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Abstract: The exploration of premium and new locations is regarded as a fundamental function
of every evolutionary algorithm. This is achieved using the crossover and mutation stages of the
differential evolution (DE) method. A best-and-worst position-guided novel exploration approach
for the DE algorithm is provided in this study. The proposed version, known as “Improved DE
with Best and Worst positions (IDEBW)”, offers a more advantageous alternative for exploring new
locations, either proceeding directly towards the best location or evacuating the worst location. The
performance of the proposed IDEBW is investigated and compared with other DE variants and
meta-heuristics algorithms based on 42 benchmark functions, including 13 classical and 29 non-
traditional IEEE CEC-2017 test functions and 3 real-life applications of the IEEE CEC-2011 test suite.
The results prove that the proposed approach successfully completes its task and makes the DE
algorithm more efficient.
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1. Introduction

Nowadays, the optimization problems of various science and engineering domains
are becoming more complex due to the presence of various algorithmic properties like
differentiability, non-convexity, non-linearity, etc., and hence it is not possible to deal with
them using traditional methods. For that reason, new meta-heuristic methods are emerging
to deal with these challenges in optimization fields. A meta-heuristic is a general term
for heuristic methods that can be useful in a wider range of situations than the precise
conditions of any specific problem. These meta-heuristic methods can be categorized into
different groups, such as (i) the EA-based group, e.g., genetic algorithm [1], differential
evolution algorithm [2], Jaya algorithm [3], etc.; (ii) swarm-based group, e.g., particle
swarm optimization [4], artificial bee colony [5], gray wolf optimization [6], whale opti-
mization algorithm [7], manta ray foraging optimization [8], reptile search algorithm [9],
etc.; (iii) physics-based group, e.g., gravitational search algorithm [10], sine-cosine algo-
rithm [11], atom search optimization [12], etc.; and (iv) human-based group, e.g., brain
storm optimization [13], teaching–learning-based optimization [14], gaining–sharing knowl-
edge optimization [15], etc.

The DE algorithm has maintained its influence for the last three decades due to its
excellent performance. Many of its variants have placed among the top ranks in the IEEE
CEC conference series [16,17]. Its straight forward execution, simple and small structure,
and quick convergence can be considered the main reasons for its great efficiency. It
has been successfully applied to a wide range of real-life applications, such as image
processing [18,19], industriel noise recognition [20], bit coin price forecasting [21], optimal
power flow [22], neural network optimization [23], engineering design problems [24], and
so on. There are also several other fields like controlling theory [25,26] which are also open
for the application of the DE algorithm.
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In spite of its many promising characteristics, DE also faces some shortcomings, such
as stagnation problems, a slow convergence rate, and a failure to perform in many other
critical situations. In the past three decades, a number of studies have been executed
to improve its performance and overcome its shortcomings. Many improvements have
been developed in the areas of mutation operation and control parameter adjustment. For
example, Brest et al. [27] suggested a self-adaptive method of selecting control parameters
F and Cr. Later, Zhang et al. [28] proposed JADE by adapting Cauchy distributed control
parameters and the DE/current to p-best/2 strategy. Gong et al. [29] made self-adaptive
rules to implement various mutation strategies with JADE. The idea behind JADE was
further improved in SHADE [30] by maintaining a successful history memory of the control
parameters. Later, LSHADE [31] was proposed to improve the search capacity of SHADE
by adapting a linear population size reduction approach. Later, several enhanced variants,
such as iLSHADE [32], LSHADE-SPA [33], LSHADE-CLM [34], and iLSHADE-RSP [35],
were also presented to improve the performance of the LSHADE variant. The iLSHADE
variant was also improved by Brest et al. in their new variant named jSO [36]

Despite these famous variants, there are many other DE variants that have been
presented throughout the years, for which some diverse tactics have been adapted to
modify the operation of mutation; for example, Ali et al. applied a Cauchy distribution-
based mutation operation and proposed MDE [37]. Later, Choi et al. [38] modified the MDE
and presented ACM-DE by adapting the advanced Cauchy mutation operator. Kumar and
Pant presented MRLDE [39] by dividing the population into three sub regions in order
to perform mutation operations. Mallipeddi et al. presented EPSDE [40] using ensemble
mutation strategies. Gong and Cai [41] introduced a ranking-based selection idea of using
vectors for mutation operation in the current population. Xiang et al. [42] combined two
mutation strategies, DE/current/1/bin and DE/p-best/bin/1, to enhance the performance of
the DE algorithm. Some recent research on the development of mutation operations is
included in [43–49].

Apart from these, several good research projects have also been executed in different
domains, such as improving population initializing strategies [50–53], crossover opera-
tions [54], selection operations [55,56], local exploration strategies [57–59], and so on.

An interesting and detailed literature survey on modifications in the DE algorithm
over the last decades is given in [60].

It can be noticed that most of the advanced DE variants compromise their simple
structure by including some supplementary features. Therefore, in order to enhance
the performance of the DE algorithm without overly complicating its simple structure,
a new exploration method guided by the best and worst positions is proposed in this
paper. The proposed method attempts to optimally explore the search space by moving
forward toward the best position or backward toward the worst position. Additionally, a
DE/αbest/1 [39,42] approach is also incorporated with the proposed exploration strategies
in the selection operation to achieve a better balance between exploitation and exploration.
The proposed variant is termed as ‘IDEBW’ and has been implemented in various test cases
and real-life applications.

The remaining of the paper is designed as follows: a concise description of DE is
given in Section 2. The proposed approach for IDEBW variant is explained in Section 3.
The parameter settings and the empirical results from various test suites and real-life
applications are discussed in Section 4. Finally, the conclusion of the complete study is
presented in Section 5.

2. DE Algorithm

A basic representation of DE can be expressed as DE/a/b/c, where ‘a’ stands for a
mutation approach, ‘b’ stands for vector differences, and ‘c’ stands for a crossover approach.
The various phases in the operation of the DE algorithm are explained next.
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The working structure of the DE algorithm is very easy to implement. It begins
with a random generated population Pop(G) =

{
Y(G)

i | i = 1, 2, · · · , N} of d-dimensional
N-vectors within a specified bound domain [Yl, Yu], as shown in Equation (1).

Y(G)
i = rand × (Yu − Yl) + Yl (1)

Subsequently, the mutation, crossover, and selection phases are started for the genera-
tion and selection of new vectors for the next-generation population.

Mutation: This phase is considered as a key operation in the DE algorithm and can be
used to explore new positions in the search space. Some mutation schemes to generate a
perturbed vector, say, M(G+1)

i =
{

m(G+1)
i, j : j = 1, 2, . . . d

}
, are given in Equation (2).

