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ABSTRACT

In this study, we introduce the generalized hyperbolic Woodall numbers. As special cases, we study with
hyperbolic Woodall, hyperbolic modified Woodall, hyperbolic Cullen numbers and hyperbolic modified Cullen
numbers. We present Binet's formulas, generating functions and the summation formulas for these numbers.
Besides, we give Catalan’s and Cassini’s identities and present matrices related to these sequences.

Keywords: Woodall numbers; cullen numbers; hyperbolic numbers; hyperbolic Woodall numbers; hyperbolic Cullen
numbers.
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1 INTRODUCTION

In this section, we give some information which we need about the definition and properties of Woodall numbers.
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1.1 Woodall Numbers

The generalized Woodall sequence {W,}n,>0 = {W,(Wo, Wi, W>,5,—8,4)},.>0 is defined by the third-order
recurrence relations
Wi =5Wpo1 — 8Wn_2 +4W, 3 (1.1)

with the initial values Wy, W1, W> not all being zero. The sequence {W,},>0 can be extended to negative
subscripts by defining

—n = 2W_(n-1) = ZW—<n—2> + iW—m—:ﬂ
forn =1,2,3,.... Therefore, recurrence (1.1) holds for all integer n.
In the following theorem, we give Binet formula of generalized Woodall numbers.
Theorem 1.1. [53, Theorem 1.1] Binet formula of generalized Woodall numbers can be given as

W, = (A1 +A2n) x 2" + As

where
A = —Wo+4W; — 3W0,
Wy — 3W1 + 2Wh
A2 = f’
Az = Wa —4Wp +4Wy,
that is,

Wy — 3W1 + 2Wo

Wrn = (W2 + 4W7 — 3Wh) + 5

n) x 2" + (Wa — 4W; 4+ 4Wy). (1.2)
Here, o, 8 and v are the roots of the cubic equation

2 =5t 48 —4=(x—2)>%(x—1)=0,
wherea=p=2,v=1.

Now, the first few generalized Woodall numbers with positive subscript and negative subscript are given in the
following Table 1.

Table 1. A few generalized Woodall numbers

n Wy, W_,

0 Wo Wo

1 Wy 1 (8Wo — 5W1 + Wa)

2 Wo 1 (11Wo — 9W1 + 2W3)

3 AWy — 8Wy + 5W> 15 (52Wo — 4TW1 + 11Ws)
4 20Wo — 36Wy + 17TW> 1= (B7TWo — 54W1 + 13Ws)
5 68Wo— 116W1 +49W2 & (240Wo — 233W1 + 57Wa)

64
Now, we define four specific cases of the sequence {W,.}.

The Woodall numbers {R,}, sometimes called Riesel numbers, and also called Cullen humbers of the second
kind, are numbers of the form
R,=nx2"-1.

The first few Woodall numbers are:
1,7,23,63,159, 383,895, 2047, 4607, 10239, 22527,49151, 106495, 229375, 491519, 1048575, . ..

(sequence A003261 in the OEIS [47]). Woodall numbers were first studied by Allan J. C. Cunningham and H. J.
Woodall in [13] in 1917, inspired by James Cullen’s earlier study of the similarly-defined Cullen numbers.
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The Cullen numbers {C,, } are numbers of the form
Cpn=nx2"+1.
The first few Cullen numbers are:
1,3,9,25,65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, 229377, 491521, ...

(sequence A002064 in the OEIS). Woodall and Cullen sequences have been studied by many authors and more
detail can be found in the extensive literature dedicated to these sequences, see [5,6,13,24,26,29,32,37,38,39,40].
Note that {R,,} and {C,,} hold the following relations:

R, = A4Rp_1 —4Rn_»—1,
Cn = 4Cp_1 —A4C,_5+1.

Note also that the sequences {R,} and {C,,} satisfy the following third order linear recurrences:

R, = bR, 1—8R, o -|-4R»,1737 Ro=-1,R = 1,R2 =17,
Cn = 5Ch_1—8Ch_2+4C,_3, Co=1,C1 =3,C2 =09.

If we set Go = 0, G1 = 1, G2 = 5 then {G,,} is the well-known modified Woodall sequence, if we set Hy = 3,
H, = 5, H, = 9 then {H,} is the well-known modified Cullen sequence. In other words, modified Woodall
sequence {G, }»>0 and modified Cullen sequence {H, }.>o are defined by the third-order recurrence relations

Gn =5Gn-1 —8Gn_2+ 4G1n737 Go=0,G1 = 17G2 =35, (13)

H,=5H, 1 —8Hn_o+4H, 3, Ho=3,H, =5 Hy=09, (1.4)

The sequences {Gr}n>0, {Hn}n>0, {Rn}tn>0 and {C,}.>0 can be extended to negative subscripts by defining

5 1

G—n = 2G7(n71) - ZGf(n72) + ZG—(nfli),
5 1

H_, = 2H—(n—1) - ZH—(n—Q) + ZH—(n—3)7
5 1

R = 2R_(n-1) = jR-(n-2) + 1 R-(n-3),
5 1

Con = 20_(n_1)— Zcf('rLfQ) + 1047%3),

forn = 1,2, 3, ... respectively. Therefore, recurrences (1.3) and (1.4) hold for all integer n.

Using the initial conditions in (1.2), Binet's formula of modified Woodall, modified Cullen, Woodall and Cullen
sequences are

G, = (n—1)2"+1,
H, = 2"'41,

R, = nx2"—-1,
C, = nx2"+1.

Now, we give the generating function and the Cassini identity for generalized Woodall numbers.

The generating function for generalized Woodall numbers is

i W — Wot (Wh = 5Wo)x + (Wa — 5W1 + 8Wo)z2
— e 1— 5z + 822 — 4a3 '
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The Cassini identity for generalized Woodall numbers is
1

WoiitWn1 — W2 = Z2”(A + B2™ 4+ Chn).
A = AWE+WZ — AWoWi + AWoWa — 5Wi Wa.
B = —AWEZ —9W? — W3 + 12WoW;1 — AWoWa + 6W1 W.
C = 8WE+12W7 + Wi — 20WoWi + 6WoWs — TW, Wo.

For further information about generalized Woodall numbers, see [53].

Next, we give some information about special numbers. In 1989, |. Kantor is worked the hypercomplex numbers
systems, [31]. This numbers systems are extensions of real numbers. Some commutative some of hypercomplex
number systems are defined below.

Complex numbers are
(C:{z:aJrib:a,bE]R,i2 = -1},

hyperbolic (double, split-complex) numbers [48] are
H={h=a+jb:a,beR,j*=1,j#+1}

and dual numbers [20] are
D={d=a+¢eb:abecR,e”=0¢#0}.

One of the non-commutative examples of hypercomplex number systems are quaternions, [28],
Hg = {q = ao + ta1 + jaz + kas : ao, a1, az2,a3 € R, i? :j2 =kK*= ijk = —1},

octonions [3] and sedenions [51]. The algebras C (complex numbers), Hg (quaternions), O (octonions) and
S (sedenions) are real algebras obtained from the real numbers R by a doubling procedure called the Cayley-
Dickson Process. This doubling process can be extended beyond the sedenions to form what are known as the
2"-ions (see for example [7], [30], [41])-

Quaternions were invented by Irish mathematician W. R. Hamilton (1805-1865) [28] as an extension to the complex
numbers. Hyperbolic numbers with complex coefficients are introduced by J. Cockle in 1848, [12].

