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Abstract: The clutter suppression effect of ground objects significantly impacts the detection and
tracking performance of avian lidar on low-altitude bird flock targets. It is imperative to simulate
the point cloud data of ground objects in lidar to explore effective methods for suppressing clutter
caused by ground objects in avian lidar. The traditional ray-tracing method is enhanced in this
paper to efficiently obtain the point cloud simulation results of ground objects. By incorporating a
beam constraint and a light-energy constraint, the screening efficiency of effective rays is improved,
making them more suitable for simulating large scenes with narrow lidar beams. In this paper, a
collision detection scheme is proposed based on beam constraints, aiming to significantly enhance
the efficiency of ray-tracing collision detection. The simulation and experimental results demonstrate
that, in comparison with other conventional simulation methods, the proposed method yields the
point cloud results of ground objects that exhibit greater conformity to the actual lidar-collected point
cloud results in terms of shape characteristics and intensity features. Additionally, the simulation
speed is significantly enhanced.

Keywords: lidar; point cloud; simulation; collision detection; ground clutter

1. Introduction

The lidar system enables the rapid and precise acquisition of accurate positional
information regarding obstacles or targets within its environment, making it a valuable tool
in environmental perception, intelligent navigation, and other related fields [1,2]. However,
when monitoring bird activity in the low-altitude airspace near airports, the presence of
ground object echoes significantly interferes with the detection and tracking of bird flocks
by the lidar system. Methods based on deep learning, such as GACNet [3], SSTNet [4],
CVANet [5], etc., are commonly employed for point cloud target segmentation, which
involves the separation of ground object targets from lidar-received point clouds and the
subsequent suppression of the ground object echo. However, deep learning methods
necessitate an ample number of labeled samples to train their networks, a requirement
that cannot be met by the limited quantity of actual collected data. Therefore, it becomes
imperative to simulate lidar’s ground object echoes and generate sufficient annotated
samples in order to effectively train relevant networks and explore effective approaches for
suppressing ground object echoes.

The main methods for simulating lidar target echoes include ray tracing [6–8], physical
optics simulation [9–11], radar scattering field simulation [7,12,13], and other approaches.
The ray-tracing method is capable of accurately simulating the propagation and scatter-
ing process of light, thereby generating high-precision echo signals. However, due to its
computational complexity and slow execution speed, ray-tracing methods are generally
more suitable for scenarios involving small targets and simple scenes. The physical optical
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simulation method is based on a precise physical optical model to accurately simulate the
optical characteristics of the target and generate high-precision echo signals. However,
this method is highly dependent on the accuracy of the model and optical parameters,
making it challenging to simulate complex scenes. The radar scattering field simulation
method utilizes numerical computing technology to accurately simulate the interaction
between the target and its surrounding environment, thereby generating efficient and pre-
cise echo signals. This approach necessitates the detailed modeling of the electromagnetic
characteristics of the target, which entails substantial data and computational resources.

The limited storage capacity and reading and writing speed of the system restrict
avian lidar from simultaneously improving the monitoring range and spatial resolution.
Therefore, in order to ensure the coverage of the monitored airspace, avian lidar typically
sacrifices spatial resolution performance and adopts a lower spatial resolution. Therefore,
it is unnecessary to excessively focus on the detailed information of ground objects when
simulating the echo of a ground object in avian lidar. In essence, a simplified model can
be employed to describe the ground object in the echo simulation, thus rendering the
ray-tracing method suitable for effectively simulating the ground object echo detected by
avian lidar.

In ray-tracing methods, the rays emitted by and received by lidar are considered
effective rays. Clearly, when tracking the rays emitted by lidar, the light path becomes
more complicated due to reflections generated upon collision with object surfaces; however,
the proportion of effective rays remains relatively low. Conversely, non-effective rays
consume significant resources and impede the efficiency of ray-tracing methods. Common
approaches to addressing the issue of extensive computational complexity in ray-tracing
methods involve enhancing hardware computing capabilities or improving effective ray-
screening techniques. Typically, GPUs serve as prominent hardware devices for boosting
computing performance [14,15]. The parallel computing prowess of GPUs can significantly
enhance computational efficiency. Furthermore, devices incorporating the Compute Unified
Device Architecture (CUDA) can further optimize the GPU’s computing power utilization.
Enhanced methods for effective ray screening primarily involve reverse ray tracing or
bidirectional ray tracing [6]. Reverse ray tracing is based on backward path tracing from
the receiving end of the lidar to the transmitting end, ensuring that all rays are effective.
However, this method does not accurately account for light refraction. Bidirectional ray
tracing involves simultaneously calculating the light paths in both directions from both ends
of the lidar, thereby improving the proportion of effective rays and enhancing performance.

In order to enhance the efficiency of ground object echo simulation for avian lidar
and reduce the hardware calculation requirements of the simulation system, an improved
ray-tracing method is proposed in this paper. The method incorporates the bidirectional
ray-tracing concept, enabling the efficient screening of effective rays through a beam
constraint and light-energy constraint, thereby avoiding the tracking of non-effective rays.
Additionally, the method employs a batch processing approach for the batch collision
detection of ray clusters, thus improving the collision detection efficiency in ground object
echo simulation. The key contributions of this paper are as follows:

1. The beam constraint and light-energy constraint are determined based on the narrow
beam of lidar and the lowest responsive light-energy level. In ground object echo
simulation, these constraints can significantly enhance the efficiency of effective
light screening and reduce the hardware calculation performance required by the
simulation method.

2. The proposed collision detection scheme enables the simultaneous detection of all
rays within the narrow lidar beam, thereby significantly reducing the time required
for collision detection in the ray-tracing process.

The remaining sections of this paper are structured as follows: Section 2 provides
an in-depth description of the models involved in laser pulse propagation. In Section 3,
we introduce the batch collision detection scheme. Subsequently, we summarize the
concrete implementation steps of the simulation method proposed in this paper in Section 4.
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The simulation results are presented in Section 5, while a comprehensive discussion is
provided in Section 6. Finally, the conclusion of this paper is presented in Section 7.