DE/ rand/ 1 : M(G+1)
i = Y(G)

a1 + F × (Y(G)
a2 − Y(G)

a3 )

DE/ rand/ 2 : M(G+1)
i = Y(G)

a1 + F × (Y(G)
a2 − Y(G)

a3 ) + F × (Y(G)
a3 − Y(G)

a4 )

DE/ best/ 1 : M(G+1)
i = Y(G)

best + F × (Y(G)
a2 − Y(G)

a3 )

DE/ best/ 2 : M(G+1)
i = Y(G)

best + F × (Y(G)
a2 − Y(G)

a3 ) + F × (Y(G)
a3 − Y(G)

a4 )

DE/ curr − best/1 : M(G+1)
i = Y(G)

i + F × (Y(G)
best − Y(G)

i ) + F × (Y(G)
a2 − Y(G)

a3 )

(2)

where Ya1 , Ya2 Ya3 , Ya4 Ya5 are mutually different vectors randomly chosen from P(g); the
parameter F ∈ (0, 1] is used to manage the magnification of the vector’s difference.

Crossover: This phase is generally responsible for maintaining the population diver-
sity and generates a trail vector X(G+1)

i =
{

x(G+1)
i, j : j = 1, 2, . . . d

}
by blending the target

Y(G+1)
i =

{
y(G+1)

i, j : j = 1, 2, . . . d
}

and perturbed vector M(G+1)
i =

{
m(G+1)

i, j : j = 1, 2, . . . d
}

,
as explained in Equation (3).

x(g+1)
i, j =

 m(G+1)
i, j i f rand ≤ CR || j ∈ randi(d)

y(G)
i, j otherwise

(3)

where CR ∈ (0, 1) isknown as the crossover parameter, and randi (D) denotes the random
index used to ensure that at least one component in the trail vector is chosen from the
mutant vector.

Selection: This procedure selects the best vector from the target and trail vectors for the
next-generation population based on their fitness value, as determined by Equation (4).

Y(g+1)
i =

{
X(g+1)

i i f f un (X(g+1)
i ) ≤ f un(Y(g)

i )

Y(g)
i else

(4)

3. Proposed IDEBW Algorithm

To improve the performance of the DE algorithm without making any major changes
to its structure, we designed our variant IDEBW by modifying the original DE algorithm in
two ways. We did this by first exploring the search area, guided by best and worst positions,
and second by improving the selection operation, where a DE/αbest/1 approach is also
incorporated to generate new trail vectors whenever the old trail vectors are not selected
into the next generation. The proposed approaches are explained in detail as below:

3.1. Proposed Exploration Strategies

Rao [3] presented the idea of searching for new positions by going towards the best
position and away from the worst positions, as shown in Equation (5).

Y′(G)
i = Y(G)

i, + rand × (Y(G)
best, −

∣∣∣Y(G)
i,

∣∣∣)− rand × (Y(G)
worst, −

∣∣∣Y(G)
i,

∣∣∣) (5)
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Motivated by this remarkable idea, we have utilized this approach to explore new
positions through mutation and crossover phases, as given below.

To find the new position Xi corresponding to the ith vector Yi, first we chose a random
vector, say Yr, from the population and used Equations (6) and (7) to create the component
of the Xi:

Crossover Operation by Best Position:

DE/rand/best/1 : x(G)
i,j =

 y(G)
r,j + randB × (y(G)

best,j − y(G)
i,j ); i f rand ≤ CRB

y(G)
i,j ; otherwise

(6)

Crossover Operation by Worst Position:

DE/rand/worst/1 : x(G)
i,j =

 y(G)
r,j − randW × (y(G)

worst,j − y(G)
i,j ); i f rand ≤ CRW

y(G)
i,j ; otherwise

(7)

where rand, randB and randW are different uniform random numbers from 0 to 1, and CRB
and CRW are prefix constants used to handle the crossover rate. Now we can randomly
pick any proposed crossover strategy on the basis of pre-fix probability, called ‘Pr’.

The difference between explorations by the DE/rand/1 and proposed strategies is
graphically demonstrated in Figure 1. In the left image, the yellow and green dots represent
the possible crossover position as determined using the DE/rand/1 strategy. When using
this strategy, we can see that there are four possible crossover positions for the target vector
Yi. In the right image, the yellow and blue dot represent the possible crossover position
as assessed using the DE/rand/best/1 strategy, while the green and red dot represents the
possible crossover position as determined using the DE/rand/worst/1 strategy. We can see
that eight improved possible crossover positions for the target vector Yi are obtained using
these strategies. Hence, we can say that the proposed strategies improve the exploration
capability of the DE algorithm by providing additional and better positions for generating
trail vectors compared to the DE/rand/1 approach.
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3.2. Improved Selection Operation

If a vector created through the proposed crossover operation was not able to beat its
target vector, then we imposed DE/αbest/1 to create an additional trail vector. This approach
is an adapted version of DE/rand/1 and also utilizes the advantage of another approach,
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namely DE/best/1, by selecting the base vector Ya from the top α% of the current population.
The crossover operation for the DE/αbest/1 is defined by Equation (8) as below:

DE/αbest/1 : x(G+1)
i, j =

 y(G)
a1∗, j + Fα × (y(G)

a2,j − y(G)
a3,j ); i f rand ≤ CRα

∣∣∣∣∣∣ j ∈ randi (1, 2, . . . d)

y(G)
i, j ; otherwise

(8)

where Ya1 is a randomly selected vector from the top α% of the current population; Ya2 and
Ya2 are another two randomly selected vectors; and Fα and CRα are control parameters.

Therefore, by using the proposed IDEBW, we not only obtain an additional approach
to generating the trail vector, but also a way to improve it via a modified selection operation.
However, apart from these advantages, we can also face drawbacks like slightly increased
complexity and population stagnation problems in some cases.

The working steps, pseudo-code (Algorithm 1), and flowchart (Figure 2) of the pro-
posed IDEBW are given as below:

(a) Working Steps:

Step-1: Initialize the parameter settings, like population size (N), CRB, CRW, CRα, Fα,
probability constant (Pr), and Max-iteration, and generate initial population.

Step-2: Generate a uniform random number rand and go to step-3.
Step-3: If (rand ≤ Pr) then use Equation6; otherwise, use Equation (7) to generate

trail vector.
Step-4: Select this trail vector for the next generation if it gives a smaller fitness value

than its corresponding target vector; otherwise, generate an additional trail
vector using Equation (8) and repeat the old selection operation.

Step-5: Repeat all above steps for all remaining vectors and obtain the best value after
Max-iteration reached.

(b) Pseudo-Code of proposed IDEBW

Algorithm 1. IDEBW Algorithm

1 Input: N, d, Max-iteration, CRB, CRW, CRα, Fα

2 Generate initial population P(G) via Equation (1)
3 Calculate function value f (Yi) for each i
4 While iteration ≤ Max_Iteration
5 Obtain best and worst locations
6 For i = 1:N
7 Select Yr randomly from P(G)

8 IF rand ≤ Pr
9 For j = 1:d
10 Generate trail vector Xi via Equation (6)//(DE/rand/best/1)
11 End For
12 Else
13 For j = 1:d
14 Generate trail vector Xi via Equation (7)//(DE/rand/best/1)
15 End For
16 End IF
17 IF f (Xi) ≤ f (Yi)
18 Update Yi via Xi
19 Update best position
20 Else
21 Select Ya1 randomly from top α% and Ya2 and Ya3 from the P(G)

22 For j = 1:d
23 Generate trail vector Xi via Equation (8)//(DE/α-best/1)
24 End For
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Algorithm 1. Cont.