Now, we will give some information related to hyperbolic numbers. We present hyperbolic numbers as follows:
H={h=a+jb:a,beR, j>=1, j#=+1}.

The base elements {1, j} of hyperbolic numbers satisfy the following properties (commutative multiplications):

Lj=3j,j°

=jj=1
where j symbolizes the hyperbolic unit (52 = 1).
The multiplication of two hyperbolic numbers m = ag + ja1 and n = by + jb: is
mn = aobo + a1b1 + j(aob1 + a1bo).
Sum of two hyperbolic numbers m = ag + ja1 and n = by + jb; is
m+mn=ao+bo+ j(ar + b1).

Now, we give details about hyperbolic and some information related to hyperbolic sequences from the literature.
* Richter, [44] worked On Hyperbolic Complex Numbers.

» Gurses, Sentirk and Yce, [25] studied A Study on Dual-Generalized Complex and Hyperbolic-Generalized
Complex numbers.
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Cockle [12] worked the Hyperbolic numbers with complex coefficients.
Aydin, [1] worked hyperbolic Fibonacci numbers given by

Fn=F,4hF,1, (h*=1)

where Fibonacci numbers, respectively, given by F,, = F,_1 + F,,—2 with the initial condition F4 = F> =1,
(n>3).

Dikmen, [17] worked hyperbolic Jacobsthal numbers given by

Jn=Jn+hdni, (B =1)
where Jacobsthal numbers, respectively, given by J,, = J,—1 + 2Jp—2, Jo =0, J1 = 1.
Tas, [74] worked on hyperbolic Jacobsthal-Lucas sequence given by

HJy = Jn + hdpy1, (h* =1)

where Jacobsthal-Lucas numbers, respectively, given by J,4+2 = Jh+1 + 2J,, with the initial condition
Jo=2,J1 =1.

Soykan and Tagdemir, [57] worked on hyperbolic generalized Jacobsthal numbers given by
Vi =Va+hViir, (B2 =1)

where generalized Jacobsthal numbers are given by V,, = V,,_1 + 2V,,_2, Vo = a, Vi = b (n > 2) with the
initial values Vj, V1 not all being zero.

Diskaya, Menken, Catarino, [19] worked on hyperbolic Leonardo and hyperbolic Francois quaternions given
by

HL, = Lneo+ Lnyier+ Lny2ez + Loyses,
HF, = Fneo+ Fnyre1 + Fnyoez + Fnyzes
where Francois and Leonardo numbers, respectively, given by F, = F,._1 + Fn—2 + 1, with the initial

condition 7o =2, 71 = 1 and L, 42 = Ln+1 + Ly, with the initial condition £, =1, £1 = 1.
Dikmen and Altinsoy, [18] worked on third order hyperbolic Jacobsthal numbers given by

3 3 3
JP = JP 4+ ng®),
i = 9 RS,

where Jacobsthal numbers, respectively, given by J{* = J&, 4%, 4273 j3 — 0 g =1, P =1,

i =580+ 50, 42505, 58 = 2,50 =1, =5.

Next section, we present the hyperbolic generalized Woodall numbers and their generating functions and Binet's
formulas.

2 HYPERBOLIC GENERALIZED WOODALL NUMBERS

In this section, we define hyperbolic generalized Woodall numbers and present generating functions and Binet’s
formulas for these numbers.

We now define hyperbolic generalized Woodall numbers over H. The nth hyperbolic generalized Woodall number

HWy = Wy 4+ jWhia. (2.1)
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with the initial values HWoy, HW1, HWa. (2.1) can be written to negative subscripts by defining,
Han = an +jW7n+1-

so identity (2.1) holds for all integers n.

The special cases of the nth dual hyperbolic generalized Woodall numbers are given as

HGn = Gn+jGns,
HH, = Hp,+jHn,
HR, = Rp+jRni1,
HC, = Cn+jCntr.

Hence, for n > 0, the following identity is true.
HW,, = 5HWy1 — 8HWy_o + 4HW,,_3. (2.2)
The sequence {HW,, }.>o can be extended to negative subscripts by defining
HW_,, = —2HW (1) — %Hw_m_z) - iHW_(n_g).

forn =1,2,3,... respectively. Therefore, recurrence (2.2) holds for all integer n.

The few hyperbolic generalized Woodall numbers with positive subscript and negative subscript are given in the
following Table 2.

Table 2. A few hyperbolic generalized Woodall numbers

n HW, HW_,,
0 HWo HWo
1 HW %(SHWO — SHW1 + HW?)
2 HWo T(1IHW, — 9HW, + 2HW?)
3 AHWy — 8HW, + 5HW> = (52HWo — ATHW: + 11HW?)
4 20HWo — 36 HW + 1THW> %6(57HW0 — B4HW + 137‘[W2)
5 68HWy — 116 HW1 + 49HW, &(2407—[W0 — 233HW1 + 5THW?)
Note that

HWO - WO + jWh

HW = Wi+ Ws,

HWy = Wy Jerg = Ws +j(4W0*8W1+5W2).

For hyperbolic modified Woodall numbers (taking W,, = G, Go =0, G1 = 1, G2 = 5), we get

HGo = Go+jGi=1],
HG1 = Gi1+jG2 =1+ 5j,
HG2 = G2+ jG3=5+17j

and for hyperbolic modified Cullen numbers (taking W,, = H,,, Hy = 3, H1 = 5, H> = 9), we get

HHy = Ho+jH1 =345,
HH; = H +]H2:5+9.77
HHy = Ho+ jHs—9+17j
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and for hyperbolic Woodall numbers (taking W,, = R,,, Ro = —1, R1 = 1, R2 = 7), we get

HRo
HE
HR2

= Ro+jR:

= R1+jR2=1+7j,
= R2+jR3:7+23j

and for hyperbolic Cullen numbers (taking W,, = C,,, Co = 1, C1 = 3, C2 = 9), we get

HCo
HC
HCo

= Co+j01=1+3j,
= C1+j02=3+9j,
= (s +jC3=9+25j.

A few hyperbolic modified Woodall numbers, hyperbolic modified Cullen numbers, hyperbolic Woodall numbers
and hyperbolic Cullen numbers with positive subscript and negative subscript are given in Table 3, Table 4, Table

5 and Table 6.

Table 3. Hyperbolic modified Woodall numbers

n HG., HG_
0 J J
1 1+5j 0
2 5+ 175 1
3 17+495 14+ 15
4 49+1295 415
5 12943215 B4+ Hj

Table 4. Hyperbolic modified Cullen numbers

n HH, HH_,
0 3455 3+ 5
1 549 2+3j
2 94175 2 +3j
3 17+335 2+ 2;
4 334655 9 + 2]
5 6541295 %g + 23

Table 5. Hyperbolic Woodall numbers

n HR, HR_,
0 —1+j 71+y

1 1+75 —7—‘7

2 T+23j _g 35
3 234635 -5 -—3j
4 63+1595 —>-—1l
5 15943835 —5f—2j

Table 6. Hyperbolic Cullen numbers

n HCr HC_,,
0 1+3j 1+3j
1 349j 343
2 9 + 25j §+j
3 25465) —+2j
4 65+ 161j —+2g
5 161+3855 243
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Now, we will state Binet’s formula for the hyperbolic generalized Woodall numbers and in the rest of the paper, we
fix the following notations:

a = 1+2j,
B = 2j

A o= 1+

Note that we have the following identities:

&> = b5+4j,
B o= 4

7 = 2424,
aB = 4+2j,
ay = 3+3j,
By = 2+12j
aBy = 6+6j.

