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ABSTRACT 
 

Aims: The reference evapotranspiration (ETo) estimation with Penman-Monteith or Priestley-Taylor 
methods requires measurements of temperature, radiation, humidity, and wind velocity. In this 
study, we evaluated the estimations of ETo by Penman-Monteith (ETo-PM) and Priestley-Taylor 
(ETo-PrT) methods using indirect methods of calculating solar radiation (Rs).  
Place and Duration of Study: Daily meteorological measurements from two stations                            
in northern Greece were used for the development of solar radiation models and ETo                
calculation.  
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Methodology: The indirect methods of calculating solar radiation (Rs) are based on Artificial Neural 
networks (ANN) technology and models using the multi-linear regression method (MLR). Three 
different ANN and MLR models were derived. The Hargreaves method is also used. The evaluation 
of the indirect Rs derived models and the ETo estimation by the two methods was performed with 
the use of correlation coefficients (r), root mean square error (RMSE), and efficiency (EF) indexes. 
Results: The statistics of ETo estimation at the two stations showed that the r and EF values, 
between the estimated ETo using the indirect Rs models and estimated ETo using Rs measured, 
were greater than 0.963 and 0.918, respectively, while the RMSE values were lower than 0.646 
mm d-1. The statistics of Rs models, showed that the r and EF values were greater than 0.860 and 
0.605, respectively, while the RMSE values were lower than 4.47 MJ m-2d-1.  
Conclusion: The results of ANN models in comparison to MLR models, when using the same input 
variables, are consistent between them.  These findings indicate that the Penman-Monteith and 
Priestley-Taylor methods can accurately predict ETo using Rs values estimated indirectly through 
the examined methods and models. 
 

 

Keywords: Solar radiation; reference evapotranspiration; Penman–Monteith method; Priestley-Taylor 
method; empirical methods; ANNs models; daily datasets; regression models. 

 

1. INTRODUCTION  
 
The irrigation water management, the irrigation 
networks planning and design, the sustainability 
of agricultural systems, the hydrologic             
balance, the watershed hydrology, and the 
droughts studies are based on the accurate 
estimation of the reference evapotranspiration 
(ETo). 

  
The ETo estimation depend mainly upon the 
availability of meteorological variables. The most 
accurate are those that are based on energy 
budget and the combination of radiation and 
temperature as the Priestley-Taylor method [1], 
the corrected FAO-24 Penman method [2,3,4,5], 
and the FAO-56 Penman-Monteith method [5].  

 
The evaluation of various evapotranspiration 
methods includes comparison of numerous 
equations describing evaporation or 
evapotranspiration. Among the articles on 
comparison between different approaches are, 
among many others, the works of 
[6,7,8,9,10,11,12,13,14,15]. 

 
The solar radiation is a meteorological variable 
which is either not measured or is of low 
accuracy in many cases. Many empirical 
methods have been developed and evaluated to 
predict the solar radiation using daily 
meteorological parameters [16,17,18,19,20,21]. 

  
During the last decades there has been a 
widespread interest in the application of Artificial 
neural networks (ANNs) in the field of water 
sciences and specially to estimate              
evaporation from free water surface as well as 
actual and reference evapotranspiration 

[18,20,21,22,23,24,25,26, among others] and 
climate variables. 
  
In Antonopoulos et al. [18], the suitability of 
Hargreaves method, Artificial Neural networks 
(ANN) and multi-linear regression methods 
(MLR) to estimate solar radiation was evaluated 
using daily meteorological data from two stations 
in Northern Greece. Daily data of three 
successive years were used in this work. The 
use of extraterrestrial radiation (Ra) and the 
square root of daily difference in temperature, 
(Tmax-Tmin)0.5, in the ANN and MLR models 
resulted in more accurate estimations. 

 
The main objective of this study is to evaluate the 
computed ETo using the Penman – Monteith and 
Priestley-Taylor methods, in which the solar 
radiation variable is estimated using indirect 
methods, including models based on ANNs and 
MLR methods. An analytical work on derivation 
of indirect methods suitability was presented in 
Antonopoulos et al [18]. The Rs and ETo of 
Hargreaves method is also evaluated. The 
indirect Rs models and the results of ETo were 
derived and evaluated using daily data at two 
meteorological stations.  The daily datasets 
covered five consecutive years at these two 
meteorological stations located in northern 
Greece, areas of high significance in agricultural 
irrigation and water resources management. 

 
2. MATERIALS AND METHODS  
 
2.1 Daily Reference Crop 

Evapotranspiration 
 
The FAO-56 Penman-Monteith (PM) method of 
daily reference crop evapotranspiration (ΕΤο -
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PM), which consider according to FAO the 
standard method, is described by the following 
equation [5]: 

 

2

2

900
0.408 ( ) ( )

273

(1 0.34 )

n d
R G u e e

u









 − + −
 + =

 + +

          (1) 

 
where ΕΤο is the daily reference crop 
evapotranspiration (mm d-1), Rn is the net 
radiation (MJ m-2d-1), u2  is the mean wind speed 
at 2 m above soil surface (m s-1), T is the mean  
air temperature (oC), G is the soil heat flux 
density at the soil surface (MJ m-2d-1), ea is the 
saturation vapour pressure (kPa), ed is the actual 
vapour pressure (kPa), Δ is the slope of the 
saturation vapour pressure-temperature curve 
(kPaoC-1), γ is the psychrometric constant 
(kPaoC-1).  