2. Associated Models of Ray-Tracing Method

A typical lidar structure comprises a base, a rotor, and a laser mounted on the rotor,
as depicted in Figure 1a. The laser consists of a vertically and pitch-adjustable multi-
channel transmitter/receiver. To avoid mutual interference between different channels
during scanning, the laser transmitter/receiver is activated in a specific staggered sequence,
as illustrated in Figure 1b. Consequently, the channel interference is not considered in this
paper when simulating ground object echoes.

Figure 1. A schematic diagram of lidar: (a) Typical structure. (b) Activation sequence of the channels.

The entire lidar detection process encompasses the emission of laser pulses from the
transmitter, their reflection off the object’s surface, and their reception by the receiver.
Hence, this process can be divided into five stages: emission, forward propagation, re-
flection, backward propagation, and reception, as depicted in Figure 2. The lidar ground
object echo simulation aims to replicate the trajectory alteration and energy attenuation
of laser pulses emitted by the lidar system across five distinct stages. By conducting a
comprehensive scene scan, the simulation achieves a faithful representation of ground
object echoes throughout the entire scene. During this process, the Monte Carlo beamwidth
model is employed to simulate the transmitted beam of the lidar, while an atmospheric
attenuation model analyzes light-energy loss during laser pulse propagation in the air.
Additionally, a surface light energy reflectance model describes interactions between the
ray and object surfaces, and a receiver noise model further characterizes the noise impact
on ground object echoes.

Figure 2. The process of laser pulse propagation.

The simulation of ground object echoes involves constructing a three-dimensional
(3-D) virtual scene that represents the lidar working environment through computer mod-
eling. The world origin, located at the center of this virtual scene, serves as the coordinate
origin for establishing an East–North–Up coordinate system within the Cartesian coor-
dinate framework. The object mesh grid is imported into the scene for further scanning.
Each object in the scene is defined by its position and rotation information. The position
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information is represented using a 3-D coordinate vector, while the rotation information
can be expressed either through an orientation vector or a rotation matrix. By altering the
lidar’s direction, we are able to achieve the scanning of the 3-D scene and obtain point
cloud results that simulate echoes from all objects within this scene.

2.1. Monte Carlo Beamwidth Model

The laser pulse emitted by lidar propagates over a certain distance with a specific
beamwidth. In the ray-tracing method, the propagation of the laser pulse is described using
rays; however, this representation fails to fully capture the beam characteristics of laser
pulse radiation. To address this limitation, a Monte Carlo beamwidth model is employed
to describe the transmitting end of the lidar system. This model simulates a beam with a
predetermined beamwidth [6,7,11] by utilizing multiple randomly distributed rays within
that range, as illustrated in Figure 3.

Figure 3. Monte Carlo beamwidth model.

The laser pulse is assumed to be a rectangular pulse with a pulse width of τe and an
energy of Qs. The total energy of N random rays within the beamwidth is denoted as

Qs =
N

∑
n=1

Q(θn) (1)

where the offset angle, θn, represents the angular difference between the n-th random ray
and the direction vector d of the beam center. This can be specifically expressed as

θn = d̂, dn (2)

with the direction vector dn representing the direction of the n-th random ray. If the half-
beamwidth is denoted by θ0.5, θn ∈ [−θ0.5, θ0.5]. In Equation (1), the function Q(θn) denotes
the energy of the ray at the offset angle θn, which describes how the energy of the emitted
ray is distributed with respect to this offset angle. Assuming that the radiant energy density
is uniform across the beamwidth, we have

Q(θn) =
1
N

Qs (3)

2.2. Surface Light Energy Reflectance Model

After the ray is reflected by the surface of the object, there exists a relationship between
the reflected light energy Qout and the incident light energy Qin:

Qout = Qin fsur(θi, θr) (4)

where fsur(θi, θr) is the surface light energy reflectance function, θi is the incidence angle,
and θr is the reflected angle. The value range of θi is [0, π/2], while the value range of
θr is [−π/2, π/2]. When the reflected ray and the incident ray are located on the same
side of the normal vector of the object surface, θr is negative, and vice versa. The surface
light energy reflectance function ( fsur(θi, θr)) depends not only on the incidence angle and
reflected angle but also on the roughness of the material on the object’s reflecting surface.
The surface light energy reflectance function ( fsur(θi, θr)) comprises a diffuse reflectance
component and a specular reflectance component:

fsur(θi, θr) = fd(θi) + fs(θi, θr) (5)
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where fd(θi) is the diffuse reflectance component, while fs(θi, θr) is the specular reflectance
component. The schematic diagrams in Figure 4a,b illustrate the phenomena of diffuse
reflection and specular reflection of a ray on an object’s surface, respectively. Within Figure 4,
the vectors di, dr, and dt represent the direction vectors for the incident ray, reflected ray,
and specular reflection exit directions, respectively.

Figure 4. Ray reflection on surface: (a) Diffuse reflection. (b) Specular reflection.

According to the Lambert Cosine Law, the diffuse reflectance component can be
described as [16]

fd(θi) = kd cos θi (6)

where kd is the diffuse coefficient. Equation (6) demonstrates that the diffuse reflectance
component is contingent upon the incident angle θi. As the incident angle increases,
the diffuse reflectance component diminishes.

In the case where the surface of an object behaves like an ideal mirror, the ray will
exit in a direction known as dt. However, due to imperfections on the object’s surface,
the exiting ray will reflect diffusion, resulting in a region centered around dt, as illustrated
in Figure 4b. According to the Blinn–Phong model, the specular reflectance component is
defined as [16]

fs(θi, θr) = ks max
{

0, coskp(θr − θi)
}

(7)

where ks is the specular coefficient, while kp is the glossiness coefficient. The specular
reflectance component, as indicated by Equation (7), achieves its maximum value ks in the
direction of dt and gradually decreases with increasing offset angle relative to dt. The glossi-
ness coefficient kp determines the effective distribution range of reflected light during
specular reflection; a larger value corresponds to a smaller effective distribution range.

Substituting Equations (6) and (7) into Equation (5) yields

fsur(θi, θr) = kd cos θi + ks max
{

0, coskp(θr − θi)
}

(8)

The parameters kd, ks, and kp in Equation (8) for the surface material of the object can
be determined by fitting the reflectance data from various material surfaces in the MERL
BRDF material database [17]. Given these surface material parameters, the surface light
energy reflectance function fsur(θi, θr) is dependent on both the incidence angle θi and the
reflected angle θr. When a ray is reflected off the object’s surface, the reflected ray exists
within a range of [−π/2, π/2] centered around the normal direction of the surface.