2.1 Binet’s Formula

Now, we present Binet’s formula in the following theorem.
Theorem 2.1. (Binet's Formula) For any integer n, the nth hyperbolic generalized Woodall number is
HW, = (A1@ + AsB + An@)2" + AsF. (2.3)

Proof. Using Binet’s formula given below

Wy = (A1 4+ A2n)2" 4 As,
we obtain

HW, = Wy + jWhi
(A1 + Aan)2"™ + Az + j((A1 + Aa(n + 1))2" " 4 A43)
= A12" 4+ Aon2™ + A
47 A12"T 4 A2 4 A2 4 A

= A12"(1+2j) + Aan2™ (14 25) + A22"(25) + As(1 +j)
= A12"G+ An2"a + A22"B + A5y
= (A1a+ A28 + Ana)2" + Asd.

This proves (2.3). O
As special cases, for any integer n, the Binet's Formula of nth hyperbolic modified Woodall number, hyperbolic
modified Cullen number, hyperbolic Woodall number and hyperbolic Cullen number are
« HG, = (-8 + B+ na)2" +7,
HGp =1+ (n—1)2" + 5(1 4+ n2"H).
s HH, = (2a)2" + 7,
HH, =1+2"T" + (14272,
* HR, = (B+na)2" -7,
HRn = —1+n2" + j(—1 4 2"  p2mth),
© HC, = (B+n@)2" +7,
HC, =14+ n2" +j(1 + 2" + n2nth),
Next, we present generating function of the hyperbolic generalized Woodall numbers.
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2.2 Generating Function

Theorem 2.2. The generating function for the hyperbolic generalized Woodall numbers is

i HWpa" =
n=0

Proof. Let

_ HWo + (HWi — 5HWo)z + (HW2 — 5HW: + SHW,)?

1 — 5z + 8x2 — 423 (2.4)

g(z) = Z HWpz™
n=0

be generating function of the hyperbolic generalized Woodall numbers. Then, using the definition of the hyperbolic
generalized Woodall numbers, and substracting zg(x), z2g(z) and z3g(x) from g(z), we obtain (note the shift in

the index n in the third line)

(1 -5z + 82% — 4a®)g(x) =

i HW,z" — bx i HW, ™ + 82 i HW, 2" — 4z i HW,z"

n=0 n=0 n=0 n=0
i HWpz™ — 5 i HW,z" T + 8 i HW,z" T2 — 4 i HW, 2" T3
n=0 n=0 n=0 n=0

i HWz" —5 i HWp_1z" + 8 i HWp_oz" — 4 i HWp_3z"

n=0 n=1 n=2 n=3

(HWo + HWiz + HWoz®) — 5(HWox + HWiz”) + 8HWoz®

+ ) (HWy = 5HWyo1 + 8H Wz — AHW,—3)a"

n=3

HWo + (HW1 — 5HWo)x + (HWa — 5HW1 + 8HWo)z.

Note that, we use the recurrence relation HW,, = 5HW,_1 — 8HW,_2» + 4HW,_3. Rearranging above equation,

we get

g9(x)
The proof is finished. O

_ HWo + (HW1 — 5HWo)z + (HWa — 5HW + SHWo)xz?

1— 5z + 8x2 — 423

As special cases, the generating functions for the hyperbolic modified Woodall, hyperbolic modified Cullen, hyperbolic
Woodall and hyperbolic Cullen numbers are

- n jta

Gn = ,
nZ:OH v 1— 52+ 822 — 4a?
0o . _ . . 2
ZHHnmn _ 57+ 3+ (—165 10)2334—(132]4—8)1‘7
= 1 —5x + 8x? —4x

oo _ . . _ s 2
Z,Hann 1+7+(2j+6)z+ (-4 — 6)
n=0

and

1—5x + 8x2 — 423

1—5x + 822 — 423

Z,HCnIn:Sj—i—l—i—( 6 —2)z+ (45 +2)x
n=0

respectively.

Now, we obtained the Binet formula using the generating function.
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2.3 Obtaining Binet’s Formula From Generating Function

We obtain the Binet’s formula of hyperbolic generalized Woodall number {#W,, } by the use of generating function
for HW,,.

Theorem 2.3. (The Binet's formula of hyperbolic generalized Woodall numbers)

HW, = (A18 + A2B + Aand)2" + As7. (2.5)

Proof. Let

= n  HWo + (HW1 — 5HWo)z + (HWa — 5HW; + 8HW,)x?
E HWpz"™ = 5 3 .
= 1 -5z 4 82% —4x

Then, we write

HWo + (HW1 — 5HWo)x + (HWa — 5HW1 + 8HW)xz? di do ds

= + + . 2.6
(1—2)(1—22)° T-o (-2 -2 @9
So
HWo + (HW1 — 57‘[W0)I + (HWQ — 5HW, + 87‘[Wo)1‘2 = (d1 +ds + d3) + (—4d1 — 3do — d3)$
+(4d1 + 2d2)1‘2.
We get
HWo = di+d2+ds,
HW1 —5HWy = —4di — 3d2 — ds,
HWy — 5HW, + 8HWy = 4d; + 2ds.
If we solve these simultanious equation,
di = 4HWy — AHW; + HWa,
11
do = —4HW,+ 77‘[W1 — %HWQ,
1
d3 = HWy— SHWI + 57‘[W2
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Thus (2.6) can be written as

> 1 1 1
HW, " d +d +d ,
; v Y-z P -22) (e —1)?

= d; Z " +da Z 2" x™ 4+ ds Z 2" (n+ 1)z™,
n=0 n=0 n=0
oo

= ) (di+ds2" +ds2"(n + 1))2",

n=0

= 11
= ) (4HWo — AHW + HW, + (—4HWo + 5 HW - g’HWz)T‘

n=0

3 1
+(HWo — §HW1 + §'HW2)2n(n +1))z",

> 11
= ) _(4HWo — AHWr + HW; + (—4HWo + 5 HW: - gHWQ)Q"
n=0
3 1 n 3 1 n
+(HWO — §HW1 + §HW2)2 + (HWO — §HW1 + QHWQ)Q n)az s

= Z(4HWO — AHW + HWo + (KW, — gHW1 + %HWQ)?’L2”
n=0
+(—3HWo + 4HW — HW2)2™ )™,
S 1
= Z((*3'HWO + AHW1 — HW?2) + (KW, — gHWI + §HW2)n)2n
n=0

+AHWy — AHW1 + HW3)a"™.

This gives
HW,, = (HA1 + HA2n)2" + HA3
where
HAT = =3HWy+4HW, — HWz,
HAs = HWo— gywl + %HWQ,
HAs = 4HWy — 4HW1 + HWs.

Note that the following equalities are true:

R . . Wo — 3W1 4 2W,
Aja+ A = (—W2+4W1—3W0)(1+2])+(%

= —3Wo+4W71 — W5 + j(—4Wo +5W7 — WQ).

)(25)

_ Wa — 3W, + 2W, .
Ava = %ﬁo(uzj)

3 1 .
= Wo-— §W1 + §W2 +3(2Wo — 3W1 + W2).
Ay = Wo — AW1 + AWy + j(Wa — 4W1 + 4W).
Therefore, we can write the following equalition:
HW, = (A18 + A2B + And)2" + As7.
The proof is finished. O

Next, using Theorem 2.3, we present the Binet's formulas of hyperbolic modified Woodall, hyperbolic modified
Cullen, hyperbolic Woodall and hyperbolic Cullen numbers.
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3 SOME IDENTITIES FOR HYPERBOLIC GENERALIZED WOODALL
NUMBERS

We now present a few special identities for the hyperbolic generalized Woodall sequence {#W, }. The following
theorem presents the Simpson’s identity for the hyperbolic generalized Woodall numbers.

