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Abstract

The Euler-Poisson–Korteweg system is a mathematical model arising from hydrodynamics and quantum
hydrodynamics. It can be used to describe at interface the flow of capillary flows, such as the liquid–vapor
mixture. In this paper, we obtain the global existence of solutions for high-dimensional compressible
Euler-Poisson-Korteweg systems with small initial values by the energy method. The study can provide a
theoretical basis for the development of efficient numerical solution methods, as well as contribute to the
further study of other properties of the solution such as vibrational and bursting properties.
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1 Introduction

In this paper, we discuss the following high dimensional compressible Euler-Poisson-Korteweg (EPK) system:

ρt + div(ρu) = 0,

(ρu)t −∆u+ βρu+ div(ρu⊗ u) +∇p(ρ) = ρ∇(κ(ρ)∆ρ+
1

2
κ′(ρ)|∇ρ|2) + ρ∇Φ,

∆Φ = ρ− ρ̄, in R+ × RN,

(EPK1)

where ρ ∈ R is the electron density, u ∈ RN is the electron velocity and Φ ∈ R denote the electrostatic potential.
p is a given pressure function respective to ρ.

A number of models are used to describe materials of Korteweg type, such as Euler-Korteweg and Euler-Poisson-
Korteweg. It has been extensively investigated in references [1, 2, 3, 4, 5, 6, 7]. For example, Hattori and Li
investigated the local existence and global existence of solutions for the Euler-Korteweg system in [1, 7]. Donatelli
et al [5] studied the existence of global-in-time weak solutions for Euler-Poisson-Korteweg system under difference
initial data. Danchin and Desjardins [4] established the existence of smooth solutions for an isothermal model of
capillary compressible fluids. However, as we know, global-in-time existence of (EPK1) have not been studied.
In this paper, we are going to prove the global existence of solutions for the Euler-Poisson-Korteweg system due
to its widespread application.

In the system (EPK1), ρ̄ represents the background profile and satisfies that ρ̄(x) ≡ ρ̄0 is a positive constant.
Denote by and assume κ : (0,∞) → (0,∞) is a smooth function corresponding to the capillary coefficient. In
particular, assuming κ > 0 to be a constant in (EPK1), we can derive the standard equation of an inviscid
capillary fluid (see Kotchote [8], [9], Bresch et al [10]). For convenience, let κ = β = 1 and N = 2, we ultimately
obtain the following system for [ρ, u,Φ]:

ρt + div(ρu) = 0,

(ρu)t + ρu+ div(ρu⊗ u) +∇p(ρ) = ρ∇Φ + ∆u+ ρ∇∆ρ,

∆Φ = ρ− ρ̄,
(EPK2)

with the initial data
(ρ, u,Φ)(x, 0) = (ρ0, u0,Φ0)(x). (1)

Assuming p is a soomth function of ρ and satisfies

p′(ρ) > 0, p′′(ρ) > 0. (2)

Define function H(ρ) by

H ′(ρ) = h(ρ) =

∫ ρ

ρ̄0

p′(s)

s
ds,H(ρ̄0) = 0. (3)

Then we have H ′(0) = 0, H ′′(ρ) > 0. Furthermore, we get

H(ρ) ≥ γ(ρ− ρ̄0)2, (4)

where γ is a positive constant.

Let w = (ρ− ρ̄0, u,∇Φ) and Hk represents the usual Sobolev space while ‖ · ‖k the standrad kth order Sobolev
norm in RN . Denote

|||w|||20,T ≡ sup
0≤t≤T

(‖w(t)‖20 + ‖∇ρ(t)‖20) +

∫ t

0

‖u(s)‖21 + ‖ρ(s)− ρ̄0‖22ds,

and

|||w|||2k,T ≡
k∑
|i|≥0

|||∂ixw|||20,T .
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Denote by ∂if the spatial derivative of the ith component for any function f .

Theorem 1.1. Assume that p(ρ) satisfies (2) and ρ̄0 > 0 is small enough. For the system (EPK2) with the
initial data w0 = (ρ0, u0,Φ0) satisfies

‖w0‖23 ≤ ε, (5)

where 0 < ε� 1 and ρ0 ≥ δ0 > 0. Then there exists a unique classical solution (ρ, u,Φ) in [0,∞) and satisfies

|||w|||23,∞ ≤ C‖w0‖23.