In the simulation of ground object echoes, our focus is solely on the ray that is reflected
by the target and received by the lidar or adjacent targets of interest. Therefore, the direction
(dr) of a reflected ray is determined based on the positional relationship between the lidar
or target of interest and the reflecting surface. Subsequently, the corresponding reflected
angle (θr) is obtained. By utilizing Equation (8), the value of fsur(θi, θr) is calculated, which
represents the reflectance function for light energy. Finally, substituting fsur(θi, θr) into
Equation (4) allows us to determine Qout, representing the reflected light energy.



Photonics 2024, 11, 153 6 of 22

2.3. Atmospheric Attenuation Model

The attenuation effect of light propagating in the atmospheric medium cannot be
disregarded. Previous studies [18,19] have all examined the form of attenuation for light
propagation in this medium. The atmosphere is modeled as an isotropic uniform medium,
and the attenuation coefficient (µ) is assumed to remain constant, resulting in an exponential
model for atmospheric attenuation.

Qa(l) = Q0 exp(−µl) (9)

where Q0 is the initial energy of the light, while Qa(l) represents the energy of the laser
pulse after traveling a distance of l.

2.4. Receiver Noise Model

The Monte Carlo beamwidth model employed by lidar at the transmitting end utilizes
N random rays to simulate the transmission beam. Consequently, it is imperative that
N random rays are also reflected back to the receiver at the receiving end for unified
processing, ensuring that the light energy received by the receiver is

Qrec[m] =
N

∑
n=1

Qr(θn, τn) + Qn[m] (10)

where m corresponds to a specific range unit within lidar, measured in terms of sampling
time intervals (τs); Qrec[m] signifies the amount of light energy detected by the m-th range
unit; Qr(θn, τn) quantifies how much light energy is captured when an emitted laser
pulse is reflected by an object’s surface via the n-th random ray; θn and τn represent,
respectively, both an offset angle for the n-th random ray and a temporal delay for receiving
its corresponding laser pulse; and Qn[m] stands for noise energy picked up in the m-th
range unit, where it is defined as

Qn[m] = b[m]τs · hν (11)

where b[m] represents the quantity of noise photons detected in the m-th range unit, h
denotes the Planck constant, and ν corresponds to the frequency of the laser. Generally,
the distribution of b[m] follows a Poisson distribution with the parameter b̄ · τs, where b̄
represents the noise photon rate of the environment in which the lidar receiver is situated.

The dynamic range of the lidar receiver is typically limited, meaning that the receiver
has acceptable upper and lower thresholds for receiving optical signals. These thresholds
are recorded as Qhigh (upper energy limit) and Qlow (lower energy limit), respectively. As a
result, the received light energy can only fluctuate within the range from Qlow to Qhigh. Any
light energy (Qrec[m]) exceeding the upper limit will be clamped, while Qrec[m] below the
lower limit will not be perceived by the receiver. Consequently, after entering the receiver,
the light energy becomes

Qen[m] =


Qhigh, Qrec[m] ≥ Qhigh

Qrec[m], Qlow < Qrec[m] < Qhigh

0, Qrec[m] ≤ Qlow

(12)

2.5. Received Light Energy Presentation Model

When conducting ground object echo simulation, it is necessary to visually represent
the intensity information of the laser signal received by the receiver in color. To achieve a
more enhanced rendering effect, the Hue-Saturation-Brightness (HSB) color mode, which
closely emulates the human visual experience, is employed to accurately represent the
intensity information of point clouds. The saturation and brightness of the color should be
set to 1 while mapping the dynamic range of the received light energy [Qlow, Qhigh] to the
hue range from blue to red, as illustrated in Figure 5.
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Figure 5. The mapping relationship between the received light energy and hue in the HSB mode.

As can be seen from Figure 5, the intensity of the received light energy is represented
by the color tone. Because the hue values for cool blue and warm red are 0◦ and 240◦,
respectively, the hue value corresponding to the incoming laser energy at the receiver is

h[m] =
Qhigh − Qen[m]

Qhigh − Qlow
240◦ (13)

3. Collision Detection Scheme

The collision detection between the ray and the object surface in the scene poses a
significant challenge when employing the ray-tracing method to simulate ground object
echoes. The efficiency of the ray-tracing method is directly influenced by the quality of the
collision detection scheme.

The term “collision detection” refers to the process of determining whether the emitted
ray intersects with any objects in the scene based on its starting point and direction. If a
collision occurs, it indicates that the ray illuminates an object along its propagation path
within the scene; otherwise, the ray will not illuminate any objects and will continue
infinitely. In terms of collision detection results, the closest point to the ray’s starting point
represents where it shines onto an object’s surface.

After the incidence of a ray on an object’s surface, it undergoes reflection. As per
the surface light energy reflectance model outlined in Section 2.2, the reflected rays are
distributed within the range [−π/2, π/2] centered around the normal vector n of the
object’s surface. A portion of these reflected rays directly return to the lidar receiver, while
some no longer intersect and vanish into infinity. Additionally, certain portions collide
with objects in the scene once again and are reflected. The aforementioned processes
continue until all corresponding light energy is depleted. Since each emitted ray can
undergo multiple reflections, conducting multiple collision detections for each ray becomes
necessary. Optimizing the collision detection scheme directly enhances efficiency in ray-
tracing methods.

3.1. Construction of Collision Detection Tree

The objects within a 3-D scene can be perceived as an arrangement of triangular sur-
faces. Collision detection between the ray and the object surface in the scene essentially
involves detecting collisions between the ray and these triangular surfaces. A straight-
forward approach to collision detection would involve traversing all triangular surfaces
within the scene to identify any collisions with the ray, but this method is computationally
demanding and impractical. To enhance collision detection efficiency, it becomes necessary
to construct bounding volumes of varying sizes based on the triangular planes present
in the scene, utilizing these bounding volumes to establish a collision detection tree that
enables the rapid identification of collisions between the ray and triangular planes.