25 IF f (Xi) ≤ f (Yi)
26 Update Yi via Xi
27 Update best position
28 End IF
29 End IF
30 End For
31 iteration = iteration + 1
32 End While

(c) Flow Chart of proposed IDEBW
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4. Result Analysis and Discussion

The performance assessment of the proposed IDEBW on various test suites and real-life
problems is discussed in this section.

4.1. Experimental Settings

All experiments are executed under the following conditions:

• System Configuration: OS-64 Bit, Windows-10, Processor: 2.6-GHz Intel Core i3
processor, RAM-8GB.

• N=100; d=30,
• α = 20, Fα = 0.5, CRα = 0.9, CRB = 0.9, CRW = 0.5.
• Max-iteration = 100 × d.
• Total Run = 30.
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4.2. Performance Evaluation of IDEBWon Classical Functions

A test suite of 13 simple and classical benchmark problems is selected from differ-
ent studies [21–23]. The functions can be classified as unimodal (f 1–f 6) and multimodal
functions (f 8–f 13),or as noisy function f 7. As per the literature, the unimodal and multi-
modal functions are essential to testing the exploration and convergence effectiveness of
the algorithms.

The performance assessment of IDEBW is performed with six other state-of-the-art DE
variants, such as jDE [27], JADE [28], ApadapSS-JADE [29], SHADE [30], CJADE [58],and
DEGOS [57]. The results for the jDE and JADE are copied from [28], while the results for
the APadapSS-JADE are taken from [29]. For the SHADE, CJADE, and DEGOS, the results
are obtained by using the code provided by the respective authors on http://toyamaailab.
githhub.io/soucedata.html (accessed on 23 July 2023). The numerical results for the average
error and standard deviation of 30 independent runs are presented in Table 1.

Table 1. Performance Evaluation of IDEBW Classical Functions.

F Iter. IDEBW CJADE DEGOS SHADE APadapSS-JADE JADE jDE

f 1 1.5 × 103 3.51 × 10−81

(7.1 × 10−81)
4.07 × 10−62 +

(2.32 × 10−62)
6.14 × 10−26 +

(4.85 × 10−26)
3.76 × 10−74 +

(2.34 × 10−74)
2.45 × 10−75 +

(1.39 × 10−74)
1.79 × 10−60 +

(8.29 × 10−60)
2.49 × 10−28 +

(4.39 × 10−28)
rank 1 4 7 3 2 5 6

f 2 2.0 × 103 7.08 × 10−56

(4.55 × 10−56)
7.03 × 10−34 +

(4.53 × 10−34)
1.98 × 10−19 +

(3.43 × 10−19)
1.04 × 10−47 +

(3.24 × 10−47)
1.90 × 10−44 +

(1.29 × 10−43)
1.89 × 10−25 +

(9.01 × 10−25)
1.49 × 10−23 +

(1.01 × 10−23)
rank 1 4 7 2 3 5 6

f 3 5.0 × 103 1.57 × 10−68

(2.19 × 10−68)
1.06 × 10−59 +

(9.05 × 10−59)
1.39 × 10−20 +

(1.09 × 10−20)
4.56 × 10−63 +

(2.15 × 10−63)
2.49 × 10−68 +

(8.40 × 10−68)
5.99 × 10−61 +

(2.90 × 10−60)
5.19 × 10−14 +

(1.11 × 10−14)
rank 1 5 6 3 2 4 7

f 4 5.0 × 103 1.11 × 10−49

(1.53 × 10−49)
1.97 × 10−61 +

(2.34 × 10−60)
2.34 × 10−01 +

(4.82 × 10−01)
7.86 × 10−64 −

(4.83 × 10−64)
5.15 × 10−22 +

(5.39 × 10−22)
8.19 × 10−24 +

(4.01 × 10−23)
1.39 × 10−15 +

(1.09 × 10−15)
rank 3 2 7 1 5 4 6

f 5 5.0 × 103 2.14 × 10−28

(1.98 × 10−28)
6.02 × 10−01 +

(4.82 × 10−01)
9.53 × 10−22 +

(4.28 × 10−22)
8.12 × 10−02 +

(4.34 × 10−02)
3.20 × 10−01 +

(1.09 × 10+00)
8.01 × 10−02 +

(7.19 × 10−01
1.30 × 10+01 +

(1.40 × 10+01)
rank 1 6 2 4 5 3 7

f 6 1.0 × 102 1.02 × 10−01

(3.22 × 10−01)
3.57 × 10+00 +

(6.43 × 10−01)
9.34 × 10+01 +

(3.45 × 10+01)
4.11 × 10+00 +

(1.01 × 10+00)
3.99 × 10−02 −

(1.95 × 10−02)
2.90 × 10+00 +

(1.10 × 10+00)
1.09 × 10+03 +

(2.09 × 10+02)
2 4 6 5 1 3 7

f 7 3.0 × 103 1.05 × 10−03

(9.23 × 10−04)
1.21 × 10−03 +

(5.24 × 10−03)
2.22 × 10−03 +

(3.34 × 10−03)
1.18 × 10−03 +

(3.38 × 10−04)
5.89 × 10−04 +

(1.79 × 10−04)
6.39 × 10−04 −

(2.19 × 10−04)
3.29 × 10−03 +

(8.49 × 10−04)
rank 3 5 6 4 1 2 7

f 8 1.0 × 103 9.49 × 1002

(3.37 × 1002)
1.05 × 10−03 −

(1.39 × 10−05)
2.62 × 1003 +

(7.11 × 1003)
1.01 × 10−03 −

(0.00 × 1000)
1.79 × 10−08 +

(1.20 × 10−07)
3.29 × 10−05 −

(2.1 × 10−05)
7.19 × 10−11 −

(1.29 × 10−10)
6 5 7 4 2 3 1

f 9 1.0 × 103 1.42 × 1001

(2.59 × 1000)
7.01 × 1002+

(3.22 × 1000)
2.53 × 1001 +

(1.03 × 1001)
3.38 × 1000 −

(1.37 × 1000)
2.89 × 10−01 −

(5.70 × 10−01)
1.09 × 10−04 −

(6.09 × 10−05)
1.49 × 10−04 −

(1.99 × 10−04)
rank 5 7 6 4 3 1 2

f 10 5.0 × 102 5.63 × 10−13

(2.81 × 10−13)
4.69 × 10−09 +

(3.42 × 10−09)
4.85 × 10−04 +

(1.09 × 10−04)
1.25 × 10−11 +

(3.45 × 10−11)
1.11 × 10−11 +

(1.90 × 10−10)
8.19 × 10−10 +

(7.01 × 10−10)
3.49 × 10−04 −

(1.05 × 10−04)
rank 1 5 7 3 2 4 6

f 11 5.0 × 102 0.00
(0.00)