The proof of Theorem 1.1 is based on the existence of local solutions for the system (EPK2), which can be
derived by the similar method in [1]. We can prove Theorem 1.1 by the following theorem:

Theorem 1.2. Let w be a sufficiently smooth solution in the time interval [0, T ] for the system (EPK2) with
the initial data w0 = (ρ0, u0,Φ0). Assume that p(ρ) satisfies (2). If there exists δ � 1 such that w satisfies

sup
0≤t≤T

(‖w‖3 + ‖∇ρ‖3) ≤ δ (6)

and 0 < ρ̄0 < δ, then we have the estimate

|||w|||23,T ≤ Cδ(‖w0‖23 + ‖∇ρ0‖23). (7)

Remark 1.1. Theorem 1.1 and Theorem 1.2 make sense for N = 2. For general N Sobolev space H3 should
be replace by Hk, where k ≥ 2 + n

2
.

Remark 1.2. Given assumptions in Theorem 1.2, we can choose ε in Theorem 1.1 so small that

Cδε ≤ δ.

Then for the initial data satisfies (5), the existence of the local existence solutions and the standard continuation
argument give the result of Theorem 1.1.

2 Proof of Theorem 1.2

We use induction on k to prove the Theorem 1.2, where 0 ≤ k ≤ 3.

2.1 Estimate for k = 0

Multiplying the second equation of (EPK2) by u and integrating over (0, T )× RN , we have∫ t

0

∫
R2

[
(ρ∂tuj + ρui∂iuj)uj +∇jp(ρ)uj + ρujuj

− ρ∇j∆ρuj − ρ∇jΦuj −∆ujuj
]
dxds

=:I1 + I2 + I3 + I4 + I5 + I6 = 0.

(8)

Using the first equation in system (EPK2) and integrating by parts, we have

I1 =
1

2

∫
ρ|u|2dx

∣∣∣∣t
0

(9)

According to (3) and (4), we can derive

I2 =

∫ t

0

∫
R2

p′(ρ)∂jρuj =

∫ t

0

∫
R2

∂jh(ρ)ρuj =

∫
R2

H(ρ)dx

∣∣∣∣t
0

≥ γ
∫
R2

|ρ− ρ̄0|2dx

∣∣∣∣t
0

.

(10)
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The third term I3 gives

I3 =

∫ t

0

∫
R2

ρ|u|2dxds. (11)

The fourth term I4 integrating by parts and using the first equation of (EPK2) gives

I4 = −
∫ t

0

∫
R2

ρ∇∆ρ · udxds =

∫ t

0

∫
R2

∆ρ∇ · (ρu) =
1

2

∫
R2

|∇ρ|2dx

∣∣∣∣t
0

. (12)

Integrating by parts and using the first and second equation of (EPK2), we obtain

I5 = −
∫ t

0

∫
R2

∇Φ · (ρu)dxds =

∫ t

0

∫
R2

Φ∇ · (ρu)dxds = −
∫ t

0

∫
R2

Φρtdxds

= −
∫ t

0

∫
R2

Φ∂t∆Φdxds =
1

2

∫
R2

|∇Φ|2dx

∣∣∣∣t
0

.

(13)

Integrating by parts, we have

I6 =

∫ t

0

∫
R2

|∇u|2dxds. (14)

Combining (9)-(14) and using (6), we have

‖w(t)‖20 + ‖∇ρ(t)‖20 +

∫ t

0

‖u(s)‖21ds ≤ Cδ(‖w0‖20 + ‖∇ρ0‖20). (15)

Next, mutiplying the second of system (EPK2) by ∇ρ and integrating over (0, T )× RN , we have∫ t

0

∫
R2

[
(ρ∂tuj + ρui∂iuj)∂jρ+∇jp(ρ)∂jρ+ ρuj∂jρ

− ρ∇j∆ρ∂jρ− ρ∇jΦ∂jρ−∆uj∂jρ
]
dxds

=:J1 + J2 + J3 + J4 + J5 + J6 = 0.