 
The Priestley-Taylor method [1] of daily 
reference crop evapotranspiration (ETo-PrT) is a 
modification and simplification of the Penman 
formula. It is described by the following form: 
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where λ is the latent heat of vaporization (MJ 
kg−1), ρw is the water density (kg m-3) and α is an 
empirically derived parameter with an average 
value of 1.26 [15]. This method is a radiation 
based method. The Priestley-Taylor method has 
been used to estimate the reference crop 
evapotranspiration in many works [13,14,27,28].  

 
The Hargreaves method [29] estimates daily ETo, 
with the following equation  

 

( )
h mean h
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ET a K T b R= +                        (3) 

 
where Tmean  is the mean temperature (oC), and 
ah=0.0023 oC-1.5, and bh=17.8 oC empirical 
constants, KRS is the adjustment coefficient of the 
radiation formula (°C-0.5),  and Rs is the solar 
radiation (mm d-1) of Hargreaves equation.  

 
The incoming shortwave solar radiation Rs (MJ 
m-2 d-1), according to Hargreaves and Samani 
[29,30], is computed by the following equation:  

 

( )
0.5

s RS a
R K R TD=                                      (4) 

where Ra is the extraterrestrial radiation (MJ m-2 
d-1) and TD (equal to Tmax-Tmin) is the 
temperature difference between maximum (Tmax) 
and minimum (Tmin) daily temperature (°C). 
Hargreaves [35] recommended using KRS= 0.162 
for “interior” locations, and KRS = 0.19 for coastal 
locations. [13,14,31,32,33,34]. 
 
The Multivariable regression method (MLR) is 
based on the fact that the meteorological 
parameters are highly correlated with Rs and 
ETo. A general form of these equations is as 
 

Rs = m1 + m2X1+ m3X2 + m4X3+∙∙∙∙+ mn+1Xn       (5) 
 
where m1, m2, m3, m4 and mn are regression 
coefficients and Xi are meteorological 
parameters or factors. The variables of Xi can be 
simple meteorological parameters (Tave, Tmax, 
Tmin, RHav, u2) or combinations of them 
((TD=Tmax-Tmin) and (TD)0.5)  [36, 37, 38, 39, 40]. 
 

2.2. Artificial Neural Networks 
 
The artificial neural networks are non-linear 
models that make use of a structure capable to 
represent arbitrary complex non-linear processes 
that relate the inputs and outputs of any system 
[14, 17, 22, 23,24,26,41,42,43,44,45].  

 
In this article, an algorithm of the multi-layer feed 
forward artificial neural networks and of the back-
propagation for optimization was used [44]. The 
main task in developing an ANN model is to 
identify the input variables and the optimal 
network structure in order to produce the desired 
output accurately. Before training and testing, the 
variables (as example Tmax, Tmin, Tav, RHav, u2) 
were standardized and were used as input 
variables. The target output variable (as Rs) was 
also standardized before training and testing.  

 
The trial and error procedure showed that the 
number of neurons in the hidden layer is 
between 4 and 6, because they are produced 
similar results. Details of ANN models selection 
and the procedure that followed in this study 
have been presented elsewhere [14,22,26,46]. 

 
2.3. Modeling Performance Criteria 
 
The model’s performance was evaluated using 
statistical criteria including the correlation 
coefficient (r), the root mean square error 
(RMSE) and the coefficient of efficiency (EF): 
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where O are the observed values (the solar radiation or the reference evapotranspiration), C are the 
computed values by the other  methods and Om and Cm are the mean observed and computed 
values, respectively. In most cases the coefficient of determination (R2) is the square of r. The range 
of EF (which is also known as Nash and Sutcliffe model efficiency) lies between 1 (perfect value) and 
-∞.  
 

Table 1. Average temperature, relative humidity, wind velocity and solar radiation for each 
station during study period 

 

 T, oC RH, % u2, m sec-1 Rs, MJ m-2d-1 

 mean sd mean sd mean sd mean sd 

AUTH 16.43 8.23 70.57 15.48 0.56 0.80 15.94 8.58 
AMIN 12.59 8.56 66.07 15.16 1.80 1.14 17.19 9.29 

 
2.4 Study Area and Data 
 

The meteorological data, that was used in this 
study to estimate daily solar radiation and ETo, 
are consisted of daily data of air                      
temperature, solar radiation, wind speed, and 
humidity for a period of five years (2011 to 2015) 
measured at two meteorological station in 
northern Greece [18].  
 

The 1st meteorological station of Aristotle 
University of Thessaloniki Farm (AUTH) is 
located in Central Macedonia (40o 37’54’’N, 22o 

57’27’’E, 34 m above sea level) of Greece                  
and the 2nd meteorological station of                    
Amyntaio (AMIN) at West Macedonia is located 
at northern latitude of 40o 46’27’’N, 21o39’E, 580 
m above sea level. 
 

Table 1. presents the average and                     
standard deviation values of temperature (oC), 
relative humidity (%), wind velocity (m s-1), and 
solar radiation (MJ m-2 d-1) for each station for 
the study period of five years. The daily data sets 
of meteorological station of AUTH present 
missing data which estimated to 17 % of 
available data. 
 

3. RESULTS 
 

The results of Hargreaves equation, ANNs and 
MLR models to estimate the Rs are presented 

firstly in this part of article. Meteorological data 
sets of 3 years, from the same station, were used 
in a former published paper [18] to evaluate the 
Rs models. In the present study 5 years of daily 
data are employed. Therefore, only the more 
important information are showcased here. 
 