1.70 × 10−15 +

(4.34 × 10−16)
3.33 × 10−05 +

(5.32 × 10−05)
1.55 × 10−16 +

(3.47 × 10−16)
0.00 =

(0.00)
9.89 × 10−08 +

(6.01 × 10−07)
1.89 × 10−05 +

(5.79 × 10−05)
1 4 6 3 1 5 7

f 12 5.0 × 102 2.13 × 10−25

(1.88 × 10−25)
3.42 × 10−18 +

(3.41 × 10−18)
5.63 × 10−04 +

(8.45 × 10−04)
4.56 × 10−19 +

(3.23 × 10−19)
2.19 × 10−22 +

(7.69 × 10−22)
4.39 × 10−17 +

(2.10 × 10−16)
1.59 × 10−07 +

(1.50 × 10−07)
rank 1 4 7 3 2 5 6

f 13 5.0 × 102 1.83 × 10−23

(3.47 × 10−23)
4.56 × 10−17 +

(4.21 × 10−17)
1.23 × 10−03 +

(3.42 × 10−03)
2.67 × 10−18 +

(1.03 × 10−18)
3.80 × 10−20 +

(1.19 × 10−19)
2.09 × 10−16 +

(6.59 × 10−16)
1.48 × 10−06 +

(9.80 × 10−07)
rank 1 4 7 3 2 5 6

CPU Time (s) 11.6 13.2 11.4 12.1 -- -- --

w/l/t 11/2/0
0.022 +

13/0/0
<0.001 +

10/3/0
0.092 =

8/4/1
0.388 =

10/3/0
p = 0.092 =

11/2/0
p = 0.022 +

‘+’, ‘−‘ and ‘=’ stand for significantly better, worst and equal, respectively.

From Table 1, it is clear that the proposed IDEBW improves the quality of result,
obtaining first rank for eight functions, namely f 1, f 2, f 3, f 5, f 10, f 11, f 12, and f 13, and second
rank for function f 6. For remaining functions f 4 and f 7, it takes third rank, while for f 8 and
f 9, it takes sixth and fifth ranks, respectively. The Ap-AdapSS-JADE obtains first rank in
three cases—f 6, f 7, and f 11—whereas SHADE, JADE and jDE obtain first rank for f 4, f 9
and f 8, respectively. The win/loss/tie (w/l/t) represents the pairwise competition which
indicates that the IDEBW exceeds the CJADE, DEGOS, SHADE, AdapSS-JADE, JADE, and
jDE in 10, 13, 10, 8, 11 and 11 cases, respectively.

http://toyamaailab.githhub.io/soucedata.html
http://toyamaailab.githhub.io/soucedata.html
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To check the time complexity of the algorithm, the average CPU run time is also
calculated for the algorithms IDEBW, CJADE, DEGOS, and SHADE. We can see that
the CPU times for IDEBW, CJADE, DEGOS, and SHADE are 11.6, 13.2, 11.4 and 12.1 s,
respectively. Hence, IDEBW takes less computing time than CJADE and SHADE. The
exception is DEGOS, which is better than all algorithms in terms of time complexity.

The signs ‘+’, ‘−‘ and ‘=’ stand for whether the IDEBW is significantly better, worse,
or equal, respectively. The p-value for pairwise ‘Wilcoxon sign test’ is also presented in the
table, verifying the statistical effectiveness of the proposed IDEBW on the others.

The Wilcoxon rank sum test outcomes are listed in Table 2. The results present pairwise
ranks, sum of ranks, and p-values. The lower rank and higher positive rank sum evidence
the effectiveness of the proposed IDEBW over its competitors. However, the p-values
shows that the IDEBW is significantly better than CJADE, DEGOS, and jDE, while there is
no significant difference between the performance of IDEBW, SHADE, APAdapSS-JADE,
and JADE.

Table 2. ‘Wilcoxon rank sum test’ outcomes for the classical functions.

Algorithms Pairwise Rank ΣR+ ΣR− z-Value p-Value Sig at α = 0.05

IDEBW vs.

CJADE (1.15, 1.85) 75 16 2.062 0.039 +
DEGOS (1.00, 2.00) 91 0 3.180 0.001 +
SHADE (1.23, 1.77) 63 28 1.223 0.221 =
APadapSS-JADE (1.35, 1.65) 40 38 0.078 0.937 =
JADE (1.23, 1.77) 57 34 0.804 0.422 =
jDE (1.15, 1.85) 75 16 2.062 0.039 +

‘+’, ‘−‘ and ‘=’ stand for significantly better, worst and equal, respectively.

The Friedman’s rank and critical difference (CD) values obtained through the
Bonferroni–Dunn test are presented in Table 3 in order to examine the global difference
between the algorithms. The IDEBW obtained the lowest average rank, confirming its
significance over others.

Table 3. Friedman Ranks and Bonferroni–Dunn’s CD values for classical functions.

ID
EB

W

C
JA

D
E

D
EG

O
S

SH
A

D
E

A
pa

da
pS

S-
JA

D
E

JA
D

E

jD
E

C
D

(α
=

0.
1)

C
D

(α
=

0.
05

)

Rank 2.12 4.54 6.31 3.23 2.42 3.77 5.62 2.0285 2.2352

Figure 3 represents the algorithm’s ranks and horizontal control lines. These show
significant levels at 10% and 5%, respectively. Through the graph, we can see that the rank
bars of the IDEBW, SHADE, ApadapSS-JADE, and JADE are below the control lines and
hence these algorithms are of equal significance, while the CJADE, DEGOS, and jDE are
considered significantly worse than the obtained IDEBW algorithm.
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Figure 3. The Friedman ranks and Bonferroni–Dunn test presentation for classical functions.

Figure 4 represents the convergence graphs of the algorithms for some selected func-
tions: f 1, f 2, f 10 and f 11. The X- and Y-axes indicate the iterations and fitness values of the
function. We can analyze the convergence behaviour of the algorithms using their graph
lines, which verifies the faster convergence of the proposed IDEBW than its competitors.
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4.3. Performance Evaluation of IDEBW on CEC2017 Functions

In this section, a performance assessment of the IDEBW is performed on a well-known
IEEE CEC-2017 test suite of 29 (C1–C30) more complicated and composite functions. These
functions can be divided into four groups: unimodal (C1–C3), multimodal (C4–C10), hybrid
(C11–C20), and composite (C21–C30). For a function, the optimum value is 100× f unction_no,
while the initial bounds are (−100, 100) for all functions. A full specification of these
functions is given in [61].

Next the performance Assessment of IDEBW with DE Variants and other meta-
heuristics have been carried out separately and their numerical results are presented
in Tables 4 and 5 respectively while the statistical analysis on these results are given in
Tables 6 and 7.

Table 4. Comparison of IDEBW with other DE variants on CEC-2017 functions.