The bounding volume is a simple geometric structure containing multiple triangular
surfaces, which enables the ray to initially assess the intersection with the bounding
volume and subsequently determine the precise points of potential intersections within
its respective scope. The bounding volume serves as an efficient means for rapid area
screening. Commonly employed types of bounding volumes include the Axis-Aligned
Bounding Box (AABB) [20], Oriented Bounding Box (OBB) [21], and Sphere Bounding
Volume (SBV) [22].
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The collision detection tree is a tree structure based on bounding volumes, designed
to optimize the calculation of collision detection. Commonly used tree structures include
the Bounding Volume Hierarchy (BVH) tree [23], Binary Space Partitioning (BSP) tree [24],
and k-dimensional (k-D) tree [25]. The collision detection tree consists of a root node,
intermediate nodes, and leaf nodes. Each node in the collision detection tree is denoted as

nodei = {Bi, Fi, pi,1, pi,2} (14)

where Bi is the bounding volume corresponding to this node, while Fi represents the
triangular plane inside the leaf node. The numbers pi,1 and pi,2 represent the two child
nodes of this node and are excluded in the case of a leaf node. The set Snode = {nodei}
comprises all nodes that form the collision detection tree.

The construction process of the collision detection tree involves determining each
node of the tree sequentially, as depicted in Algorithm 1. Steps 1 and 2 in Algorithm 1 serve
as initialization processes for the relevant parameters. Firstly, it is essential to construct
a bounding volume Bi for each element Fi within the set S f lat and incorporate it into the
bounding volume set S1. Secondly, the variables involved in constructing the collision
detection tree are initialized. Steps 3 to 18 outline the detailed construction process of the
collision detection tree. When the set Slayer is not empty, nodes need to be constructed from
its elements. For each element Lp in the set Slayer, if it contains more than one bounding
volume, a corresponding root node or intermediate node should be created; if it contains
only one bounding volume, a leaf node needs to be constructed. In the case of a root node
or intermediate node, all bounding volumes within Lp should be merged into a larger
bounding volume Bj0, which will serve as the bounding volume for this particular node.
Additionally, all bounding volumes within Lp must be divided into two subsets based on
the construction rules of the respective tree structure and temporarily stored in the set Stemp.
The BVH tree construction in step 9 allows for the direct division of the set into its first and
second parts. On the other hand, when constructing a k-D tree, it is necessary to iteratively
select dimensions as axes for partitioning and split the set into two approximately equal
parts along these dimensions. Node nodej0 integrates Bj0 with child node numbers j1 and
j1 + 1, which are then included in the collection Snode. For leaf nodes, both the last bounding
volume of the node and its corresponding triangular plane are integrated into node nodej0
and added to the set Snode. The set Slayer is updated with the set Stemp until all elements
have been traversed, resulting in an empty set Slayer. Ultimately, the set Snode encompasses
all nodes of the collision detection tree, thus completing its construction.

The collision detection between a ray and the object surface in the scene is achieved
by utilizing the intersection of the ray and the bounding volume. The collision detection
tree enables the efficient retrieval of the leaf node that intersects with the ray, ultimately
providing information about the triangular surface where the collision occurs.

3.2. Intersection of Beam and Bounding Volume

The Monte Carlo beamwidth model is employed to describe the emitted beam of
lidar, resulting in the confinement of the corresponding N random rays within a narrow
beamwidth. During the collision detection between rays and surface elements, there exists
a high probability that these N random rays will collide with the bounding volume in
either the same leaf node or adjacent leaf nodes. Consequently, this inevitably leads to an
increased number of identical intermediate nodes among these N random rays. Therefore,
utilizing beams for retrieving leaf nodes can effectively reduce the computation required
for each random ray and enhance the retrieval efficiency.

When retrieving leaf nodes using a beam, it is essential to judge the intersection be-
tween the conical beam and the bounding volume. The judgment only needs to be whether
the beam and the bounding volume intersect, without necessitating the identification of
the specific point or line of intersection.
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Algorithm 1 Construction of the collision detection tree.

Input: The collection of triangular surfaces S f lat = {Fi}
Output: The set of nodes in the collision detection tree Snode = {nodei}

1: The minimum bounding volume Bi is constructed for each element Fi in set S f lat.
The type of bounding volume can be selected based on the requirements, such as the
AABB, OBB, or SBV. All the generated bounding volumes constitute the set L1 = {Bi}.

2: The parameters of the collision detection tree are initialized. The current node j0 is set to
1 and the child node j1 is set accordingly. Complex sets Slayer = {Lp} and Stemp = {Lq}
are constructed, which consist of bounding volume sets. It is ensured that Slayer contains
only one element, namely, L1, while Stemp and Snode are set as empty sets. The number
of elements in the set Slayer is assigned to the variable P.

3: while P > 0 do
4: Let q = 1 and j1 = j0 + P
5: for p = 1 to P do
6: The variable Q is assigned the number of bounding volumes in the p-th element

Lp of the set Slayer.
7: if Q > 1 then
8: The smallest bounding volume Bj0 that can surround all bounding volumes

in Lp is built.
9: According to the construction rules of tree structures, such as a BVH tree or

k-D tree, the elements in Lp are partitioned into two subsets, namely, Lq and
Lq+1, which are then added to the set Stemp as the q-th and q + 1-th elements,
respectively.

10: The j0-th node nodej0 = {Bj0, , ji, j1 + 1} is constructed. As this node is not
a leaf node, it does not contain any triangular plane information. The node
nodej0 is included in the collection Snode as the j0-th element.

11: Let q = q + 2, j1 = j1 + 2
12: else
13: The leaf node nodej0 = {Bj0, Fj0, , } is constructed by assigning the

unique bounding volume in Lp to Bj0 and associating the corresponding
triangular surface with Fj0. The leaf node will no longer possess child node
numbers. The node nodej0 is included in the collection Snode as the j0-th
element.

14: end if
15: Let j0 = j0 + 1
16: end for
17: Let Slayer = Stemp and Stemp = ∅
18: end while
19: return Snode

The intersection assessment between the beam and the bounding volume involves
assessing the intersection between two geometric structures in 3-D space. This process can
be decomposed into evaluating the intersection between the beam angle and the rectangle
on each of the three orthogonal faces in a two-dimensional (2-D) plane, as illustrated in
Figure 6. If there are overlaps between the projected beams in all three planes and the
projected rectangle of the bounding volume, then it can be concluded that there is an
intersection between the beam and the bounding volume.