(16)

Using the first equation of (EPK2), we have

J1 =

∫ t

0

∫
R2

(ρ∂tuj + ρui∂iuj)∂jρdxds

=

∫ t

0

∫
R2

∂tuj ×
1

2
∂jρ

2 + ρui∂iuj∂jρdxds

=

∫ t

0

ρ∂jρuds

∣∣∣∣t
0

−
∫ t

0

∫
R2

∂juj∂i(ρui)ρ+ ρui∂iuj∂jρdxds

≤Cδ (‖ρ(s)− ρ̄0‖21 + ‖u(s)‖20)
∣∣t
0

+ Cδ

∫ t

0

‖∇u(s)‖20ds+ Cδ

∫ t

0

‖∇(ρ(s)− ρ̄0)‖20ds

≤Cδ(‖w(t)‖20 + ‖w0‖20 + ‖∇ρ(t)‖20 + ‖∇ρ0‖20)

+ Cδ

∫ t

0

‖∇u(s)‖20ds+ Cδ

∫ t

0

‖∇(ρ(s)− ρ̄0)‖20ds.

(17)

Thanks to p′(ρ) > 0, we have

J2 ≥ c0
∫ t

0

‖∇(ρ(s)− ρ̄0)‖20ds, (18)

where c0 is a positive constant. Using the first equation of (EPK2), we have

J3 =

∫ t

0

∫
R2

ρu · ∇ρ =
1

2
‖ρ− ρ̄0‖20

∣∣t
0
. (19)
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Integrating by parts, we have

J4 =−
∫ t

0

∫
R2

ρ∇∆ρ · ∇ρ

≥c0
∫ t

0

‖∇2(ρ(s)− ρ̄0)‖20ds− Cδ
∫ t

0

‖∇(ρ(s)− ρ̄0)‖20ds.

(20)

Integrating by parts and using the third equation of system (EPK2), we get

J5 = −
∫ t

0

∫
R2

ρ∇Φ · ∇(ρ− ρ̄0)dxds

= −
∫ t

0

∫
R2

(ρ− ρ̄0)∇Φ · ∇(ρ− ρ̄0)dxds−
∫ t

0

∫
R2

ρ̄0∇Φ · ∇(ρ− ρ̄0)dxds

=: J51 + J52.

Using the third equation of (EPK1) and integrating by parts, we obtain

J52 = ρ̄0

∫ t

0

‖ρ(s)− ρ̄0‖20ds,

J51 ≥ cδ
∫ t

0

‖(ρ(s)− ρ̄0)‖20ds.

Therefore, we have

J5 ≥ Cδ
∫ t

0

‖(ρ(s)− ρ̄0)‖20ds. (21)

Integrating by parts, we obtain

J6 ≤ δ
∫ t

0

‖∇2(ρ(s)− ρ̄0)‖20ds+ Cδ

∫ t

0

‖∇u‖20ds. (22)

Combining (17)-(23) and (15), we obtain

‖w(t)‖20 + ‖∇(ρ(t)− ρ̄0)‖20 +

∫ t

0

‖u(s)‖21 + ‖ρ− ρ̄0‖22ds

≤Cδ(‖w0‖20 + ‖∇(ρ0 − ρ̄0)‖20).

(23)

2.2 Estimate of k ≥ 1

Here we prove (7) by induction on k. Assume (7) makes sense for all k ≤ k − 1, i.e.

‖w(t)‖2k−1 + ‖∇ρ(t)‖2k−1 +

∫ t

0

‖u(s)‖2k + ‖ρ− ρ̄0‖2k+1ds

≤Cδ(‖w0‖2k−1 + ‖∇(ρ0 − ρ̄0)‖2k−1).

(24)

Denote by ∂k the operator vector with components consisting of all the differential operators Dα with multi-
index |α| = k. Denote [∇k, f ]g ≡ ∇k(fg) − g∇kf for any function f, g. Multiplying the second equation of
(EPK2) by ρ−1 and applying the operator ρ∇k, then multiplying by ∇ku and integrating over (0, T )× RN , we
have ∫ t

0

∫
R2

[
ρ∇k(∂tuj + ui∂iuj)∇kuj + ρ∇kρ−1∇jp(ρ)∇kuj + ρ∇kuj∇kuj

− ρ∇j∆ρ∇kuj − ρ∇k∇jΦ∇kuj − ρ∇kρ−1∆uj∇kuj
]
dxds

=:K1 +K2 +K3 +K4 +K5 +K6 = 0.