Fun
IDEBW TRADE CJADE DEGOS SHADE IMODE

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

C1 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 8.1 × 10−11 1.4 × 10−03

C3 1.8 × 10−08 1.9 × 10−07 2.40 × 1001 4.41 × 1001 8.5 × 10−04 1.42 × 1004 2.8 × 10−05 6.9 × 10−05 0.00 × 1000 0.00 × 1000 1.4 × 10−07 8.1 × 10−09

C4 5.86 × 1001 0.00 × 1000 5.98 × 1001 2.45 × 1000 3.66 × 1001 3.08 × 1001 5.92 × 1001 1.85 × 1000 5.86 × 1001 3.1 × 10−14 2.19 × 1001 2.84 × 1002

C5 3.55 × 1001 1.22 × 1001 1.90 × 1001 4.91 × 1000 2.66 × 1001 6.09 × 1000 2.70 × 1001 1.25 × 1001 1.55 × 1001 2.70 × 1000 2.59 × 1002 4.14 × 1000

C6 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 7.9 × 10−07 1.5 × 10−06 3.8 × 10−05 3.2 × 10−05 5.82 × 1001 6.34 × 1000

C7 7.25 × 1001 1.17 × 1001 5.43 × 1001 9.85 × 1000 5.64 × 1001 5.68 × 1000 7.56 × 1001 5.13 × 1001 4.67 × 1001 3.46 × 1000 9.23 × 1002 3.12 × 1002

C8 2.39 × 1001 2.94 × 1001 2.42 × 1001 4.48 × 1000 2.62 × 1001 3.75 × 1000 3.17 × 1001 1.44 × 1001 1.64 × 1001 4.36 × 1000 2.08 × 1001 3.99 × 1000

C9 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000 6.3 × 10−02 1.4 × 10−01 5.49 × 1003 1.52 × 1003

C10 3.15 × 1003 6.19 × 1002 7.28 × 1003 3.28 × 1002 1.86 × 1003 2.83 × 1002 3.85 × 1003 1.92 × 1003 1.65 × 1003 3.85 × 1002 3.81 × 1003 4.74 × 1002

C11 1.49 × 1001 2.51 × 1001 1.67 × 1001 2.01 × 1001 2.00 × 1001 7.31 × 1000 1.08 × 1001 2.31 × 1000 2.22 × 1001 1.59 × 1001 1.95 × 1002 4.82 × 1001

C12 1.32 × 1004 1.62 × 1004 1.39 × 1004 8.83 × 1003 1.35 × 1003 9.05 × 1002 8.54 × 1003 9.68 × 1003 1.18 × 1003 3.99 × 1002 1.12 × 1003 3.74 × 1002

C13 2.42 × 1001 8.11 × 1000 2.95 × 1001 5.50 × 1000 3.11 × 1001 9.70 × 1000 2.71 × 1001 1.13 × 1001 3.99 × 1001 1.86 × 1001 3.99 × 1002 1.75 × 1002

C14 2.06 × 1001 1.46 × 1001 2.38 × 1001 6.04 × 1000 1.46 × 1003 3.03 × 1003 2.02 × 1001 1.01 × 1001 2.96 × 1001 3.03 × 1000 1.93 × 1002 5.62 × 1001

C15 6.54 × 1000 4.11 × 1000 7.10 × 1000 2.32 × 1000 3.49 × 1002 9.92 × 1002 8.18 × 1000 3.66 × 1000 3.73 × 1001 3.27 × 1001 2.14 × 1002 8.74 × 1001

C16 3.28 × 1002 4.08 × 1002 1.59 × 1001 9.80 × 1000 4.68 × 1002 1.60 × 1002 4.49 × 1002 5.06 × 1002 4.10 × 1002 1.27 × 1002 1.47 × 1003 4.66 × 1002

C17 2.46 × 1002 7.48 × 1001 2.71 × 1001 2.90 × 1000 7.38 × 1001 4.16 × 1001 1.02 × 1002 7.04 × 1001 5.13 × 1001 1.24 × 1001 8.69 × 1002 2.63 × 1002

C18 2.43 × 1001 1.07 × 1000 2.80 × 1001 8.32 × 1000 6.85 × 1001 4.16 × 1001 3.24 × 1001 1.59 × 1001 5.82 × 1001 4.37 × 1001 1.59 × 1002 7.48 × 1001

C19 4.11 × 1000 2.20 × 1000 5.61 × 1000 1.78 × 1000 2.49 × 1001 2.63 × 1001 7.37 × 1000 3.08 × 1000 1.20 × 1001 3.68 × 1000 5.91 × 1002 3.57 × 1002

C20 2.72 × 1001 5.15 × 1001 2.02 × 1001 7.15 × 1000 1.06 × 1002 5.03 × 1001 6.93 × 1001 9.83 × 1001 5.75 × 1001 3.66 × 1001 6.80 × 1002 1.94 × 1002

C21 2.45 × 1002 1.34 × 1001 2.21 × 1002 4.23 × 1000 2.26 × 1002 5.65 × 1000 2.25 × 1002 9.81 × 1000 2.17 × 1002 1.56 × 1000 4.15 × 1002 3.20 × 1001

C22 1.00 × 1002 0.00 × 1000 1.00 × 1002 0.00 × 1000 1.00 × 1002 0.00 × 1000 1.00 × 1002 0.00 × 1000 1.00 × 1002 0.00 × 1000 1.33 × 1003 1.96 × 1003

C23 3.76 × 1002 8.45 × 1000 3.61 × 1002 8.74 × 1000 3.72 × 1002 4.62 × 1000 3.76 × 1002 1.45 × 1001 3.65 × 1002 6.99 × 1000 7.97 × 1002 8.41 × 1001

C24 4.65 × 1002 1.15 × 1001 4.41 × 1002 4.84 × 1000 4.40 × 1002 4.80 × 1000 4.51 × 1002 1.83 × 1001 4.36 × 1002 2.58 × 1000 9.60 × 1002 7.35 × 1001

C25 3.87 × 1002 1.1 × 10−01 3.87 × 1002 2.7 × 10−02 3.87 × 1002 1.8 × 10−01 4.51 × 1002 1.83 × 1001 3.87 × 1002 3.3 × 10−01 3.95 × 1002 1.85 × 1001

C26 1.38 × 1003 1.52 × 1002 9.77 × 1002 7.79 × 1001 1.20 × 1003 2.89 × 1001 1.23 × 1003 9.75 × 1001 1.10 × 1003 7.06 × 1001 4.42 × 1003 1.14 × 1003

C27 5.02 × 1002 6.51 × 1000 4.94 × 1002 1.16 × 1001 5.04 × 1002 1.10 × 1001 5.01 × 1002 7.98 × 1000 5.06 × 1002 6.86 × 1000 7.59 × 1002 1.24 × 1002

C28 3.42 × 1002 7.91 × 1001 3.36 × 1002 5.35 × 1001 3.54 × 1002 5.68 × 1001 3.48 × 1002 7.37 × 1001 3.43 × 1002 5.62 × 1001 3.31 × 1002 5.81 × 1001

C29 4.19 × 1002 1.13 × 1002 4.23 × 1002 2.79 × 1001 4.86 × 1002 5.07 × 1001 4.61 × 1002 8.08 × 1001 4.69 × 1002 3.85 × 1001 1.56 × 1003 4.15 × 1002

C30 2.04 × 1003 1.35 × 1002 2.07 × 1003 4.59 × 1001 2.18 × 1003 1.69 × 1002 2.10 × 1003 1.06 × 1002 2.11 × 1003 7.53 × 1001 4.35 × 1003 1.43 × 1003

CPU time (s) 146.2 165.4 172.9 144.5 148.1 168.2

w/l/t 13/11/5 14/10/5 16/9/4 14/11/4 25/4/0
p-values 0.839 = 0.541 = 0.030 + 0.690 = 0.001 +

‘+’ and ‘=’ stand for significantly better and equal, respectively.