Theorem 3.1. (Simpson’s formula for hyperbolic generalized Woodall sequence)For all integers n we have
HWpto HWpp1 o HW, HWy  HWL  HWH
HWnJrl HWn Hanl HWl HWO /HW71

HWn  HWn1 HWih_2 HWy HW_1 HW_o

=4"

Proof. For the proof we use mathematical induction. For n = 0 identity is true. First, we proof the identity for n > 0.
Now, we obtain the identity is true for n = k. Hence, we write the following identity

HWiyro HWiir HW
HWir1  HWr  HWi_
HWi,  HWi—1 HWi_2

HWy  HW1  HWH
HW1  HWo HW_,
HWo HW_1 HW_»

— 4k

Forn =k + 1, we get

57‘[Wk+2 — 87‘[Wk+1 + 4HW, HWkJrz HWk+1
SHWit1 — 8HW, + AHW_1  HWit1 HW,
SHWi — 8HWi 1 +4HWi_o  HW,  HWi_1

HWito HWitr HW

HWiis HWiy2 HWipa
HWi1 HW, HWi—1

HWiie HWiio HWiia HWit1 HWiio HWiia
= 5| HWiy1 HWip HW, -8 HWi  HWin HW,
HW, HW HWi—1 HWi—1 HW, HWi—1
HW  HWigpo HWiia
+4| HWi—1 HWit1 HW,
HWi—2 HWr  HWi
HWito HWita HW, HWo  HW; HWo
= 4| HWis1 HW,  HWiey | =4 HWG HW, HW,

HWr  HWir—1 HWi_2 HWo HW_1 HW_o

The other case can be done similarly. Thus, the proof is finished. O

From prewious theorem, we get following corollary.
Corollary 3.2. (Simpson’s formula for hyperbolic generalized Woodall sequence’s special cases)

HGri2 HGr+1  HGE
(@) | HGry1 HGr  HGL_1 | = —4""59 +97).
HGr HGr—1 HGr—2

HHgr2 HHrp1  HHg
(b) | HHi41 HHj HHi—1 | =0.
HH, HHp1 HHp o

HRrt+2 HRk4+1 HRy,
(€) | HRr+1  HRr  HRi—1 | =4""194+95).
HRr HRr_1 HRi o

HCri2 HCri1 HC
(d) | HCki1 HC HCr—1 | = —4”71(94-9]').
HCr  HCr—1 HCr—2
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Theorem 3.3. (Catalan’s identity) For all lntegers n and m, the following identity holds
HWigm H Wi —HW, = 277 (=27 m2 Q% A3 +A2A3( 2"+ By 4 By +2%" By —mady +ndqy — 2" oy +
22™mad 4 22" nay) + A1 As(@y — 2™ e + 22’"047))

Proof. Using the Binet’s formula HW,, = (A& + Asf + Ana)2™ + Az, we get the required identity. O

As special cases of the above theorem, we give Catalan’s identity of hyperbolic modified Woodall, hyperbolic
modified Cullen, hyperbolic Woodall and hyperbolic Cullen numbers. Firstly, we present Catalan’s identity of
hyperbolic Woodall numbers.

Corollary 3.4. (Catalan’s identity for the hyperbolic modified Woodall numbers) For all integers n and m, the
following identity holds

HGnymHGrom = HG,, = =27 (@7 = B7 + 27767 - 27757 - 2" 'aq + 2771 5y
+mad —nay + 2" " m AZ — 2°"may — 2N + 2m+1n6ﬁ),
Proof. Take W,, = G, in Theorem 3.3.

Secondly, we give Catalan’s identity of hyperbolic modified Cullen numbers.

Corollary 3.5. (Catalan’s identity for the hyperbolic modified Cullen numbers) For all integers n and m, the
following identity holds

HHppmHH o — HH, = 2" (267 + 2 x 267 — 2 x 2"7'a79).
Proof. Take W,, = H,, in Theorem 3.3. O
Thirdly, we give Catalan’s identity of hyperbolic Woodall numbers.

Corollary 3.6. (Catalan’s identity for the hyperbolic Woodall numbers) For all integers n and m, the following
identity holds

HRpimHMHRo—m —HRZ = —2""™(B7+ 2237 — 2" 35 — mad + nad + 2" " m2a?

+2°"mad + 22" nad — 2" nay).
Proof. Take W,, = R,, in Theorem 3.3. [J

Fourthly, we give Catalan’s identity of hyperbolic Cullen numbers.

Corollary 3.7. (Catalan’s identity for the hyperbolic Cullen numbers) For all integers n. and m, the following identity
holds

HCpimHC o — HC? = 2"7™(BY + 2°" By — 2" By — mad + nay — 2" " m2a?
+2°™"mad + 2™ nad — 2" nad).
Proof. Take W,, = C,, in Theorem 3.3. O

Note that for m = 1 in Catalan’s identity, we get the Cassini’s identity for the hyperbolic generalized Woodall
sequence.

Corollary 3.8. (Cassini’s identity) For all integers n, the following identity holds
HWyi 1 HWi o1 — HW, = 21 (A2 A3(367 + By + naR) — 2" T ASG® + A1 Asa).

As special cases of Cassini’s identity, we give Cassini’s identity of hyperbolic modified Woodall, hyperbolic modified
Cullen, hyperbolic Woodall and hyperbolic Cullen numbers. Firstly, we present Cassini’s identity of hyperbolic
modified Woodall numbers.

Firstly, we give Cassini’s identity of hyperbolic modified Woodall numbers.
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Corollary 3.9. (Cassini’s identity of hyperbolic modified Woodall numbers) For all integers n, the following identity
holds

HGni1HGn 1 — HG = 2" 71267 + B — 2" 7182 + nad).
Secondly, we give Cassini’s identity of hyperbolic modified Cullen numbers.

Corollary 3.10. (Cassini’s identity of hyperbolic modified Cullen numbers) For all integers n, the following identity
holds
HH, 1 HH, 1 — HH. = 2"a7.

Fourth, we give Cassini’s identity of hyperbolic Woodall numbers.
Corollary 3.11. (Cassini’s identity of hyperbolic Woodall numbers) For all integers n, the following identity holds
HRp 1 HRn—1 — HR2 = 2" (367 + B7 + 2"1'a° + nad).
Third, we give Cassini’s identity of hyperbolic Cullen numbers.
Corollary 3.12. (Cassini’s identity of hyperbolic Cullen numbers) For all integers n, the following identity holds
HC, 11 HCn 1 — HC? = 2"71(3a7 + 57 — 2"7'a° + na).
Theorem 3.13. For all integers m, n, G,, is woodall numbers, the following identity is true:
HWim = HW,Grmg1 + HWi—1(—8Gm + 4G 1) + AH W, oG

Proof. The identity (3.13) can be proved by mathematical induction on m. First of all, we assume that m > 0 and
n > 0.If m =0 we get

