dominant

role in feature recognition. The PCA shows some overlapping

areas when the oil was in low concentrations. The overlapping

areas may affect the classification accuracy rates. Moreover, we

found little difference in the feature importance of 16 channels

for three concentrations of OM oil. The sensor array has a good

balance of the types of GC material. To improve the recognition

accuracy, the channels with low importance can be replaced in

the future.
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