4.3.1. Performance Assessment with DE Variants

Five state-of-the-art DE variants, such as SHADE [30], DEGOS [57], CJADE [58],
TRADE [59] and IMODE [62] are selected for performance assessment with IDEBW. The
TRADE, CJADE, and DEGOS are recently developed DE variants, while the SHADE
and IMODE are the winner algorithms from the CEC-2014 and CEC-2020 competitions,
respectively. The population size and maximum iterations are taken as 100 and 3000,
respectively, for all algorithms. The other parameter settings of algorithms are taken as
suggested in their original works.

Table 4 presents the numerical results for the average error and standard deviation of
30 runs. The value to reach (VTR) is taken as 10−08, i.e., the error is taken as 0 if it crosses
the fixed VTR. Table 4 shows that the IDEBW obtains first rank in 11 cases, such as C1, C6,
C9, C13, C15, C18, C19, C22, C25, C29 and C30. Similarly, TRADE obtains first rank in 11 cases,
such as C1, C6, C9, C16, C17, C20, C22, C23, C25, C26 and C27. SHADE obtains best position
in 10 cases, such as C1, C3, C5, C7, C8, C10, C21, C22, C24, and C25. The CJADE and DEGOS
both obtain first ranks in 5 cases such as (C1, C6, C9, C22, and C25) and (C1, C9, C11, C14, and
C22), respectively, whereas IMODE takes first place in only 3 cases, such as C4, C12, and C28.
All algorithms except IMODE equally obtain first rank for C1 and C22, while the IDEBW,
TRADE, DEGOS and CJADE perform equally in the case of C6 and C9. The pairwise w/l/t
performance demonstrates that the IDEBW exceeds the TRADE, CJADE, DEGOS, SHADE,
and IMODE in 13, 14, 16, 14 and 25 cases, respectively.
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Table 5. Comparison of IDEBW with other meta-heuristics on CEC-2017 functions.

Fun
IDEBW EJaya HMRFO AGBSO DisGSA TDSD

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

C1 0.00× 1000 0.00 × 1000 1.28 × 1002 2.03 × 1002 2.98 × 1003 2.34 × 1003 2.16 × 1003 2.63 × 1003 2.44 × 1003 1.17 × 1003 1.75 × 1003 9.03 × 1002

C3 1.8 × 10−08 1.9 × 10−07 4.9 × 10−10 5.13 × 1005 6.14 × 1001 3.57 × 1001 4.97 × 1001 1.07 × 1002 4.93 × 1003 2.12 × 1003 4.04 × 1004 9.54 × 1003

C4 5.86 × 1001 0.00 × 1000 2.64 × 1001 1.42 × 1001 3.64 × 1001 3.50 × 1001 9.02 × 1001 1.56 × 1001 1.02 × 1002 2.38 × 1001 2.02 × 1001 2.10 × 1001

C5 3.55 × 1001 1.22 × 1001 5.21 × 1001 2.05 × 1001 6.00 × 1001 1.91 × 1001 1.67 × 1001 6.08 × 1000 1.75 × 1001 6.51 × 1000 7.99 × 1001 1.14 × 1001

C6 0.00 × 1000 0.00 × 1000 4.17 × 1000 1.35 × 1001 4.9 × 10−01 1.07 × 1000 7.7 × 10−05 4.7 × 10−05 4.1 × 10−05 7.3 × 10−05 3.30 × 1000 6.9 × 10−01

C7 7.25 × 1001 1.17 × 1001 1.10 × 1002 4.52 × 1000 1.17 × 1002 3.98 × 1001 5.10 × 1001 7.47 × 1000 5.02 × 1001 3.97 × 1000 1.32 × 1002 1.34 × 1001

C8 2.39 × 1001 2.94 × 1001 7.34 × 1001 9.85 × 1000 6.53 × 1001 1.89 × 1001 1.47 × 1001 4.97 × 1000 1.71 × 1001 3.25 × 1000 8.33 × 1001 8.19 × 1000

C9 0.00 × 1000 0.00 × 1000 2.30 × 1002 2.88 × 1001 4.64 × 1001 4.07 × 1001 0.00 × 1000 0.00 × 1000 1.8 × 10−13 6.2 × 10−14 1.71 × 1003 3.44 × 1002

C10 3.15 × 1003 6.19 × 1002 3.82 × 1003 2.87 × 1002 3.47 × 1003 6.76 × 1002 4.80 × 1002 2.70 × 1002 1.98 × 1003 5.54 × 1002 2.19 × 1003 2.20 × 1002

C11 1.49 × 1001 2.51 × 1001 8.64 × 1001 1.25 × 1001 4.29 × 1001 1.05 × 1001 5.07 × 1001 2.82 × 1001 9.61 × 1001 2.82 × 1001 6.86 × 1001 2.40 × 1002

C12 1.32 × 1004 1.62 × 1004 7.48 × 1003 2.03 × 1005 3.65 × 1004 1.35 × 1004 6.12 × 1005 3.01 × 1005 9.75 × 1003 1.76 × 1003 2.91 × 1005 1.73 × 1005

C13 2.42 × 1001 8.11 × 1000 2.56 × 1003 2.54 × 1003 1.48 × 1004 1.02 × 1004 1.07 × 1004 6.58 × 1003 4.75 × 1003 2.51 × 1003 6.95 × 1002 3.24 × 1002

C14 2.06 × 1001 1.46 × 1001 1.12 × 1002 1.42 × 1003 1.68 × 1003 9.51 × 1002 2.74 × 1003 2.96 × 1003 3.41 × 1003 2.51 × 1003 8.42 × 1003 6.07 × 1003

C15 6.54 × 1000 4.11 × 1000 9.58 × 1002 8.67 × 1000 2.87 × 1003 3.81 × 1003 3.47 × 1003 3.80 × 1003 1.66 × 1003 1.66 × 1003 3.56 × 1002 2.24 × 1002

C16 3.28 × 1002 4.08 × 1002 4.74 × 1002 1.37 × 1002 6.30 × 1002 2.92 × 1002 1.13 × 1002 9.81 × 1001 5.71 × 1002 2.39 × 1002 4.85 × 1002 1.16 × 1002