HW,, = HWpnGi1 + HWo_1(—8Go 4+ 4G_1) 4+ 4HW,_2Go

which is true by seeing that G_1 = 0, G_2 = 1, G_3 = . We assume that the identity given holds for m = k. For
m=k+ 1, we get
HWir1)rn = 5HWnin — 8HWagno1 + 4HWir—2
= 5(HWnGri1 + HWin_1(—8Gy + 4Gy_1) + 4HW,_2Gy)
—8(HWnGi + HWy—1(—8Gk—1 + 4Gk—2) + 4HW,_2Gi_1)
FA(HW,Gr—1 + HWn—1(—8Gr—2 + 4Gr—3) + 4HWr_2G_2)
= HWn(5Gk+1 —8Gk + 4Gk_1) + 'HWn_1(*8(5Gk — 8Gk-1 + 4Gk_2)
+4(5Gx—1 — 8Gh—2 + 4Gx_3)) + 4HW,,_2(5G), — 8Gr_1 + 4G _2)
HW, Grqo + 'HWn_l(—SGkJA + 4Gk) + AHW, _2Gr+1
HWnGkt1)+1 + HWio1(—8G (k1) + 4G ky1)—1) + AHWn_2G (141)-

Consequently, by mathematical induction on m, this proves (3.13). Similarly, we can show for the other cases. So
the proof is finished. O

4 LINEAR SUMS FORHYPERBOLIC GENERALIZED WOODALL NUMBERS

In this section, we give the summation formulas of the hyperbolic generalized Woodall numbers with positive and
negatif subscripts. Now, we present the summation formulas of the generalized Woodall numbers.

Proposition 4.1. For the generalized Woodall numbers, we have the following formulas:

Yo Wi = sWa(2n—2" (0 — 1) + 2" (n — 2) + 6) — 2W1(8n — 2" (3n — 5) +2""%(3n — 8) + 22) +
Wo(dn — 2" (n —2) + 2" 2 (n — 3) +9).
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Yo Wit = 2Wa(@n+ 2" (n — 1) — 2" 4+ 8) — TWi(8n — 2713 (3n — 2) + 273 (3n — 5) + 30) +

Wo(dn — 2" 2(n — 1) + 2713 (n — 2) +12).

o S r_ o Whaa = 2Wa(2n — 2" (n 4+ 1) 4+ 2" + 10) + Wo(dn + 2" (n — 1) — 2" ®n 4 16) — LW (8n —

23 (3n + 1) + 2" (3n — 2) + 40).

© SR Wias = Wo(dn — 2" (n + 1) + 2" 50 4 20) — LW (8n + 277 (3n + 1) — 2" (3n + 4) + 48) +

W2 (2n — 2" (n +2) + 2% (n + 1) + 10).
Proof. For the proof, see Soykan [52]. O

Proposition 4.2. For the generalized Woodall numbers, we have the following formulas:

o Sop_ o Wak = 7W0(36n 22"12(2n — 1) 4+ 22" (2n — 3) 4+ 53) — Wi (72n — 2272 (6n — 2) + 2> T4 (6n

8) + 120) + = Wa(18n + 2" T4 (2n — 2) — 2 x 2°""n + 32).

o Sh_o Wakgr = £ Wa(18n—22"3(2n 4 1) +2°"1°(2n — 1) +40) — L W1 (72n— 273 (6n+ 1) + 2> % (6n —

5) + 150) + £ Wo(36n + 2°"5(2n — 2) — 2 x 2°"3n + 64).

© Yo Wakga = sWo(36n— 22" (2n+ 1) +2°"7%(2n — 1) + 80) — L W1 (72n — 2°"F*(6n+4) + 2> 7% (6n —

2) +192) 4+ 5 Wa(18n — 2274 (2n + 2) + 2 x 2°"%n + 50).

© Sor_o Wakgs = 15 Wa ((18n — 22"72(2n + 3) 4 2217 (2n + 1) 4 58) — L W1 (72042717 (6n+1)—2"° (6n+

7) + 240) + 2 Wo(36n — 275 (2n + 2) + 2 x 2°" 7 + 100).

o Yo Wakga = W (18n — 27710 (2n +4) +2°"+8(2n 4 2) +50) + $ Wy (36n — 2°" 10 (2n + 3) + 2> ¥ (2n +

1) 4+ 116) — Wi (72n + 22" %(6n + 4) — 2°"°(6n + 10) + 264).
Proof. For the proof, see Soykan [52]. O

Proposition 4.3. For the generalized Woodall numbers, we have the following formulas:

Zk OW k= 4W0(n+ 2n+1 (TL+4) 2n+2 (TL+3) - 1)+2W1(2n+2 (3n+8) 271%(371—"_11) +
2W2(2n+ 2n+1 (n+3)— 2n+2 (n+2)—1).

* Yo Werir = 2Wa(gn+ 5 (n +2) — s (n+ 1) = §) +4Wo(n + g (n + 3) — gt (n + 2) —
2W1 (57 (3n + 5) — 2n — 5 (3n + 8) + 6).

5+

2) +

« Sop_ Wo k+2—2W2(2n+21 "n+1)—sen—3)+4Wo(n — gh(n+ 1)+ 2" (n+2) — 3) —2W1 (2n +

27" (3n +5) — 5= (3n +2) — 8).

Yo Wokgs =2Wa(in+2°""n —2"""(n — 1) + 3) + 2WA (2" " (Bn — 1) — 2n — 27" (3n + 2) + 6) +

AWy (n — 217 "n 4 22 ”(n +1) —3).
Proof. For the proof, see Soykan [52]. O

Proposition 4.4. For the generalized Woodall numbers, we have the following formulas:

* ko Wz = s o Wa( 22n+4 (6n+8)— n— 22n+2 (6n+14)+3)+ 3 5 WO( n+ 22n+2 (2n+5)— 22n1,+4 (2n+3)—

SWa(3n+ smz (2n 4+ 4) — 57 (2n + 2) -.

)+

> 0W ohtl = W1(22n+3(6n—|—5) In — sorr (6n+11) +6) + L Wo(In+ s (2n+4) — g (2n+

2) — 1)+ SWa(3n+ gz (2n+3) — 22;+3(2n+1) -,

* Dico Weakio = §Wa(3n— s n+ 537 2n+2) = §) = S Wolgmez (2n+1) — §n— 527 (2n+3) +
Wi(5mmrs (604 2) — In — 53 (6n + 8) + 22).

T+

« Sr o Weoakis = sWi(gmmr (6n—1) — 30 —2"72"(6n+5) + 3) + SWa(§n — omr 2n — 1) + 272" (2n +

1)+ 2) + 109wy (In + 21~ (2 +2) - e = ).

« Sop OW 2hpa = SWo(3n+2x2°" " n— 5= (2n—2)+ )+ BWo(In+2° 72" (2n+1) — 7= (2n—1)+ 2) -

SWi(gn+ 22 2”(6n+2) 2Q,I(an 4) + 37).
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Proof. For the proof, see Soykan [52]. [
Now, we present the formulas which give the summation of the hyperbolic generalized Woodall numbers.

Theorem 4.5. Forn > 0, hyperbolic generalized Woodall numbers have the following formulas:

@ Sr HWi=(B+n—3x2"+2"n+4j+jn—2""2j + 2" 1 in)Wa + (=11 —4n + 11 x 2" — 3 x 2"n —
155 — 4jn 4+ 275 — 3 x 2" in)Wy 4 (9 +4n — 273 4 27Ty 1125 + 4n — 3 x 27725 + 2" 25n) .