Subsequently, this section examines mainly the 
impact of employing the indirectly estimated Rs 
(via empirical and ANN models) as inputs for ETo 
calculations using the Penman-Monteith, the 
Priestley-Taylor and Hargreaves equations. 
 

3.1 Results of Estimated Rs at Aristotle 
University Farm Station 

 
The daily datasets of 5 years at Aristotle 
University Farm station was used to derive the 
Hargreaves (HG) equation of Rs estimation.  The 
daily Rs values predicted by the Hargreaves (HG) 
method using the recommended value of KRS 
coefficient (KRS=0.162) and the value adjusted to 
local conditions (KRS=0.158), compared with the 
Rs measurements. In Table 2 the values of 
statistical criteria of these comparisons are 
presented. The correlation coefficient (r), the 
RMSE and EF of the Hargreaves method for Rs 
are 0.893, 3.049 MJ m-2d-1 and 0.732, 
respectively for KRS=0.162, and 0.893, 3.032 MJ 
m-2d-1 and 0.722, respectively for KRS=0.158. 
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The architecture of the ANN model was identified 
by the trial and error procedure [14, 18]. Three 
different ANN models were developed. The 
difference, among them, are in the number and 
the combination of input variables. The input and 
output variables were standardized before 
training and testing.  

 
In the 1st model, the standard meteorological 
parameters (Tmax, Tmin, Tave, RHav, u2) were used 
as input variables. The most appropriate 
architecture of this model (ANN-I), that finally 
chosen, was the 5-6-1 structure, with 5 neurons 
in the input layer, 6 neurons in the hidden layer 
and 1 neuron in the output layer which 
corresponds to the solar radiation. All of the 
available data sets were used for training and 
testing the model.  

 
Two other cases of input variables were 
examined. In one of them (ANN-II), four (4) input 
variables were used [Ra, (Tmax-Tmin), (Tmax-Tmin)0.5, 
RHav], while in the other (ANN-III), two (2) 
variables, the Ra, and (Tmax-Tmin)0.5 were used.  

 
In Table 2 the statistical properties of three 
different ANNs models to estimate Rs at Aristotle 
University Farm station are presented. The 
correlation coefficient (r), the RMSE and EF of 
the ANNs models for Rs ranged from 0.861 to 
0.925, the RMSE ranged from 3.271 to 4.451 MJ 
m-2d-1 and the EF ranged from 0.652 to 0.806. 
 
The derived MLR equations, which are based on 
the available variables of the daily datasets of 

2011-15 and different combinations of 
independent variables, are given as: 
 
𝑅𝑠 = 8.6705 + 0.2407𝑇𝑚𝑎𝑥 − 1.2386𝑇𝑚𝑖𝑛 + 1.4692𝑇𝑎𝑣𝑒 −
0.1299𝑅𝐻𝑎𝑣 + 0.1466𝑢2                                                        (8) 

 
𝑅𝑠 = −4.4342 + 0.4355𝑅𝑎 − 0.2949(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) +
5.8188(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

0.5 − 0.13702𝑅𝐻𝑎𝑣                                 (9) 
 

𝑅𝑠 = −17.6084 + 0.5367𝑅𝑎 + 5.2621(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
0.5         (10) 

 

The R2 of these approaches are 0.758, 0.811 
and 0.850, respectively. 
 

In Table 2. the statistical properties of three 
different MLRs models to estimate Rs at Aristotle 
University Farm station are presented. The 
correlation coefficient (r) of the MLRs models for 
Rs ranged from 0.871 to 0.922, the RMSE 
ranged from 3.502 to 4.178 MJ m-2d-1 and the EF 
ranged from 0.681 to 0.780. 
 

The estimated values of Rs using MLR-III and 
ANN-II models correlated very well with the 
measured values of Rs, outperforming other MLR 
and ANN models as well as the Hargreaves 
method. The ANN-I and MLR-I showed lower 
accuracy. 
 

3.2 Results of ETo at Aristotle University 
Farm Station 

 

Fig. 1. shows the comparison of daily ETo values 
estimated using the Rs values of Hargreaves 
equations (original and modified to local 
conditions) and the ETo values estimated by 
Penman – Monteith method using the measured 
values of Rs at Aristotle University Farm station. 

 
 Table 2. Statistical criteria of ANN model to estimate Rs  at Aristotle University Farm station 

 

 Rs index Ranking 

 Mean   

MJ m-2d-1 

sd  

MJ m-2d-1 

r RMSE  

MJ m-2d-1 

EF r RMSE EF 

Measured 15.940        

HG 16.441 7.506 0.893 3.049 0.732 4 2 5 

HG local 16.035 7.320 0.893 3.032 0.722 4 1 6 

ANN -I 14.906 7.551 0.861 4.451 0.652 6 8 8 

ANN -II 16.300 7.436 0.925 3.271 0.806 1 3 1 

ANN -III 15.713 7.669 0.893 3.837 0.750 4 6 4 

MLR -I 15.938 7.404 0.871 4.178 0.681 5 7 7 

MLR -II 15.936 7.655 0.900 3.697 0.767 3 5 3 

MLR -III 14.805 7.472 0.922 3.502 0.780 2 4 2 
Note: ANN–I (Tmax, Tmin, Tave, RHav, u2); ANN –II { Ra, (Tmax-Tmin), (Tmax-Tmin)0.5, RHav}; ANN -III{Ra, (Tmax-Tmin)0.5}; 