The intersection assessment between the beam and the rectangle in a 2-D plane can
be further decomposed into assessing the intersection between the two rays that form the
beam and the rectangle, as illustrated in Figure 7. In a 2-D plane, a beam intersects with
a rectangle only if at least one ray intersects with it or if the two rays are positioned on
opposite sides of the rectangle. By considering the end point of each ray as its origin, we
define the vector pointing from this origin to each vertex of the rectangle as a rectangular
vertex vector. The cross-product operation is performed between the direction vector of
the ray and each vertex vector of the rectangle. If the resulting cross-product vectors have
opposite directions, it indicates an intersection between the particular ray and the rectangle.
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Consequently, determining whether there is an intersection between a beam and bounding
volume can be decomposed into evaluating whether there is an intersection among multiple
rays and rectangles.

Figure 6. The intersection assessment between the beam and the bounding volume.

Figure 7. Intersection assessment between beam and rectangle.

The judgment of the beam-bounding volume intersection for deeper intermediate
nodes within this bounding volume needs to be made if the initial judgment is true, until the
leaf node that intersects the beam is retrieved.

3.3. Intersection Between Ray and Triangular Surface

By applying a beam constraint, the collision detection tree locates all leaf nodes that
may intersect with random rays in the beam and constructs a set of potential collision
surface elements (Spotential) from corresponding triangular surfaces. Each random ray is
utilized to determine the intersection point of relevant triangular planes within the set.

The geometric configuration of the intersection assessment between a ray and a
triangular surface is illustrated in Figure 8. Cartesian coordinates are established with O
as the origin of the ray, where d represents the direction vector of the ray. The position
vectors of the three vertices A, B, and C on the triangular surface are denoted by pA, pB,
and pC, respectively. Additionally, pI represents the position vector of the intersection
point I between the ray and the triangular surface.

Figure 8. The intersection point between the ray and the triangular surface.
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According to the geometric relationship shown in Figure 8, we can have

pI = wd (15)

where w is a positive real number. Meanwhile, the direction vector d can also be decom-
posed into

d = αpA + βpB + γpC (16)

with the coefficients α, β, and γ being real numbers representing the decomposition of
the direction vector d into pA, pB, and pC, respectively. In geometry, point I being on the
surface of triangle ABC is a necessary and sufficient condition, denoted by

w(α + β + γ) = 1 (17)

The sufficient and necessary condition for the direction vector d inside the tetrahedron
OABC is that α, β, and γ are all non-negative and at least one of them is non-zero.

The values of α, β, and γ can be computed based on Equation (16). If the direction
vector d lies within the tetrahedron OABC, then it is necessary for the ray to intersect
with the triangular surface ABC. By substituting Equation (17) into Equation (15), we can
determine the position vector of the intersection point I:

pI =
1

α + β + γ
d (18)

3.4. The Problem of Secondary Reflection

When a ray is reflected on the surface of an object, according to the surface light energy
reflectance model, the reflected rays are distributed within the range of [−π/2, π/2],
centered around the normal vector n on the object’s surface. Apart from some of these
reflected rays being directly reflected and received by a receiver, other portions may
undergo secondary reflection upon colliding with other objects in the environment.

The reflection point of the secondary reflection must fall within the lidar receiving
beam in order for the ray to enter the lidar receiver. Hence, when tracking secondary
reflections, it is sufficient to consider only those arising from triangular surfaces among the
set of potential collision surface elements (Spotential).

Each reflected ray undergoes significant attenuation compared to the incident ray.
The increase in the number of reflections further amplifies the attenuation of light energy.
A portion of the rays, after undergoing secondary reflection and reaching the receiver, fail
to reach the level of sensitivity that allows for perception. Consequently, based on the
sensitivity of the lidar receiver, backward precomputation is employed to calculate the
minimum energy at each reflection point. If the energy of the reflected ray falls below
this minimum threshold, it will no longer be tracked. This approach effectively avoids
extensive, non-effective ray tracing.

After secondary reflection, there arises the issue of subsequent ray reflection once
again, necessitating the repetition of the secondary reflection process. However, due to
the attenuation of light energy during multiple reflections, the lidar receiver typically fails
to perceive the laser pulse after undergoing multiple reflections. Therefore, in simulation
processes, only the problem of secondary reflection is usually taken into consideration.

4. Proposed Simulation Method

On the basis of the aforementioned models of laser propagation and the collision
detection scheme, the implementation process of the improved ray-tracing method for
simulating ground object echoes can be explained, as depicted in Algorithm 2.

In the simulation method proposed in this paper, the collision detection tree is con-
structed using Algorithm 1 based on 3-D virtual scene information and radar parameters.
Subsequently, during the simulation process of ground object echoes, the corresponding
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points’ 3-D position and intensity distribution information are acquired according to the
beam. For a given beam, N random rays are generated using the Monte Carlo beamwidth
model. Afterward, the collision information between these random rays and the triangular
surface of the ground object is obtained through batch collision detection. The reflection
direction of each ray is determined based on the triangular surface information of the
ground object within the beam irradiation range and the position of the lidar receiver.
If the reflected ray encounters another triangular surface, the information within the beam
irradiation range and the position of the lidar receiver are reused to determine its reflection
direction again, until it reaches the lidar or collides with a triangular surface outside of
the beam irradiation range. For the ray received by lidar after one or more reflections,
the light energy of the laser pulse transmitted along this ray is calculated at each crucial
node. The received ray is then screened by the light-energy constraint. By summing up the
energy corresponding to all the rays received by lidar within the beam and incorporating
additive noise, the received light energy is transformed into Qrec[m]. Finally, based on the
received light energy presentation model, it is compared with the upper and lower limits
to generate Qen[m], which is then mapped to points of different colors. The simulation of
the interior object echo of a single beam is now complete. Upon sweeping through the
entire 3-D scene, we can obtain the point cloud distribution, where distinct colors indicate
varying intensities of ground object echoes at corresponding locations.

Algorithm 2 Proposed simulation method

Input: A 3-D virtual scene, parameter values for various materials and lidar
Output: The simulated point cloud of the 3-D virtual scene

1: Based on the information from the 3D virtual scene and lidar parameters, the collision
detection tree is constructed using Algorithm 1.