(25)

66



Zhang; J. Adv. Math. Com. Sci., vol. 39, no. 1, pp. 62-70, 2024; Article no.JAMCS.112364

Using the first equation in (EPK2), we have

K1 =
1

2

∫ t

0

ρ|∇ku(s)|2dx

∣∣∣∣t
0

+

∫ t

0

∫
R2

ρ[∇k, ui]∂iuj∇kujdxds

≥δ(‖∇ku(t)‖20)− ‖∇kw0‖20 − Cδ
∫ t

0

‖∇u(s)‖2k−1ds.

(26)

Thanks to (2),(3) and (4) and using the first equation of (EPK2), we have

K2 =

∫ t

0

∫
R2

∇k∇h(ρ) · ρ∇kudxds

=

∫ t

0

∫
R2

∇k∇h(ρ) · ∇k(ρu)dxds−
∫ t

0

∫
R2

∇k∇h(ρ) · [∇k, ρ]udxds

=−
∫ t

0

∫
R2

∇kh(ρ)∇k∇ · (ρu)dxds−
∫ t

0

∫
R2

∇k∇h(ρ) · [∇k, ρ]udxds

=

∫ t

0

∫
R2

∇kh(ρ)∂t∇kρdxds−
∫ t

0

∫
R2

∇k∇h(ρ) · [∇k, ρ]udxds

=

∫ t

0

∫
R2

h′(ρ)∇kρ∂t∇kρdxds+

∫ t

0

∫
R2

[∇k−1, h′(ρ)]∇ρ∂t∇kρdxds

−
∫ t

0

∫
R2

∇k∇h(ρ) · [∇k, ρ]udxds

=

∫ t

0

∫
R2

∂t(h
′(ρ)∇kρ∇kρ)dxds+

∫ t

0

∫
R2

[∇k−1, h′(ρ)]∇ρ∂t∇kρdxds

−
∫ t

0

∫
R2

∇k∇h(ρ) · [∇k, ρ]udxds

≥C−1
δ ‖∇k(ρ(s)− ρ̄0)‖20

∣∣∣t
0
− C

∫ t

0

‖∇(ρ(s)− ρ̄0)‖2k−1ds− δ
∫ t

0

(‖∇u(s)‖2k)ds.

(27)

The third term K3 gives

K3 ≥ δ
∫ t

0

‖∇ku‖20ds. (28)

Using the first equation of (EPK2) and integrating by parts, we have

K4 =−
∫ t

0

∫
R2

ρ∇k∇∆ρ · ∇kudxds

=−
∫ t

0

∫
R2

∇k∇∆ρ · ∇k(ρu)dxds−
∫ t

0

∫
R2

∇k∇∆ρ · [∇k, ρ]udxds

=

∫ t

0

∫
R2

∇k∆ρ∇ · ∇k(ρu)dxds−
∫ t

0

∫
R2

∇k∇∆ρ · [∇k, ρ]udxds

=
1

2
‖∇k+1(ρ(s)− ρ̄0)‖20

∣∣∣t
0
−
∫ t

0

∫
R2

∇k∇∆ρ · [∇k, ρ]udxds

≥1

2
‖∇k+1(ρ(s)− ρ̄0)‖20

∣∣∣t
0
− Cδ

∫ t

0

‖∇(ρ(s)− ρ̄0)‖2k + ‖u(s)‖2k−1ds.

(29)

Using the first and the third equation of (EPK2), we have

K5 =

∫ t

0

∫
R2

∇kΦ∇k∇ · (ρu)−∇kΦ∇ · ([∇k, ρ]u)dxds

=: K51 +K52.
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We can deduce that

K51 = ‖∇k+1Φ‖20
∣∣∣t
0
. (30)

Thanks to k ≥ 1, using the second-order elliptic PDEs regularity theory and integrating by parts, we have

K52 =

∫ t

0

∫
R2

∇k∇Φ · ([∇k, ρ]u)dxds ≤ −Cδ
∫ t

0

‖ρ(s)− ρ̄‖2k + ‖u(s)‖2k−1ds. (31)

Therefore we have

K5 ≥ ‖∇k+1Φ‖20
∣∣∣t
0
− Cδ

∫ t

0

‖ρ(s)− ρ̄‖2k + ‖u(s)‖2k−1ds. (32)

The sixth term gives

K6 =−
∫ t

0

∫
R2

ρ∇kρ−1∆u · ∇kudxds

=

∫ t

0

‖∇k+1u(s)‖20ds+

∫ t

0

∫
R2

ρ[∇k, ρ−1]∆u · ∇kudxds

≥C
∫ t

0

‖∇k+1u(s)‖20ds− Cδ
∫ t

0

‖∇u(s)‖2k−1 + ‖∇(ρ(s)− ρ̄0)‖2k−1ds.