MLR –I (Tmax, Tmin, Tave, RHav, u2); MLR –II { Ra, (Tmax-Tmin), (Tmax-Tmin)0.5, RHav}; MLR -III{Ra, (Tmax-Tmin)0.5} 
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Fig. 1. Scattering diagrams of daily ETo estimated by the Hargreaves (HG) and the ETo values 
estimated by the Penman – Monteith method using measured values of Rs, a) KRS=0.162; b) 

KRS=0.158 local adjusted coefficient 
 

  

 
 

Fig. 2. Scattering diagrams between ETo estimated with Rs measured and ETo estimated with 
Rs computed with Artificial Neural Networks (a. ANN-I; b. ANN-II and c. ANN-III) models at 

Aristotle University Farm station 
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Fig. 3. Scattering diagrams of ETo-PrT estimated with Rs measured and ETo-PrT estimated with 

Rs computed with Artificial Neural Networks (a. ANN-I; b. ANN-II and c. ANN-III) models at 
Aristotle University Farm station 

 
Fig. 2 presents the scattering diagrams between 
ETo of Penman-Monteith method using Rs 
estimated using the ANN models and the 
measured values of Rs at Aristotle University 
Farm, respectively. 
 
Fig. 3 presents the scattering diagrams between 
ETo of Priestley-Taylor method using Rs 
estimated using the ANNs models and the 
measured values of Rs at Aristotle University 
Farm, respectively. 
 
The values of R2 are very high in these three 
scatters diagrams (0.926 to 0.954). 
Underestimation of higher values of ETo-PrT 
observed, with lower using the ANN-I model. 
 
Fig. 4 presents the comparison between ETo of 
Penman-Monteith method using Rs estimated 
using the MLR models and the measured values 
of Rs at Aristotle University Farm, respectively. 

Fig. 5 presents the comparison between ETo of 
Priestley-Taylor method using Rs estimated using 
the MLR models and the measured values of Rs 
at Aristotle University Farm, respectively. 
 
The values of R2 are very high in these three 
scatters diagrams (0.933 to 0.951). 
Underestimation of higher values of ETo-PrT is 
also observed, with lower values when the MLR-
III model is used. 
 
Table 3 presents the statistical properties of 
different methods to estimate ETo, using the 
indirect methods of Rs estimation. 
 
The correlation coefficient of the Hargreaves 
method for ETo is 0.932 using both approaches 
of Rs. 
 
The r of ANNs models ranged from 0.910 to 
0.978, and of MLR, it ranged from 0.963 to 0.988 
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for ETo-PM method, while it ranged from 0.984 to 
0.991 for ANNs and from 0.986 to 0.990 for MLR 
of ETo-PrT method. The MLR models correlated 
very well with the measured values of ETo, 
followed by the ANN models and Hargreaves 
method. 
  
The scattering diagrams and the comparison 
between the estimated values of ETo, along with 
the statistical criteria, show that the evaluated 
ETo with the Penman-Monteith and Priestley-
Taylor methods, while using indirect methods to 
estimate the Rs, is highly correlated with the 
values of ETo estimated with measurements of 
Rs 

 

3.3 Rs Model Derivation at Amyntaio 
Station 

 
The statistical properties of the methods used to 
estimate Rs at Amyntaio meteorological station 
are presented in Table 4. More details and 
scatter diagrams slightly different were presented 

at Antonopoulos et al. (2019). The value of KRS 
coefficient adjusted to local conditions is 
KRS=0.178. The correlation coefficient (r), the 
RMSE and EF of the Hargreaves method for Rs 
are 0.908, 4.197 MJ m-2d-1 and 0.688, 
respectively for KRS=0.162, and 0.908, 3.857 and 
0.782, respectively for KRS=0.178. 
 
The same procedure was followed to select the 
ANN models with the daily data sets of Amyntaio 
station, three different models was examined. 
The input variables for the 1st ANN-I model (ANN 
5-6-1) are Tmax, Tmin, Tave, RHav, u2, while in the 
2nd ANN-II (ANN 4-6-1) are Ra, (Tmax-Tmin), (Tmax-
Tmin)0.5 and RHav, and in the 3rd ANN-III (ANN 2-
6-1) model the input variables are Ra, and (Tmax-
Tmin)0.5.  In Table 4. the statistical properties of 
three different ANNs models to estimate Rs at 
Amyntaio station are presented. The correlation 
coefficient (r) of the ANNs models for Rs ranged 
from 0.890 to 0.936, the RMSE ranged from 
3.274 to 4.202 MJ m-2d-1 and the EF ranged from 
0.734 to 0.848. 