C17 2.46 × 1002 7.48 × 1001 1.19 × 1002 6.91 × 1001 1.95 × 1002 1.36 × 1002 5.10 × 1001 3.85 × 1001 1.71 × 1002 1.34 × 1002 9.38 × 1001 3.88 × 1001

C18 2.43 × 1001 1.07 × 1000 4.04 × 1003 1.47 × 1004 8.15 × 1004 3.38 × 1004 9.27 × 1004 5.46 × 1004 4.13 × 1004 1.74 × 1004 8.14 × 1004 3.67 × 1004

C19 4.11 × 1000 2.20 × 1000 2.54 × 1002 2.82 × 1003 2.52 × 1003 2.66 × 1003 5.39 × 1003 6.64 × 1003 3.67 × 1003 1.32 × 1003 1.53 × 1002 1.01 × 1002

C20 2.72 × 1001 5.15 × 1001 3.27 × 1002 4.15 × 1001 2.70 × 1002 1.24 × 1002 1.01 × 1002 6.55 × 1001 1.74 × 1002 1.29 × 1001 1.38 × 1002 5.41 × 1001

C21 2.45 × 1002 1.34 × 1001 2.51 × 1002 9.11 × 1000 2.52 × 1002 1.84 × 1001 2.17 × 1002 5.54 × 1000 2.28 × 1002 8.81 × 1000 2.22 × 1002 8.14 × 1001

C22 1.00 × 1002 0.00 × 1000 1.00 × 1002 1.6 × 10−06 1.00 × 1002 2.4 × 10−13 1.00 × 1002 2.3 × 10−06 1.00 × 1002 4.7 × 10−09 1.11 × 1002 1.89 × 1000

C23 3.76 × 1002 8.45 × 1000 4.18 × 1002 1.42 × 1001 4.30 × 1002 2.51 × 1001 3.60 × 1002 5.07 × 1000 3.73 × 1002 4.97 × 1000 4.54 × 1002 1.72 × 1002

C24 4.65 × 1002 1.15 × 1001 4.89 × 1002 4.34 × 1000 4.81 × 1002 1.71 × 1001 4.36 × 1002 1.10 × 1001 4.13 × 1002 1.68 × 1001 4.25 × 1002 1.87 × 1002

C25 3.87 × 1002 1.1 × 10−01 4.03 × 1002 8.94 × 1000 3.92 × 1002 1.37 × 1001 3.86 × 1002 1.11 × 1000 3.87 × 1002 2.11 × 1000 3.83 × 1002 1.15 × 1001

C26 1.38 × 1003 1.52 × 1002 2.25 × 1003 5.46 × 1002 1.68 × 1003 8.49 × 1002 9.93 × 1002 7.67 × 1001 2.00 × 1002 1.8 × 10−08 2.21 × 1002 5.54 × 1000

C27 5.02 × 1002 6.51 × 1000 5.54 × 1002 7.04 × 1000 5.45 × 1002 1.58 × 1001 5.05 × 1002 5.80 × 1000 5.48 × 1002 1.89 × 1001 5.21 × 1002 6.13 × 1000

C28 3.42 × 1002 7.91 × 1001 3.80 × 1002 1.10 × 1001 3.34 × 1002 5.73 × 1001 3.80 × 1002 4.18 × 1001 3.66 × 1002 6.07 × 1001 4.09 × 1002 1.48 × 1001

C29 4.19 × 1002 1.13 × 1002 6.21 × 1002 1.01 × 1002 7.66 × 1002 1.78 × 1002 4.67 × 1002 3.45 × 1001 6.35 × 1002 1.71 × 1002 5.90 × 1002 4.56 × 1001

C30 2.04 × 1003 1.35 × 1002 4.88 × 1003 2.90 × 1004 3.91 × 1003 1.15 × 1003 5.14 × 1004 4.22 × 1004 5.17 × 1003 7.06 × 1002 5.04 × 1003 8.29 × 1002

CPU time (s) 146.2 105.4 165.2 154.4 159.2 189.3

w/l/t 24/4/1 25/3/1 16/11/2 17/10/2 22/7/0

p-value 0.001 + 0.001 + 0.441 = 0.248 = 0.009 +

‘+’ and ‘=’ stand for significantly better and equal, respectively.

Table 6. ‘Wilcoxon rank sum test’ outcomes for the CEC17 functions.

Algorithms Pairwise Rank ΣR+ ΣR− z-Value p-Value Sig at α = 0.05

IDEBW vs.

TRADE (1.47, 1.53) 127 173 0.657 0.511 =
CJADE (1.43, 1.57) 160 140 0.286 0.775 =
DEGOS (1.38,1.62) 191 133 0.794 0.427 =
SHADE (1.45, 1.55) 166 159 0.094 0.927 =
IMODE (1.14, 1.86) 392 43 3.773 0.001 +

EJaya (1.16, 1.84) 355 51 3.461 0.001 +
HMRFO (1.12, 1.88) 376 30 3.939 0.001 +
AGBSO (1.41, 1.59) 266 112 1.850 0.062 =
DisGSA (1.38, 1.62) 272 106 1.994 0.042 +
TDSD (1.24, 1.76) 356 79 2.995 0.003 +

‘+’, ‘−‘ and ‘=’ stand for significantly better, worst and equal, respectively.

Table 7. Friedman Ranks and Bonferroni–Dunn’s CD values for CEC17 functions.

DE Variants Other Meta-Heuristics

Algorithm Rank Algorithm Rank

IDEBW 2.86 IDEBW 2.31
TRADE 2.66 EJAYA 3.95
CJADE 3.83 HMRFO 4.38
DEGOS 3.62 AGBSO 3.10
SHADE 2.97 DisGSA 3.50
IMODE 5.02 TDSD 3.76

CD (Level = 10%) 1.1428 CD (Level = 10%) 1.1428
CD (Level = 5%) 1.2656 CD (Level = 5%) 1.2656

The average CPU times for the IDEBW, TRADE, CJADE, DEGOS, SHADE and IMODE
are 146.2, 165.4, 172.9, 144.5, 148.1, and 168.2 s, respectively. Hence, IDEBW takes less
computing time than all DE variants except DEGOS, which is better than all algorithms in
term of time complexity.



Biomimetics 2024, 9, 119 12 of 18

The p-values obtained by the pairwise ‘Wilcoxon sign test’ also verify the statistical
effectiveness of the proposed IDEBW on the others.

The Wilcoxon rank sum test outcomes with pairwise ranks, sum of ranks, and p-values
are listed in Table 6. The lower rank and higher positive rank sum evidence the effectiveness
of the proposed IDEBW over its competitors. However, the p-values show that the IDEBW
is significantly better than IMODE, while there is no significant difference between the
performance of the IDEBW, TRADE, CJADE, DEGOS, and SHADE.