(b) Sy HWa = (A0 n §22 44 1920204 204 D212 1920 ) 1 g (20 g 222 g2y
2375]_’_ %227L+2j _4]n_ 22n+3jn)W1 + (% _ %22n+2 +4n+ %2 n+3n+ %‘7 _ %227b+6j +4jn+ %22n+4jn)W04

(c) ZZ:O HW2k+1 — (% _ %2277,«&»2 +n+ %22714»3” + %] _ %22n+4j +]’I’L + %22n+4jn)w2 + (_% + %22714»2 _
In — 22n+3n + %227%0— ] _ %] _ 4]71 _ 22n+4jn)W1 + (%4 _ 522n+6 + an 4 %22n+4n + %] _ %22n+4
J+4jn+ 22272 in) W,

Proof. Proof can be obtained by using Proposition 4.4.

(a) We can derive the following using the formulas in Proposition 4.1.

DHWe =) Wity Wi
k=0 k=0 k=0

> HW
k=0
= %Wz(zn — 2" (= 1)+ 2" (n — 2) 4+ 6) — %Wl(Sn — 2" (3n — 5)

+2"2(3n — 8) 4 22) + Wo(4n — 2" (n — 2) + 2" 3 (n — 3) +9)
+j(%W2(2n +2"3(n—1) — 2" 4 8) — %W1(8n — 2" (3n — 2)
+2"3(3n — 5) 4 30) + Wo(4n — 2" (n — 1) + 2" 3 (n — 2) 4+ 12)).

> HW

k=0

= (B4n—3x2"4+2"n+4j+jn— 2" + 2" in)W,
+(—11 —4n 411 x 2" — 3 x 2"n — 155 — 4jn 4+ 2" — 3 x 2" jn)W,
+(944n — 2" 4 2"y 4125 +4jn — 3 x 2725 4+ 2" T2 in) W,

The proof is finished. O

(b) We can derive the following using the formulas in Proposition 4.2.

Z HWop, = Z War + 3 Z Wakt1.
k=0 k=0 k=0

= %WO(?)Gn — 22 (9 — 1) + 22" (2n — 3) + 53) — %Wl(nn — 27" (6n — 2)
1
+2°" 4 (6n — 8) 4 120) + TgWa(18n+ 2214 (20 — 2) — 2 x 22" 4 32)
1 1
+j(EW2(18n — 22320 4+ 1) + 2" % (2n — 1) + 40) — EW1(72n — 22" (6n + 1)

1
+2°7(6n = 5) + 150) + 5 Wo(36n + 2772 (2n — 2) — 2 x 27" + 64)).
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> HWak
k=0
16 1 1 1
= (G An— g2t 2 g O] +jn — 222”“1' + 32 We
_’_(_% Cdny 222n+2 _gnt2, 27;)] n ;22n+2j — djn — 22" i)W,
53 11, . 64 1.m n
+Hy — 52 +2+4n+322 Pt i - g2 +4jn+322 in)Wo.

The proof is completed. O
(c) We can derive the following using the formulas in Proposition 4.4.

n

Z HWoks1 = Z Wokt1 +J Z Wak+2.

k=0 = k=0

> HWakia
k=0

1

= gWa(lsn— 22"13(9n 4 1) 4+ 22"T2 (20 — 1) 4 40) — %Wl(m — 22" (6n + 1)
1 ,
+22"5(6n — 5) + 150) + g Wo(36n + 22" (2n — 2) — 2 x 223 4 64)
1 1

+(5Wo(36n 22" (20 4 1) + 2°"76(2n — 1) 4 80) — gWa(72n - 22" (6n + 4)

+2%"10(6n — 2) +192) + %Wg(lSn — 22" (2n 4 2) 4 2 x 2" %, 4 50)).
Z HWak+1

2 1 2 1
(£ _ §22n+2 +n+ 722n+3 + j 2n+4] +_]?’L+ 322n+4] )W2

9 9 3 9 9
_’_(_2:))3 n ;22n+2 T 322n+5 3;)72]. — 4jn — 22" i),
64 1 2n+6 1 2n+4 80 . 5 2n+4 1 2n+5
— = =2 4 -2 —7— =2 4 2 .
+(9 9 +dn+ o ntgi-yg +Jn+3 n)Wo

The proof is finished. O

As a first special case of the above theorem, we have the following summation formulas for hyperbolic Woodall
numbers:

Corollary 4.6. Forn > 0, hyperbolic modified Woodall numbers have the following properties:

@ S  HGr=4+n+2"n —2nT2 L (5 -5 x 2"F2 4 4 vt 4 ont2y),

k=0
(b) ZZ:O HGQk — % +’I’L+ %22n+2n+ 222714»2 _ 322n+4 +](% _ %22n+2 4+ %2271,4»3”).
(c) ZZ:O HG2k+1 — % 4+ %22714»3” _ %22n+2 _’_J(%Q _ 322n+4 + %22n+5 +’I’L+ %22n+4n)'

As a second special case of the above theorem, we have the following summation formulas for hyperbolic modified
Cullen numbers:

Corollary 4.7. Forn > 0, hyperbolic modified Cullen numbers have the following properties:

(@ Y p  HH,=-1+n—-6x2"n—3x2"" +3%x2""n4+28x2" +j(—3—-18x 2" +5x 2"t + n —6x
2"y 43 x 2"F2n).
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(b) Zk OHH2IC — l + n — 22n+3n + 22n+3n _|_ 1?422n+2 _ 22n+4 +](_% + %22714»2 _ %22n+6 + n — 22n+4n +
22n+4 )

(c) Zkgoj:éHmﬁkl — _%+n_2><22n+3n+22n+4n+ %2271«%2_%22714»6 +j(_g_%22n+4+322n+5 +n_22n+5n+
29" 7°n).

As a third special case of the above theorem, we have the following summation formulas for hyperbolic Woodall
numbers:

Corollary 4.8. Forn > 0, hyperbolic Woodall numbers have the following properties:
@ Sp HRe=1-—n+4x2"n+2" 2" p 10 x 2" 4 j(1 — 2" 4 27 —p - 273 — 27 F2p),

(b) Ek OHR2I€ __1 _n_|_ 22n+2 _ %22n+3n+ %22n+2 _ 522n+4 +](% —n— 1?422n+2 + %22n+6+ %22n+3n
1o2n+4
527" ).
(c) Zk 0 HRQkJrl — —n + 22n+3 _ %22n+4n _ %22n+2 + %22714»6 _"_](_% + %22n+5 _ %22714»4 —n + %22n+4
192n+5
n—32 n)

As a fourth special case of the above theorem, we have the following summation formulas for hyperbolic Cullen
numbers:

Corollary 4.9. Forn > 0, hyperbolic Cullen numbers have the following properties.
(@ 7 HCr =34+n—2"" 42" 0 1 6 x 2" +§(3+n+2"2n).

k=0
(b) ZZ:O HCQk — % 4n 4+ %22n+3n _ %22n+2 _’_](1979 4n 4+ %22n+3 + %22n+4n)-
(©) S o HCok1 = 2 +n+ 327" 4 5220 4 (I 4 227744 o 4 22205y,

We now introduce the formulas that allow us to find the sum of hyperbolic generalized Woodall numbers with
negative subscripts in the following theorem.

Theorem 4.10. Forn > 0, hyperbolic generalized Woodall numbers have the following formulas:

@ Sr HW_i=(-2+2 —3j+n+ 5+ 2X12nn+jn+ i)W + (T— o +12j —dn — L2 — 52on —
4jn — S jn)Wi + (=4 + 2 — 8j +4An+ 5 j + swn + 4jn + 5= jn)Wo.