 

  

 
 

Fig. 4. Scattering diagrams between ETo estimated with Rs measured and ETo estimated with 
Rs computed with Multi linear regression (a. MLR-I, b. MLR-II and c. MLR-III)) models at 

Aristotle University Farm station 
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Fig. 5. Scattering diagrams of ETo-PrT estimated with Rs measured and ETo-PrT estimated with 

Rs computed with Multi linear regression (a. MLR-I, b. MLR-II and c. MLR-III)) models at 
Aristotle University Farm station 

 
Table 3. Statistical criteria of ETo of PM and PrT methods estimation at Aristotle University 

Farm station using the indirect method of Rs computing 
 

 ETo-PM ETo-PrT 

 Mean 
mm d-1 

r RMSE 
mm d-1 

EF Mean  
mm d-1 

r RMSE 
mm d-1 

EF 

ANN -I 2.413 0.963 0.410 0.917 2.72 0.984 0.626 0.960 
ANN -II 2.566 0.978 0.314 0.952 2.93 0.991 0.450 0.982 
ANN -III 2.550 0.973 0.356 0.932 2.90 0.987 0.541 0.972 
MLR -I 2.736 0.983 0.371 0.965 2.84 0.986 0.558 0.971 
MLR -II 2.788 0.988 0.313 0.975 2.93 0.987 0.529 0.974 
MLR -III 2.800 0.985 0.355 0.968 2.78 0.990 0.529 0.971 
HG 3.358 0.932 0.889 0.712     
HG local 2.669 0.932 0.693 0.826     
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The MLR equations, which is based on the available variables of the daily datasets of 2011 to 2015 at 
Amyntaio station, are given as 

 
𝑅𝑠 = 16.1099 + 0.4415𝑇𝑚𝑎𝑥 − 0.5583𝑇𝑚𝑖𝑛 − 0.6654𝑇𝑎𝑣𝑒 − 0.2045𝑅𝐻𝑎𝑣 + 0.7657𝑢2           (11) 

 

𝑅𝑠 = 4.0126 + 0.4811𝑅𝑎 − 0.0478(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) + 3.7292(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
0.5 − 0.1862𝑅𝐻𝑎𝑣   (12) 

 

𝑅𝑠 = −15.9673 + 0.5696𝑅𝑎 + 5.1011(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
0.5                                                   (13) 

 
The R2 of these approaches are 0.789, 0.862 and 0.807, respectively. In Table 4. the statistical 
properties of three different MLRs models to estimate Rs at Amyntaio station are presented. The 
correlation coefficient (r) of the MLR models for Rs ranged from 0.889 to 0.929, the RMSE ranged 
from 3.408 to 4.210 MJ m-2d-1 and the EF ranged from 0.734 to 0.840. 
 
The values of Rs computed with the ANN-II model correlate better with the measured values of Rs, 
followed by the MLR-II model. The other ANN and MLR models, as well as the Hargreaves method, 
show lower accuracy.  
 

Table 4. Statistical criteria of Hargreaves, ANN and MLR models to estimate Rs at AMYNTAIO 
station 

 

 Rs index ranking 

 Mean     
MJ m-2d-1 

sd  
MJ m-2d-1 

r RMSE  
MJ m-2d-1 

EF r RMSE EF 

Measured 16.899 9.187       
HG 15.457 7.515 0.908 4.197 0.688 4 6 7 
HG Local 16.984 8.257 0.908 3.857 0.782 4 4 4 
ANN-I 16.629 8.151 0.890 4.202 0.734 6 7 6 
ANN-II 16.480 8.409 0.936 3.274 0.848 1 1 1 
ANN-III 16.936 8.327 0.909 3.837 0.788 3 3 3 
MLR-I 16.891 8.171 0.889 4.210 0.734 7 8 6 
MLR-II 16.899 8.531 0.929 3.408 0.840 2 2 2 
MLR-III 16.899 8.254 0.898 4.032 0.761 5 5 5 

 

 
 

Fig. 6. Scattering diagrams between ETo estimated with Hargreaves (HG) method (a. original 
and b. local adjustment) against the ETo of Penman-Monteith method using Rs measured 

values at Amyntaio Station 
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3.4 Results of ETo at Amyntaio Station 
 
Fig. 6. shows the comparison of daily ETo values 
estimated using the Rs values of Hargreaves 
equations (original and modified to local 
conditions) and the ETo estimated by Penman –
Monteith method using the measured values of 
Rs at Amyntaio Station. 
 
Figs. 7 and 8. present the comparison between 
ETo-PM estimated using Rs measurements and 
ETo-PM estimated with Rs computed with a) 
Artificial Neural Networks (ANNs) and b) 
multilinear regression (MLR) models at Amyntaio 
Station. 
 
Figs. 9 and 10. present the comparison between 
ETo of Priestley-Taylor method estimated using 
Rs measurements and ETo estimated with Rs 

computed with a) Artificial Neural Networks 
(ANNs) and b) multilinear regression (MLR) 
models at Amyntaio Station. 
 
The values of R2 are very high in these three 
scatters diagrams (0.946 to 0.962). 
Underestimation of higher values of ETo-PrT 
observed, with lower using the ANN-I model. 
 
The values of R2 are very high in these three 
scatters diagrams (0.941 to 0.958). 
Underestimation of higher values of ETo-PrT is 
also observed, with lower values when the MLR-I 
model is used. 
 
The statistical criteria of models to estimate the 
ETo at Amyntaio meteorological station using the 
Rs values estimated using the Hargreaves. ANNs 
and MLRs models are presented in Table 5. 