2: for traversing all beam directions in the ground object echo simulation do
3: Generate N random rays according to Monte Carlo beamwidth model.
4: By utilizing the collision detection tree, a batch collision detection is performed for

N random rays in the beam.
5: for traversing N random rays do
6: while the ray collides with the triangular surface of the ground object within
7: the beam irradiation range do
8: The effective ray is filtered by applying the beam constraint. The direction of

the reflected ray is determined based on the triangular surface information of
the ground object within the illuminating range of the beam and the position
of the lidar receiver.

9: end while
10: Specifically for the ray whose light path terminates in the lidar receiver, the

models in Section 2 are utilized to compute the light energy of the laser pulse
emitted by lidar at each crucial node along the propagation path.

11: if the light of the laser pulse at each crucial note satisfies the light-energy con-
12: straint, then
13: The lidar is capable of receiving the laser pulse propagated along this light

path while preserving its light-energy information Qr(θn, τn).
14: else
15: The laser pulse propagating along the light path is insufficient to activate the

lidar receiver, thus necessitating the disregard of this particular ray.
16: end if
17: end for
18: All retained energy is added up, and additive noise is introduced to form the

received light energy Qrec[m] in lidar. Based on the upper and lower limits of
receivable light energy, the light energy Qen[m] is formed upon entering the receiver.

19: According to the received light energy presentation model, the received energy is
mapped to points of varying colors.

20: end for



Photonics 2024, 11, 153 13 of 22

5. Simulation Results

The reliability and high efficiency of the ground object echo simulation method pro-
posed in this paper are demonstrated through a series of simulation experiments conducted
in this section.

5.1. Selection of Bounding Volume Type and Collision Detection Tree Structure

The BVH tree [23] or k-D tree [25] is constructed using the AABB [20] or SBV [22]
bounding volumes to investigate the efficiency of collision detection for different combina-
tions. The total time required for constructing the collision detection tree and performing
collision detection under various combinations varies with the number of triangular sur-
faces, as depicted in Figure 9. It can be observed from Figure 9 that as the number of
triangular surfaces increases, both the construction time of the collision detection tree and
the total time spent on collision detection increase proportionally. Notably, when adopting
the SBV, there is a significantly higher growth rate in total time compared to the AABB,
which remains consistently high throughout. Under identical bounding volume conditions,
the k-D tree exhibits higher construction and detection efficiency. Therefore, in this paper,
the AABB is utilized to construct the k-D tree in ground object echo simulation.

Figure 9. The time elapsed for constructing the collision detection tree and performing collision
detection under various combinations.

The efficiency of the point cloud simulation method proposed in this paper is further
analyzed here. In the simulation experiment, a spherical surface composed of a specific
number of triangular surfaces was used as the simulation target. Figure 10 illustrates the
point cloud simulation time for the proposed method, the method based on the bidirectional
BRDF model [10], and the method based on the Phong model [11] with varying numbers
of triangular surfaces. From Figure 10, it can be observed that when there are fewer
triangular surfaces, the proposed method takes more time compared to the other two
methods. However, as the number of triangular surfaces increases, the rate at which time
consumption grows for simulating point clouds using our proposed method is significantly
lower than those of both alternative methods. Consequently, as we increase the number of
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triangular surfaces, our proposed method exhibits an increasingly advantageous reduction
in time consumption compared to both alternative methods. When dealing with point
cloud simulations in complex environments, our proposed method demonstrates superior
advantages over these two alternatives.

The present study introduces a beam constraint, a light-energy constraint, and a batch
collision detection scheme to expedite the screening of effective rays in the ray-tracing
process and reduce the computational complexity of collision detection throughout the
simulation. To further analyze the impact of these enhancements on simulation efficiency, it
is beneficial to draw upon ablation experiments, commonly employed in neural networks,
for discussion. In this experiment, a spherical surface composed of a specific number of
triangular surfaces remains as the simulation target. Various combinations of the beam
constraint, light-energy constraint, and batch collision detection schemes are incorporated
based on the original ray-tracing method to assess time consumption during the point
cloud simulation under different numbers of triangular surfaces. The specific results are
illustrated in Figure 11. The combination of the original ray-tracing method with the beam
constraint, the light-energy constraint, or the batch collision detection scheme resulted in
a noticeable decrease in simulation time, as depicted in Figure 11. When the number of
triangular surfaces is low, the combination of the original ray-tracing method and batch
collision detection scheme exhibits the shortest execution time. However, when dealing
with a high number of triangular surfaces, employing the combination of the original
ray-tracing method and the beam constraint proves to be more efficient. Furthermore,
incorporating any two aspects with the original ray-tracing method further reduces the
simulation time. Notably, among these combinations, utilizing both the beam constraint
and the batch collision detection scheme yields superior performance.

After combining the original ray-tracing method with the aforementioned three aspects
to form the enhanced approach proposed in this paper, it is evident that the corresponding
simulation time exhibits optimal performance. In conclusion, by addressing three key
aspects of improvement within the original ray-tracing method, the proposed approach
effectively enhances computational efficiency in simulations.

Figure 10. Time elapsed for different methods.
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Figure 11. Results of ablation experiments.

5.2. Simulation Results of Simple Small Scene

The proposed method was utilized for simulating the point cloud of a simple small
scene and validating its effectiveness by comparing it with the actual lidar-collected data.
The experimental area selected is the corridor section within the laboratory, encompassing
various elements, such as windows, doors, stairwells, walls, and long corridors, as depicted
in Figure 12a. Based on the real scene information, a 3-D virtual scene was constructed,
as shown in Figure 12b. The diffuse coefficient (kd), specular coefficient (ks), and glossiness
coefficient (kp) of different materials in the 3-D virtual scene were determined by fitting data
from the MERL BRDF material library [17], with the specific values presented in Table 1.

Figure 12. Experimental scene: (a) Real scene. (b) Virtual scene.
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Table 1. The parameter values for various materials.