(b) ZZ:OHW ok = (—7+ﬁ—1—;]+n+ gxzznﬂJFW”ﬂ”JFWJ")WZH%—M%JF%GJ—“”—%
J— gan —4jn — gz in)Wi + (=5 + guam — 50 T A0+ giamd + gzt + 40+ 3557 i) Wo.

(c) EZ OHW 2k+1 :( 191+g><22n gj+n+9><22nj+3><§2nn+jn+3xé2njn)w2+(1?6_3><1232n+ .7 4n_3><202n

J— gaen —Ajn — g in)Wi 4+ (=3 + 525 — $i +An+ gogmmd + goemn 4+ 4n + 55 in) Wo.

Proof. It can be obtained by using Proposition 4.3.

(a) We can derive the following using the formulas in Proposition 4.3.

DOHWo =) Wor+jy Wop
k=0 k=0 k=0

STHW. = AWo(n+ gt (M 4) = 55 (0 43) = 1)+ 2Wa (55 (30 +8) —(3n+11) +
+2W2( +2n+1(n+3)—2n+2(n+2)—1)
3 1
+(2W2( n+—(n+2) 2n+1(n+1)—§)+4Wo(n+2—n(n+3)—2n+1(n+2)—2)

W (—(3n 4 5) — 2n — 2%(3n+8) +6)).

1
gnil
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= 2 3 1
SHW., = (=24 - —3j =y in + — jn)W:
k:OH k ( +om j+n+2nj+2x2nn+jn+2njn) 2
7 11 3 3
— 12— dn— —j— — 4jn — 2 i)W
(7= gn H 1% —dn = oni — g oan —Ain — gpmW

5 . 8 . 1 . 2,
+(—4+27—8j+4n+27j+27n+4jn+ 27]n)W0.

This proves (a). We can be prove (b) and (c) similarly way using Proposition 4.4. O

As a first special case of the above theorem, we have the following summation formulas for hyperbolic modified
Woodall numbers:

Corollary 4.11. Forn > 0, hyperbolic modified Woodall numbers have the following properties:

(@ Sr_HG_=-34+n+ %3 4+ (=3 +n+ 23,
(b) ¢ HG o = =L 4 LG 4 j(T 4y 4 16412m)

(c) ZZ:O HG*Qk«kl — _% +n+ 16+12n _’_‘7(% +n+ 290;2224:).

9x22n

As a second special case of the above theorem, we have the following summation formulas for hyperbolic modified
Cullen numbers:

Corollary 4.12. Forn > 0, hyperbolic modified Cullen numbers have the following properties:
@ i HH x=5+n— 2 +5(9— o +n).
(b) Yop_oHH op = 4 +n— 520 + (5 — 55527 + 1)

(©) Y oHH 2k11 =3 +n— 550 +5(F — 55 +n).

As a third special case of the above theorem, we have the following summation formulas for hyperbolic Woodall
numbers:

Corollary 4.13. Forn > 0, hyperbolic Woodall numbers have the following properties:

@ Yr o HR_p=-3—n+ 2"+ j(—1—n+ 222).
(b) 35 g HR-2r = = —n+ gign + (=5 —n+ ggmr).

9x22n 9x22n

(©) Yo HRozers = =3 —no+ 582 +(F —n+ 5580,

As a fourth special case of the above theorem, we have the following summation formulas for hyperbolic Cullen
numbers:

Corollary 4.14. Forn > 0, hyperbolic Cullen numbers have the following properties:

@ Yr_ HCO k= —1+n+2Z +j(1+ 222 +n).
(B) ST HO o = &4t 888+ 5T + 38 4 m).

(c) ZZ:O HC 241 = %7 +n 4 104120 +j(% + S£2n +n).

9x22n 9x22n
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5 MATRICES RELATED WITH HYPERBOLIC GENERALIZED WOODALL
NUMBERS

In this section, we present matrices related with hyperbolic generalized Woodall numbers.
Now, {G,,} defined by the third-order recurrence relation as follows

Grn = 5Gn-1 — 8Gn—_2 + 4G, 3 with the initial conditions Go =0, G1 =1, G2 = 5.
We present the square matrix A of order 3 as

5 —8 4
A= 1 0 0
0O 1 O

such that det A = 1. Then, we give the following Lemma.

Lemma 5.1. For all integers n the following identity is true.

HWypo 5 —8 4\" [ HW,
HWner = 1 0 o0 HWL .
HW,, 0 1 0 HWo

Proof. First, we suppose that n > 0. Lemma (5.1) can be given by mathematical induction on n. If n = 0 we get

HW, 5 -8 4\° [/ HW:
HW | =1 o o HW,
HWo 0 1 0 HW,

which is true. We assume that the identity given holds for n = k. Thus the following identity is true.

HWiro 5 -8 4\"/ HW,

HWier | =1 0 0 HW)

HW, 0 1 0 HW,
Forn =k + 1, we get

5 -8 4\"" 7/ uw, 5 -8 4\"/ 1w,
1 0 0 HW, = 1 0 0 HW,
0 1 0 HWo 0 1 0 HWo

8 HWit2
HWit1

0 HW,
( S5HWito — 8HWiy1 + AHW, )

8

5 4
1 0
0 0
5 4
1 0

HWi2
HWi 41

HWiy3
HWk.i,-Q .
HWi i1

If we suppose that n < 0 the proof can be done similarly. Consequently, by mathematical induction on n, the proof

is completed. OJ
Gn+1 _8Gn + 4Gn71 4Gn
A" = Gn —8Gn_1+4G,_2 4Gn_1 .

anl 78Gn72 + 4Gn—’3 4Gn72

Note that

For the proof see [56].
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Theorem 5.2. [If we define the matrices Nyw and Exw as follow,

HW2  HW: HWo HWii2 HWppr  HW,
Nyw = | HW1 HWo HW_1 |, BEuw=| HWnap1n HWn  HWno1 |.
HWo HW_1 HW_2 HWn  HWno1 HWi_2

then the following identity is true:
A"Nyw = Enw.

Proof. We can use the following identities for the proof.

( Gn+1 —8G, +4G, -1 4G, ) ( HW, HW, HWo )

AnNHW = Gn —8Gp-1+4G,—o 4G,-1 HW, HWo HW_4

Gno1 —8Gn_2+4G,_3 4G,_o HWoy HW_1 HW_o
bir bz bis
b1 b2z b23
bs1 b3z  bs3

bin = HW2Gny1 + HWi (=8Grn + 4Gn—1) + HWodGn,
HW1Gry1 + HWo (=8Grn +4Gr—1) + HW_14Gn,
HWoGni1 + HW_1 (—8Gyn +4Gn_1) + HW_24Gn,
by = HWoGn + HWi (—=8G + 4Gn_1) + HWodGr_1,

where

=

=

N
Il

o

S

@
Il

bao = HWiGh + HWo (—8Gy + 4G _1) + HW_14G, 1,

bos = HWoGn+ HW_1 (—8Gy + 4G _1) + HW_24G,,_1,
by = HWaGn_1+HWi (=8Gy + 4G _1) + HWodGyp_2,
bz = HWiIGn_ 1+ HWo (—8Gn + 4G _1) + HW_14Gy,_2,
bss = HWoGn 1+ HW_1(—8Gn +4Gn_1) + HW_24G,_a,

Using the Theorem (3.13) the proof is done. O

From Theorem (5.2), we can write the following corollary.

Corollary 5.3. We have the following identity.

(a) If we define Ny and Ey as follows,
HG2 HGy HGo HGrny2 HGn+1  HG,
NHG = HG1 HGO 'HG71 N E?—LG = HGn+1 'HGn HGn71 s
HGO HG—l HG72 HGTL HGTL*I HGn72

then we get
A"Nyg = Enc.