 

 
 

 
 

Fig. 7. Scattering diagrams between ETo-PM estimated with Rs measured and ETo-PM 
estimated with Rs computed with Artificial Neural Networks (a. ANN-I, b. ANN-II and c. ANN-III) 

models at Amyntaio station 
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Fig. 8. Scattering diagrams between ETo-PM estimated with Rs measured and ETo-PM estimated 

with Rs computed with multi-linear regression (a. MLR-I, b. MLR-II and c. MLR-III)) models at 
Amyntaio station 
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Fig. 9. Scattering diagrams between ETo–PrT estimated with Rs measured and ETo–PrT 
estimated with Rs computed with Artificial Neural Networks (a. ANN-I, b. ANN-II and c. ANN-III) 

models at Amyntaio station 
 

  

 
 

Fig. 10. Scattering diagrams between ETo–PrT estimated with Rs measured and ETo–PrT 
estimated with Rs computed with multi-linear regression (a. MLR-I, b. MLR-II and c. MLR-III)) 

models at Amyntaio station 
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Table 5. Statistical criteria of Hargreaves. ANNs and MLR models to estimate ETo at AMYNTAIO 
station 

 

 ETo-PM ETo-PrT 

 Mean  
mm d-1 

r RMSE 
mm d-1 

EF Mean  
mm d-1 

r RMSE 
mm d-1  

EF 

ETo-PM 2.806        
ANN-I 2.724 0.983 0.373 0.964 2.69 0.973 0.516 0.936 
ANN-II 2.788 0.988 0.313 0.975 2.73 0.981 0.429 0.957 
ANN-III 2.805 0.985 0.343 0.970 2.80 0.974 0.490 0.945 
MLR-I 2.736 0.983 0.371 0.965 2.70 0.972 0.519 0.936 
MLR-II 2.788 0.988 0.313 0.975 2.78 0.980 0.436 0.955 
MLR-III 2.800 0.985 0.355 0.968 2.80 0.972 0.436 0.954 
HG 2.687 0.986 0.385 0.962     
HG Local 3.032 0.937 0.744 0.858     

 
The correlation coefficient for the Hargreaves 
method for ETo is 0.986 for the original equation 
and 0.937 for the local adjusted equation. 
  
The values of r for ANNs and MLR models 
ranged from 0.983 to 0.988 for ETo-PM method, 
while for ETo-PrT method it ranged from 0.973 to 
0.981 and 0.972 to 0.980, respectively for ANNs 
and MLR models. The ETo values computed 
using the MLR-II and ANN-II models show high 
accuracy in correlation with the values of ETo 

estimated using measured Rs. In general, the 
ETo estimated using the ANN and MLR models, 
as well as the Hargreaves method, demonstrate 
high accuracy (with r ranging from 0.937 to 
0.988). 
 
The scattering diagrams, the comparison 
between the estimated values of ETo with the 
Penman-Monteith method and the statistical 
criteria show that the three methods describe 
with high accuracy the ETo at Amyntaio station. 
 

4. DISCUSSION 
 
The accurate estimation of ETo is very interesting 
in agriculture, engineering, hydrology, ecology 
and decision makers. It requires measurements 
of many meteorological parameters, in which the 
more significant is the solar radiation. It is a 
meteorological variable which in many stations 
are not measured or when it measured it is of low 
accuracy. The reasons are the cost, 
maintenance and calibration requirements of the 
measuring equipment [16]. In the Greek territory, 
many meteorological stations have been 
established in the last decades (National 
Observatory of Athens/Meteo.gr). In most of 
them, solar radiation is not measured. In the 
cases of lack of solar measurements, the indirect 
estimation of Rs is necessary to estimate ETo. 

The machine learning models are the alternative 
methods that used more recently. 
 

The developed in this work, empirical equations 
such as Hargreaves, ANNs and MLR models to 
estimate Rs using available datasets from our 
study areas in the Northern Greece region 
showed that they have the ability to describe it 
with high accuracy. The models of ANNs and 
MLR methods that derived using different 
combination of input variables were evaluated. In 
these combination the following variables were 
used: Tmax, Tmin, Tave, RHav, u2 in the 1st, Ra, 
(Tmax-Tmin), (Tmax-Tmin)0.5, RHav in the 2nd and  Ra, 
and (Tmax-Tmin)0.5 in 3rd.  
 

The extraterrestrial radiation (Ra) could improve 
the accuracy of estimations, either using ANN 
models or MLR methods. The Ra is incorporated 
in the Hargreaves equation. Using the Ra and the 
factor of (Tmax-Tmin)0.5, as input better 
performance was observed. 
 

4.1 Evaluation of Rs Models 
 

The derived ANN models can reasonably 
estimate the daily radiation, The coefficient of 
determination (r) ranged from 0.861 to 0.936, the 
RMSE ranged from 3.271 to 4.451 MJ m-2 d-1 and 
the EF ranged from 0.652 to 0.848, respectively, 
using the data from the two stations.  The results 
of this work align with the conclusions drawn by 
Zhang et al. [17]. They concluded that the ANNs 
models can reasonably estimate the daily 
radiation, with RMSE values in the range of 
1.24–4.2 MJ m-2d-1 for daily radiation. However it 
is unclear, whether the improvement in accuracy 
of ANNs models, when compared to empirical 
models, is significant. 
  
The statistical criteria for the derived MLR 
models show that the values of r ranged from 
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0.871 to 0.929, RMSE ranged from 3.408 to 
4.210 MJ m-2 d-1 and  EF ranged from  0.681 to 
0.840, respectively, using the data from the two 
stations.  
 
The r, RMSE and EF of Hargreaves method for 
Rs was 0.893 and 0.908, 3.049 and 4.197 MJ m-

2d-1 and 0.732 and 0.688, respectively for each 
station AUTH and AMIN, when KRS=0.162. The 
accuracy of Rs estimation showed a slight 
improvement when KRS=0.178 was used.  
 