(33)

Combining (26)-(33) and (24), we obtain

‖w(t)‖2k + ‖∇ρ(t)‖2k +

∫ t

0

‖u(s)‖2k+1ds ≤ Cδ(‖w0‖2k + ‖∇ρ0‖2k). (34)

Next, multiplying the second equation of (EPK2) by ρ−1 and applying the operator ρ∇k, then multiplying by
∇k∇ρ and integrating over (0, T )× RN , we have∫ t

0

∫
R2

[
ρ∇k(∂tuj + ui∂iuj)∇j∇kρ+ ρ∇kρ−1∇jp(ρ)∇j∇kρ+ ρ∇kuj∇j∇kρ

− ρ∇j∆ρ∇j∇kρ− ρ∇k∇jΦ∇j∇kρ− ρ∇kρ−1∆uj∇j∇kρ
]
dxds

=:L1 + L2 + L3 + L4 + L5 + L6 = 0.

(35)

Using a similar method to (17) to estimate the first term L1, we obtain

|L1| ≤Cδ(‖∇(ρ(s)− ρ̄0)‖2k + ‖∇u(s)‖2k−1 + ‖w0‖2k + ‖ρ0 − ρ̄0‖2k+1)

+ Cδ

∫ t

0

‖∇u(s)‖2k + ‖∇(ρ(s)− ρ̄0)‖2kds.
(36)

Integrating by parts and using (3) and (4), we obtain

L2 =

∫ t

0

∫
R2

∇k∇h(ρ) · ρ∇k∇ρdxds

≥Cδ
∫ t

0

‖∇k+1(ρ(s)− ρ̄0)‖20ds− Cδ
∫ t

0

‖(ρ(s)− ρ̄0)‖2kds.

(37)

Obviously we have

L3 ≤Cδ
∫ t

0

‖∇ku(s)‖20 + ‖∇k+1(ρ(s)− ρ̄0)‖20ds. (38)

Integrating by parts, the fourth term gives

L4 =−
∫ t

0

∫
R2

ρ∇k∇∆ρ · ∇k∇ρdxds

=

∫ t

0

∫
R2

ρ(∇k∆ρ)2dxds+

∫ t

0

∫
R2

∇k∆ρ∇ρ · ∇k∇ρdxds

≥Cδ
∫ t

0

‖∇k+2(ρ(s)− ρ̄0)‖20ds− Cδ
∫ t

0

‖∇k+1(ρ(s)− ρ̄0)‖20ds

(39)
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The fifth term using similar method on (21) gives

L5 = −
∫ t

0

∫
R2

ρ∇k∇Φ∇k∇ρdxds

= −
∫ t

0

∫
R2

(ρ− ρ̄0)∇k∇Φ · ∇k∇(ρ− ρ̄0)− ρ̄0∇k∇Φ · ∇k∇(ρ− ρ̄0)dxds

=: L51 + L52.

(40)

Obviously, we have

L52 = ρ̄0

∫ t

0

‖∇k(ρ(s)− ρ̄0)‖20ds. (41)

Thanks to k ≥ 1, using the third equation of (EPK2), we obtain

L51 ≥ cδ
∫ t

0

‖∇k(ρ(s)− ρ̄0)‖20ds− Cδ
∫ t

0

‖ρ(s)− ρ̄0‖2k−1ds. (42)

Therefore, we have

L5 ≥cδ
∫ t

0

‖∇k(ρ(s)− ρ̄0)‖20ds− Cδ
∫ t

0

‖ρ(s)− ρ̄0‖2k−1ds. (43)

Obviously, we obtain

L6 ≤
C

δ

∫ t

0

‖∇u(s)‖2kds+ Cδ

∫ t

0

‖∇2(ρ(s)− ρ̄0)‖2kds. (44)

Combining (36)-(44), (24) and (34), we obtain our result. This finishes the proof of Theorem 1.2.

3 Conclutsions

The above proofs illustrate that the solution of the equation exists globally and the Sobolev norm of global
solutions is controlled by the Sobolev norm of the initial data in the case of small initial values. The study
in this article provides a reliable basis for the numerical solution of this equation and other properties of the
equation.
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