Material kd ks p

Wall 0.146 0.054 112
Glass 0.020 0.852 8046
Metal 0.075 0.634 6803
Wood 0.107 0.100 82

The lidar utilized in this experiment is the Laser Intelligent C16 multi-line mechanical
lidar. The horizontal resolution and vertical resolution of the lidar are 0.09◦ and 2.0◦, respec-
tively, with the vertical resolution being approximately 22 times greater than the horizontal
resolution. To ensure a balanced point cloud data resolution in both the vertical and hori-
zontal directions, the actual radar data collected during the experiment were downsampled
by a factor of 22 along the horizontal direction. In order to compare the actual collected
point cloud with the simulated point cloud, an object echo simulation was conducted using
radar with set horizontal and vertical resolutions of 2.0◦ each. Other relevant parameter
settings employed in this simulation can be found in Table 2. The simulation device utilizes
an Intel i7-10510U CPU operating at a frequency of 1.8 GHz and is equipped with 8 GB of
memory. All program codes were implemented in the Java language without utilizing GPU
acceleration. Whether the point cloud was obtained through actual collection or simulated
generation, the color tone represents the light-energy intensity of each corresponding point,
while the diameter of the point indicates its distance distribution. The simulation method
proposed in this paper takes 83 ms when simulating the simple small scene, whereas
the original ray-tracing method requires approximately 130 ms. The proposed approach
demonstrates a time reduction of about 36.2% compared to the original method.

Table 2. Configurations of model parameters.

Notation Explanation Value

θ0.5 Half-beamwidth 5.6 × 10−3 rad
N Total number of random rays within beam 100
µ Atmospheric attenuation coefficient 0.088
b̄ Noise photon rate 20 kHz
h Planck constant 6.626 × 10−34 J · s
ν Frequency of the laser 3.313 × 1014 Hz

Qs Energy of the emitted laser pulse 2.5 × 10−4 J
Qhigh Receiver upper energy limit 6.25 × 10−5 J
Qlow Receiver lower energy limit 2 × 10−6 J

Three typical areas are selected as the judgment indicators to evaluate the con-
sistencies of the shape characteristics and intensity distribution between the real and
simulated results.

The first area to consider is depicted in Figure 13a, featuring a wooden door with
a window, a glass cabinet housing the fire hydrant, and adjacent walls. As indicated by
the parameters in Table 1, wood and wall materials have higher diffuse coefficients (kd),
while glass materials exhibit a higher specular coefficient (ks) and glossiness coefficient
(kp). Consequently, the reflection of wood and wall materials is predominantly diffuse,
whereas glass materials primarily undergo specular reflection with weak diffuse reflection.
Therefore, for a lidar system whose transmitter and receiver are located at the same po-
sition, only when ray irradiates the surface at a very small incidence angle can it receive
specular reflection energy; otherwise, the received energy is mainly from diffuse reflections.
Figure 13b,c depict the light intensity distribution of actual radar-acquired point clouds and
simulated point clouds, respectively. In comparison with Figure 13a, it is evident that the
wall echo exhibits maximum strength, followed by the wood echo, while the glass echo is
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the weakest; furthermore, material boundaries are clearly discernible. Notably, the middle
region of the wooden door reflects stronger echoes than its sides due to its surface being
nearly perpendicular to the incident light, resulting in specular reflection.

Figure 13. Door area: (a) Area photo. (b) Actual collected point clouds. (c) Simulated point clouds.

To accurately assess the distribution consistency between the actual collection point
cloud and the simulated point cloud, the Hausdorff distance [26] and Root Mean Square
Error (RMSE) [27] were employed as quantitative metrics. The Hausdorff distance, a com-
monly used measure of dissimilarity between two point clouds, considers the distances
between each point in both clouds and their nearest neighbors, selecting the maximum
value among them. The specific expression for calculating the Hausdorff distance is
denoted by

DHausdor f f = max
{

max
pa

(
min

ps
∥pa − ps∥

)
, max

ps

(
min

pa
∥ps − pa∥

)}
(19)

where pa and ps represent the coordinates of any point in the actual collected point cloud
and simulated point cloud, respectively. Due to a discrepancy in the total number of points
between the two clouds, the Root Mean Square Error (RMSE) is utilized to measure the
distance between the nearest neighbors in each cloud, i.e.,

RMSE =

√
1
n

n

∑
a=1

min
ps

∥pa − ps∥2 (20)

where n represents the total number of points in the simulated point cloud. The smaller
the values of the Hausdorff distance and RMSE, the higher the similarity between the two
point clouds. Based on Figure 13b,c, the Hausdorff distance is measured to be 0.164, while
the RMSE is calculated as 0.04.

The second selected area is the stairwell, as depicted in Figure 14a. As evident from
Figure 14a, this area exhibits a relatively intricate geometric structure and comprises two
different materials: metal and wall. The stair handrail is constructed of metal, while the
wall and steps can be treated based on the wall material. As demonstrated by the point
cloud results in Figure 14b,c, the complex structure of this region poses a challenge for
fully capturing its structural information when point clouds are sparse. However, based
on the distribution of point clouds, Figure 14b,c exhibit good similarity to each other.
The Hausdorff distance and RMSE values are 0.908 and 0.33, respectively, indicating their
strong resemblance, but it is weaker than that shown in Figure 13.

The final region analyzed is the long corridor region, as depicted in Figure 15a. As ev-
ident from Figure 15a, an acrylic bulletin board is installed in this area. The reflective
characteristics of the material resemble those of glass, thus substituting the parameters
of glass material for simulation purposes. Comparing Figure 15b,c, it can be observed
that the intensity of point clouds reflecting the bulletin-board area is significantly weaker
than that of point clouds on the surrounding wall. With increasing distance, the intensity
of wall point clouds gradually diminishes. In even more distant regions, where the echo
intensity falls below the receiver’s threshold and goes unnoticed, the corresponding areas
are absent from the point cloud results. The Hausdorff distance and RMSE in this region
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are 0.373 and 0.10, respectively. Evidently, the point cloud similarity is superior in the long
corridor region compared to the stairwell region but inferior to that in the region depicted
in Figure 13a.

Figure 14. Stairwell area: (a) Area photo. (b) Actual collected point clouds. (c) Simulated point clouds.

The previous analysis of the point cloud consistency and intensity changes in key
areas within the experimental scene confirms that the proposed point cloud simulation
method in this paper effectively yields highly accurate results consistent with reality.

Figure 15. Corridor area: (a) Area photo. (b) Actual collected point clouds. (c) Simulated point clouds.