Using five years of daily data sets, in the present 
analysis, to derive the Rs models of Hargreaves, 
ANNs and MLR methods, and comparing them to 
three years of daily data (Antonopoulos et al. 
2019), result in minor changes in the statistical 
criteria for the same modules of ANNs or MLR 
models (Table 6). The percentile changes in r 
ranged from 1.51 to -5.44 % at the AUTH station 
and from -0.11 to 0.54 % at the Amyntaio station. 
The changes in RMSE and EF are more 
significant for the AUTH station data (average 
11.61 and -3.17 %) compared to the AMIN 
station data (average -0.37 and 1.41 %). 
 
Despotovic et al. [16] concluded that the different 
Rs models, even though they might have better 
performance with the data used for model 
development that cannot be recommended for 
global use. Aladenola, and Madramootoo [47] 
presented an evaluation of suitability of nine 
models to estimate Rs, and their effect on ETo 
calculated with FAO-56 PM. The estimated Rs 

when compared with the measured Rs, did not 
show significant differences. The authors 
suggested that in Canada, the Samani and 
Hargeaves-Samani models [29,30] are 
recommended for estimating Rs. The conclusion 
of Zhang et al. [17] (2017), on the non-sunshine 
duration empirical models which include the 
difference between maximum and minimum 

temperature, relative humidity, cloud cover, 
precipitation, and vapor pressure, summarized 
that the RMSE values of those models ranged 
from 2.05 to 4.70 MJ m-2d-1. Zang et al. [19] 
summarized that the various empirical models 
combining different meteorological parameters to 
estimate Rs, perform well only in areas where the 
required meteorological data are available. A 
comprehensive analysis of the related literature 
reveals that an issue exists where empirical 
models are site-dependent, and empirical models 
trained at one site may not be suitable for 
another site with a different climate. In a study of 
six different machine-learning algorithms to 
predict daily solar radiation at 27 European 
countries. Nematchoua et al. [20] concluded that 
for all the algorithms, the r2 values range from 
0.382 to 0.985, while the RMSE values ranged 
from 0.145 to 2.126 MJ m-2 d-1.  
 
Nawab et al. [21] concluded that Artificial 
Intelligent (AI) methods are more accurate than 
empirical methods and that the modified 
sunshine-based models were more accurate 
compared to empirical methods. Moreover, the 
artificial neural networks and Hybrid models had 
the highest accuracy amongst the AI methods. 
 

4.2 Evaluation of ETo Methods 
 
Two of most important methods of ETo 
estimation were evaluated in this work. Both of 
them, the Penman-Monteith and the Priestley-
Taylor methods, are based on the combination of 
radiation and temperature. 
  
The values of r, RMSE and EF for ETo 
calculation using the Hargreaves method in 
relation to ETo-PM with Rs measured are 0.932, 
0.889 mm d-1 and 0.712, for the AUTH station 
and 0.986, 0.385 mm d-1 and 0.962, for the AMIN 
station, respectively.  

 
Table 6. Changes of average, sd, r, RMSE and EF of Rs at AUTH and AMIN stations when using 

3 and 5 years daily sets of data 
  

Average Rs, % sd of Rs, % r, % RMSE, % EF, % 

AUTH      
Ave 6.12 0.60 -2.16 11.61 -3.17 
max 13.00 5.68 1.51 26.11 5.92 
min 2.95 -1.62 -5.44 -9.55 -9.86 
AMYNTAIO      
Ave 2.96 2.69 0.27 -0.37 1.41 
max 5.80 6.81 0.54 1.36 3.30 
min 1.07 1.36 -0.11 -3.30 0.00 
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The results of the present work to calculate ETo 
using the FAO-56 PM equation, while using the 
derived Rs from the models in this study, indicate 
an acceptable level of accuracy.  
 
The values of r, RMSE and EF for ETo 
calculation obtained using the derived ANNs 
models ranged from 0.963 to 0.978, 0.314 to 
0.410 mm d-1 and 0.917 to 0.952, respectively, 
for the AUTH station. 
 

Similarly, for the AMIN station, the values ranged 
from 0.983 to 0.988, 0.313 to 0.373 mm d-1 and 
0.964 to 0.975, respectively. 
  
The statistical criteria obtained by the 
comparison of ETo-PM using MLR models and 
ETo-PM using measured Rs showed consistency, 
with values for r, RMSE and EF ranging from 
0.983 to 0.988, 0.313 to 0.371 mm d-1 and 0.965 
to 0.975, respectively for the AUTH station. While 
for the AMIN station, these values ranged from 
0.983 to 0.986, 0.313 to 0.371 mm d-1 and 0.965 
to 0.975, respectively. 
 

The results of present work to calculate ETo 
using the Priestley-Taylor method, while using 
the derived Rs from the models in this study, 
indicate also an acceptable level of accuracy. 
  
The values of r, RMSE and EF for ETo-PrT 
calculation using the derived ANN models 
comparing with ETo-PrT calculation using 
measured values of Rs ranged from 0.973 to 
0.991, 0.429 to 0.626 mm d-1 and 0.936 to 0.982, 
respectively, for the two stations. The ANN-II 
model show better values of statistical criteria 
and the ANN-I the worse values. 
 