(b) If we define Nyyg and E+,u as follows,
HH, HH; HH), HHpy2 HH.+1  HH,
Nyg=| HH1 HHo HH_1 |, Byg=| HH,y1 HH, HH..1 |,
HHy HH-1 HH_» HH, HH,—1 HH,—2

then we get
AnN'HH = E’HH-

63



Eren and Soykan; AJARR, Asian J. Adv. Res. Rep., vol. 18, no. 2, pp. 43-69, 2024, Article no.AJARR.111285

(c) If we define Ny r and Ey r as follows,

HRs HR: HRo HRni2 HRny1  HR.
Nyr = HR1 HRo HR-; , Bur = HRn+1 HR, HR,—1 s
HRy HR-1 HR_» HR., HRn—1 HR._2
then we get
A"Nyr = Eur.
(d) If we define Nyc and Evc as follows,
HC; HCH HCo HChy2 HChy1  HC,
Nyc = HC, HCy HC-1 , Bye = HCrt1 HC, HCH -1 ,
HCy HC-1 HC_o HC, HCh—1 HCh_2

then we get

A"Nyc = Exc.

6 CONCLUSION

In the literature, there have been so many studies of the
sequences of numbers and the sequences of numbers
were widely used in many research areas, such as
physics, engineering, architecture, nature and art. In
this study we introduce hyperbolic generalized Woodall
sequence and focused on four special cases such
as hyperbolic modified Woodall numbers, hyperbolic
modified Cullen numbers, hyperbolic Woodall numbers
and hyperbolic Cullen numbers.

2219 In section 1, we present some important
information related to generalized Woodall numbers
such as reccurance relation, Binet’s formula and
generating function. Moreover we give some
information about hyperbolic numbers and some
examples studied in the literature.

2219 In section 2, we define hyperbolic generalized
Woodall numbers and four special cases such as
hyperbolic modified Woodall numbers, hyperbolic
modified Cullen numbers, hyperbolic Woodall numbers
and hyperbolic Cullen numbers. In addition, we
introduce Binet’s formula and generating function of
hyperbolic generalized Woodall numbers and four
special cases.

2219 In section 3, we define some identeties raleted
to hyperbolic generalized Woodall sequence such
as hyperbolic modified Woodall numbers, hyperbolic
modified Cullen numbers, hyperbolic Woodall numbers
and hyperbolic Cullen numbers. e.g Simpson’s formula,
Catalan’s identity and Cassani’s identity.

2219 In section 4, we define linear sum formulas related
to hyperbolic generalized Woodall sequence and four
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special cases hyperbolic modified Woodall numbers,
hyperbolic modified Cullen numbers, hyperbolic
Woodall numbers and hyperbolic Cullen numbers.

2219 In section 5, we define matrix formulation to
hyperbolic generalized Woodall sequence.

Linear recurrence relations (sequences) have many
applications. Next, we list applications of sequences
which are linear recurrence relations.

First, we present some applications of second order
sequences.

For the applications of Gaussian Fibonacci and
Gaussian Lucas numbers to Pauli Fibonacci and
Pauli Lucas quaternions, see [2].

For the application of Pell Numbers to the
solutions of three-dimensional difference
equation systems, see [9].

For the application of Jacobsthal numbers to
special matrices, see [77].

For the application of generalized k-order
Fibonacci numbers to hybrid quaternions, see
[27].

For the applications of Fibonacci and Lucas
numbers to Split Complex Bi-Periodic numbers,
see [78].

For the applications of generalized bivariate
Fibonacci and Lucas polynomials to matrix
polynomials, see [79].

For the applications of generalized Fibonacci
numbers to binomial sums, see [75].
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For the application of generalized Jacobsthal
numbers to hyperbolic numbers, see [57].

For the application of generalized Fibonacci
numbers to dual hyperbolic numbers, see [58].

For the application of Laplace transform and
various matrix operations to the characteristic
polynomial of the Fibonacci numbers, see [16].

For the application of Generalized Fibonacci
Matrices to Cryptography, see [43].

For the application of higher order Jacobsthal
numbers to quaternions, see [42].

For the application of Fibonacci and Lucas
Identities to Toeplitz-Hessenberg matrices, see
[21].

For the applications of Fibonacci numbers to
lacunary statistical convergence, see [8].

For the applications of Fibonacci numbers to
lacunary statistical convergence in intuitionistic
fuzzy normed linear spaces, see [33].

For the applications of Fibonacci numbers to
ideal convergence on intuitionistic fuzzy normed
linear spaces, see [34].

For the applications of k-Fibonacci and k—Lucas
numbers to spinors, see [35].

For the application of dual-generalized complex
Fibonacci and Lucas numbers to Quaternions,
see [73].

For the application of special cases of Horadam
numbers to Neutrosophic analysis see [23].

For the application of Hyperbolic Fibonacci
numbers to Quaternions, see [14].

We now present some applications of third order
sequences.

For the applications of third order Jacobsthal
numbers and Tribonacci numbers to quaternions,
see [11] and [10], respectively.

For the application of Tribonacci numbers to
special matrices, see [80].

For the applications of Padovan numbers and
Tribonacci numbers to coding theory, see [45]
and [4], respectively.

For the application of Pell-Padovan numbers to
groups, see [15].

For the application of adjusted Jacobsthal-
Padovan numbers to the exact solutions of some
difference equations, see [22].

Next,

For the application of Gaussian Tribonacci
numbers to various graphs, see [72].

For the application of third-order Jacobsthal
numbers to hyperbolic numbers, see [18].

For the application of Narayan numbers to finite
groups see [36].

For the application of generalized Guglielmo
numbers to Gaussian numbers, see [54].

For the application of generalized Woodall
numbers to Gaussian numbers, see [55].

For the application of generalized third-order
Jacobsthal sequence to binomial transform, see
[59].

For the application of generalized Generalized
Padovan numbers to Binomial Transform, see
[60].

For the application of generalized Tribonacci
numbers to Gaussian numbers, see [61].

For the application of generalized Tribonacci
numbers to Sedenions, see [62].

For the application of Tribonacci and Tribonacci-
Lucas numbers to matrices, see [63].

For the application of generalized Tribonacci
numbers to circulant matrix, see [64].

For the application of Tribonacci and Tribonacci-
Lucas numbers to hybrinomials, see [76].

For the application of hyperbolic Leonardo and
hyperbolic Francois numbers to quaternions, see
[19].

we now list some applications of fourth order

sequences.

For the application of Tetranacci and Tetranacci-
Lucas numbers to quaternions, see [65].

For the application of generalized Tetranacci
numbers to Gaussian numbers, see [66].

For the application of Tetranacci and Tetranacci-
Lucas numbers to matrices, see [67].

For the application of generalized Tetranacci
numbers to binomial transform, see [68].

We now present some applications of fifth order

sequences.

For the application of Pentanacci numbers to
matrices, see [46].

For the application of generalized Pentanacci
numbers to quaternions, see [49].
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» For the application of generalized Pentanacci

numbers to binomial transform, see [50].

We now present some applications of second
order sequences of polynomials.

» For the application of generalized Fibonacci

Polynomials to the summation formulas, see
[70].

» For some applications of generalized Fibonacci

Polynomials, see [71].

We now present some applications of third order
sequences of polynomials.

» For some applications of generalized Tribonacci

Polynomials, see [69].
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