5.3. Simulation Results of Complex Large Scene

In this section, based on the technical parameters of avian lidar, the point cloud of the
ground object echoes is simulated in a complex large scene. The selected scene is Shanghai
Hongqiao International Airport. Figure 16a shows its satellite thumbnail, and the top
view of the mesh grid of the main airport buildings is illustrated in Figure 16b. The lidar
system is positioned near the center of the runway, indicated by a red “+” symbol in both
Figure 16a,b. For this experiment, we adopted identical model parameters to those used to
simulate the simple small scene, except for setting the atmospheric attenuation coefficient
µ to 0.035 and transmitted pulse power Qs to 3.6 × 10−4 J.

During the simulation of ground object echoes, the lidar’s vertical coverage range is 0
to 6 degrees, which is divided into either 16 or 32 channels. This means that the lidar has a
vertical resolution of either 0.375 degrees or 0.1875 degrees, and its horizontal resolution is
equal to the vertical resolution. The same hardware as described in Section 5.2 was utilized
for this ground object echo simulation experiment. When using 16 channels, our proposed
method completes the simulation for the entire airport in approximately 1122 ms, whereas
the original ray-tracing method takes around 1439 ms. On the other hand, when employing
all available 32 channels on the lidar system, our proposed method requires about 1633 ms
compared to 1831 ms with the original ray-tracing approach.
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Figure 16. Shanghai Hongqiao international airport overview: (a) Satellite thumbnail. (b) Top view
of mesh grid of main buildings.

Taking the T1 terminal of the airport as an example, the top views of simulated point
clouds obtained by lidar using 16 channels and 32 channels are plotted in Figure 17a,b,
respectively. In Figure 17, the black network represents the corresponding architectural
structure based on the spatial positioning of the T1 terminal in the 3-D virtual scene. Simu-
lated point clouds are represented by colored dots, indicating their coordinate positions
within the same 3-D virtual space. Each point’s coordinates within the cloud are determined
by factors such as the lidar location, beam direction, and laser pulse travel distance. It can
be observed from Figure 17a,b that both cases effectively capture the facade shape of the
building toward the lidar. However, in Figure 17a,b, these point clouds appear blue due to
their relatively low light energy compared to other colors on a color–energy mapping scale.
This is primarily attributed to two factors: firstly, there is a significant distance between
the lidar and the T1 terminal; secondly, considering this distance, the points on the T1
terminal are relatively close together compared to their distance from lidar. By comparing
Figure 17a,b, it can be further observed that the lidar employs a greater number of channels
to acquire denser point clouds, thereby enabling a more precise depiction of target details.

Figure 17. Top view for results of different vertical channels: (a) Sixteen channels. (b) Thirty-
two channels.

By utilizing simulation techniques, a multitude of specific target point clouds can be
conveniently generated under varying conditions, such as different noise levels, viewing
angles, and resolutions. These generated point clouds can serve as annotated samples
for training neural networks, enabling the trained network to accurately identify and
eliminate ground objects from lidar-received point clouds. This ensures that the detection
and tracking of bird targets are not impeded by the presence of ground object data.
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6. Discussion

Avian lidar is an effective means for monitoring bird activity in low-altitude airspace.
However, the presence of ground object echoes seriously affects the detection and tracking
performance of the avian lidar system. To effectively suppress these ground object echoes,
it is necessary to simulate them accurately in the avian lidar system. In this paper, an im-
proved ray-tracing method is proposed to simulate ground object echoes in airport scenes.
Our proposed method utilizes bidirectional ray tracing and incorporates beam constraint
and light-energy constraint techniques to efficiently filter out irrelevant rays during the
simulation process. Additionally, our method employs batch collision detection to enhance
the collision efficiency between multiple random rays and ground objects within a beam.
By optimizing specific strategies within the simulation process, our proposed method
significantly improves the simulation efficiency without compromising the resolution of
the simulated point cloud.

The advantage of the ray-tracing method [6–8] lies in its ability to accurately simulate
the propagation and scattering process of light, as well as generate high-precision ground
object echo signals. However, when dealing with complex scenes, the calculation load
of ray tracing significantly increases due to multiple reflections of light, resulting in low
simulation efficiency. The introduction of a beam constraint and a light-energy constraint
in this method improves the selection of effective light and greatly reduces the tracking
of unnecessary rays. Compared to the hardware acceleration method mentioned in the
literature [14,15], our proposed method enables a complex scene simulation without re-
lying on expensive GPU resources. A comparative analysis with the BRDF method [10]
and Phong’s method [11] reveals that our proposed method exhibits superior simulation
efficiency for ground object echoes within environments featuring large surface element
scales. In small-scale scene experiments, the simulated point cloud generated in this paper
demonstrates a strong realistic effect, closely resembling actual lidar-collected point clouds
both structurally and in terms of intensity distribution. Furthermore, when simulating an
airport scene, the generated point cloud effectively describes the distribution characteristics
of ground object surfaces toward radar; particularly noteworthy is its improved descriptive
capability after increasing the number of vertical lidar channels.

The research presented in this paper successfully achieved the efficient simulation of
target echoes in complex environments. However, due to the limited availability of exper-
imental conditions, there is currently no actual lidar system for acquiring ground object
echo data in large scenes. Therefore, it is not possible to directly compare the simulated
point cloud data with real point cloud data collected from such scenes. Consequently, there
remains a need for more robust methods to validate the rationality of the simulated ground
object echo point cloud.

7. Conclusions

In this paper, an enhanced and efficient ray-tracing simulation method is presented for
simulating ground object echoes in airport avian lidar. By optimizing the effectiveness of
light screening and collision detection between light and targets, the proposed method can
be applied to simulate target echoes in large and complex scenes. Simulation experiment
results demonstrate that the optimized ray-tracing and collision detection methods pre-
sented in this paper exhibit superior overall performance compared to classical algorithms.
Under the similar control of other parameters, the running time and simulation speed of
the proposed target simulation method are notably improved when compared with other
methods, particularly for scenarios involving a high number of surfaces. Furthermore,
based on actual lidar-collected point cloud results, the simulated results from our model
accurately reflect both the physical shape and echo intensity characteristics of objects within
scanned scenes.
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