The statistical criteria obtained by the 
comparison of ETo-PrT using MLR models and 
ETo-PrT using measured Rs showed accuracy, 
with values for r, RMSE and EF ranging from 
0.972 to 0.990, 0.436 to 0.556 mm d-1 and 0.936 
to 0.974, respectively for the two stations. The 
better values of statistical criteria are showed by 
the ANN-II model and the worse values of MLR-I. 
 

Similar results have been observed in other 
studies using ANNs models by different authors, 
as presented by Terzi and Keskin [48], 
Diamantopoulou et al. [23], Shiri et al. [49]. The 
comparison results of Antonopoulos and 
Antonopoulos [14] found that ANNs models, as 
well as empirical equations, estimated ETo with 
accuracy. Specifically, the RMSE ranged from 
0.574 to 1.33 mm d-1, and r ranged from 0.955 to 
0.986 when using daily data from the Amyntaio 

station and measured Rs values. These findings 
align with the results and conclusions of many 
other authors that examined empirical equations 
for ETo estimations [3, 8, 10, 11, 23, 50, 51, 52, 
53, 54]. 
 
Aladenola and Madramootoo [47] examined the 
effects of nine models to estimate Rs  on the ETo  

computed with FAO-56 PM. They concluded that 
the effects was highly reduced in calculated ETo. 
In the study of Bellido-Jimenez et al. [55] of ETo 
using a regional machine learning method in 
Southern Spain got statistical values of RMSE 
and r2 of 0.657 to 0.703 mm d-1 and 0.897 to 
0.931, respectively. 
 

The results of the evaluation of the empirical 
Hargreaves method, multi-linear regression 
models, and artificial neural networks models 
using measured solar radiation values showed 
that these models can effectively be used to 
estimate solar radiation at stations without direct 
measurements. When these different models are 
used to estimate solar radiation and then ETo, 
with the Penman-Monteith and Priestley-Taylor 
methods, at nearby stations where solar radiation 
is not being measured, similar results are 
obtained. These findings suggest that this 
procedure can be reliably used to estimate ETo in 
such situations.  
   

5. CONCLUSION 
 

The reference evapotranspiration (ETo) with the 
Penman-Monteith and Priestley-Taylor methods 
estimated using indirect methods to calculate 
solar radiation (Rs) was evaluated. These indirect 
methods include the Hargreaves method, models 
based on ANN technology and models using 
MLR method. Daily meteorological data from two 
stations in northern Greece were utilized for the 
development of solar radiation models and ETo 
estimation. 
 

Three different ANNs and MLR models were 
derived, each using a different number and type 
of input or independent variables. 
 

The scattering diagrams comparing the 
estimated and measured values of Rs, along with 
the statistical criteria, indicate that the indirect 
model accurately describes Rs at the two 
meteorological stations. The r and EF values of 
statistical indexes ranged from 0.860 to 0.871 
and 0.650 to 0.681, respectively, while the RMSE 
values ranged from 4.21 to 4.751 MJ m-2d-1. The 
RMSE values indicated similarity to those 
reported in other models describing Rs as 
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summarized by Zang et al. (2017). The inclusion 
of Ra and the factor of (Tmax-Tmin)1/2 in the ANNs 
and MLR models improved the accuracy of the 
results. The results of ANNs models, when 
compared to MLR models using the same input 
variables, are consistent between them. 
 
The values obtained from ETo-PM and ETo-PrT 
methods, when Rs is indirectly estimated using 
ANNs and MLR, models, show high accuracy in 
ETo estimation. The statistics of ETo estimation at 
the two stations for both ETo methods, showed 
that the r and EF values, between ETo estimated 
using the indirect Rs models and ETo estimated 
using Rs measured, were greater than 0.963 and 
0.918, respectively, while the RMSE values were 
lower than 0.646 mm d-1. The ETo-PM using MLR 
models of Rs estimation showed better accuracy 
(r>0.983, EF>0.964 and RMSE<0.37 mm d-1) 
compared to ANNs models of Rs estimation 
(r>0.963, EF>0.917 and RMSE<0.41 mm d-1). 
The ETo-PrT produced similar results of 
statistical indexes using either MLR or ANNs 
models of Rs estimation. The inclusion of Ra, the 
factor (Tmax-Tmin)1/2 and relative humidity as input 
variables in MLR models resulted in higher 
accuracy. The ANN model with the same input 
variables and parameters followed in accuracy. 
 
The Rs and ETo of the Hargreaves method were 
also evaluated in comparison to the measured Rs 
and ETo of Penman-Monteith method. The result 
showed high accuracy, with high values of 
statistical indexes (r and EF greater than 0.893 
and 0.722, respectively, and RMSE lower than 
3.86 MJ m-2d-1 for Rs, and r and EF greater than 
0.932 and 0.826, respectively, and RMSE lower 
than 0.744 mm d-1 for ETo). 
 
Empirical methods for estimating solar radiation, 
which can subsequently be used to estimate 
reference evapotranspiration continue to be 
valuable tools, and remain highly interesting in 
hydrological and agronomical studies. They 
provide one of the main components of 
hydrological balance. The accuracy of reference 
evapotranspiration with the Penman-Monteith 
and Priestley-Taylor methods is within an 
acceptable range when these empirical methods 
were used as input data in the absence of 
radiation measurements. The multi-linear 
regression models are highly accurate and are 
on par with artificial neural networks. However, 
achieving accurate results with these methods 
requires special knowledge from the users and a 
significant dataset with the same variables used 
to estimate ETo. 
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