The Friedman’s rank and critical difference (CD) values obtained through the
Bonferroni–Dunn test are presented in Table 7 to test out the global difference between the
algorithms. The TRADE obtained lowest average rank; however, the bar graphs presented
in Figure 5a shows that the IDEBW, TRADE, DEGOS, and SHADE are considered as signifi-
cantly equal, while the CJADE and IMODE are significantly worse with these algorithms.
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4.3.2. Performance Assessment with Other Meta-Heuristics

In this section, the performance of the IDEBW is compared with that of 5 other
meta-heuristics algorithms such as TDSD [63], EJaya [64], AGBSO [65], HMRFO [66],and
disGSA [67]. The HMRFO, disGSA, AGBSO, and EJaya methods are recently developed
variants of meta-heuristics such as MRFO, GSA, BSO, and Jaya algorithms, respectively,
whereas the TDSD is a hybrid variant of three search dynamics such as spherical search,
hypercube search, and chaotic local search.

The population size and maximum iterations are taken as 100 and 3000, respectively,
for all algorithms. The other parameter settings of algorithms are taken as suggested in
their original works.

Table 5 presents the obtained average error and standard deviation of 30 runs. The
Table 5 shows that IDEBW obtains first rank in 14 cases, namely, C1, C6, C9, C11, C13, C14,
C15, C18, C19, C20, C22, C27, C29,and C30, whereas AGBSO obtains first rank in 9 cases C5,
C8, C9, C10, C16, C17, C21, C22, and C23. The EJAYA, HMRFO, disGSA, and TDSD obtain
first ranks in 3 cases (C3, C12, and C22), 1 case (C22), 4 cases (C7, C22, C24, and C26), and
2 cases (C4, C25), respectively. The pairwise w/l/t demonstrates that the IDEBW exceeds
the EJAYA, HMRFO, AGBSO, disGSA, and TDSD on 24, 25, 16, 17 and 22 cases, respectively.

The average CPU times for IDEBW, EJAYA, HMRFO, AGBSO, DisGSA, and TDSD
are 146.2, 105.4, 165.2, 154.4, 159.2, and 189.3 s, respectively. Hence, IDEBW takes less
computing time than all meta-heuristics except EJAYA, which is better than all algorithms
in term of time complexity.

The p-values, obtained by the pairwise ‘Wilcoxon sign test’, also verify the statistical
effectiveness of the proposed IDEBW on the others.
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The Wilcoxon rank sum test outcomes with pairwise ranks, sum of ranks, and
p-values are listed in Table 6. The lower rank and higher positive rank sum evidence
the effectiveness of the proposed IDEBW over its competitors. The p-values show that only
AGBSO demonstrated a significantly equal performance with the IDEBW, whereas all other
meta-heuristics are significantly worst against the IDEBW.

The Friedman’s rank and critical difference (CD) values obtained through the
Bonferroni–Dunn test are presented in Table 7 to test out the global difference between the
algorithms. The IDEBW obtains the lowest average rank and shows its significance.

The bar graphs presented in Figure 5b show that the IDEBW and AGBSO are signif-
icantly equal, while the others cross the control lines and are considered as significantly
worse compared to those with these algorithms.

Figure 6 represents the convergence graphs of the algorithms for some selected func-
tions: C1, C10, C21, and C30. The X and Y-axes indicate the iterations and fitness values of
the function. We can analyze the convergence behaviour of the algorithms by their graphs
lines, which verify the faster convergence of the proposed IDEBW on its competitors.
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4.4. Performance Evaluation of IDEBW on Real-Life Applications

In this section, the practical qualification of the proposed IDEBW is tested on 03 IEEE
CEC-2011 real-life applications, as given below:

RP1: Frequency-modulated (FM) sound wave problem.
RP2: Spread-spectrum radar polyphase code design problem.
RP3: Non-linear stirred tank reactor optimal control problem.

The complete details of these problems are specified in [68].
The performance assessment is taken with five qualified algorithms, including DEGOS,

SHADE, DE, EJAYA, and TDSD. The outcomes for the SHADE and TDSD are copied
from [63]. The maximum iterations are taken as 100 × d, i.e., it is 600, 2000, and 100 for the
RP1, RP2, and RP3 respectively. The results for the best values, mean values and standard
deviation obtained in 30 independent runs are presented in Table 8.

Table 8. Performance evaluation of IDEBW on real-life optimization problems.

Problem Iter. Value IDEBW DEGOS SHADE CJADE EJAYA TDSD

RP1

600 Best 0.00 2.24E-20 0.00 0.00 1.400 0.00
Mean 1.16 3.11 1.82 2.2980 10.68 3.93
SD 0.9084 6.95 2.60 6.1711 5.4506 4.97
rank 1 5 2 3 6 4

RP2

2000 Best 0.5891 0.7092 1.0345 0.7029 0.5000 0.8701
Mean 0.7332 1.467 1.2256 0.9171 1.0094 1.0234
SD 0.1924 0.3537 0.0974 0.1066 0.3017 0.0773
rank 1 5 2 3 6 4

RP3

100 Best 13.770 13.783 13.77 13.832 14.981 13.77
Mean 13.921 14.362 14.28 14.329 15.006 13.93
SD 0.2856 1.7475 0.20 1.212 2.302 0.17
rank 1 5 3 4 6 2

The results show that the proposed IDEBW improves the quality of results and obtains
first rank by obtaining the optimum value in each case, whether it is RP1, RP2,and RP3.
The SHADE algorithm takes second rank for RP1 and RP2, while TDSD takes second
rank for RP3. Hence, the proposed IDEBW confirms its feasibility for use on the real-life
problems also.

The convergence graphs for the IDEBW, DEGOS, DE, and EJAYA are presented in
Figure 7. The X- and Y-axes indicate the iterations and fitness values of the function. We
can analyze the convergence behaviour of the algorithms by their graph lines, which also
demonstrate a faster convergence speed of the IDEBW compared to its opponents.
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5. Conclusions

A best and worst location guided exploration approach to the DE algorithm is pre-
sented in this study. The proposed technique offers an improved search alternative by either
directing attention towards the best location or avoiding the most unfavorable location.
The proposed variant named ‘IDEBW’ also uses the DE/αbest/1 approach as a selection
operation when the trail vectors are not selected for the next operation. The ‘IDEBW’ vari-
ant is tested on 13 classical, 29 hybrids, and composite CEC-17 benchmark functions and
3 real-life optimization problems from the CEC-2011 test suite. The results are compared
with eight other state-of-the-art DE variants, such as jDE, JADE, SHADE, APadapSS-JADE,
CJADE, DEGOS, TRADE, and IMODE, and 5 other enhanced meta-heuristics variants,
such as EJAYA, HMRFO, disGSA, AGBSO, and TDSD. The outcomes verify the success
of the new exploration strategy in terms of improvement in solution quality, as well as in
convergence speed.

Our future works will focus on employing the proposed IDEBW in some complicated,
constrained, and multi-objective real-life applications. Second, it will also be quite exciting
to apply the proposed idea to other meta-heuristic algorithms to improve their performance.
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27. Brest, J.; Greiner, S.; Bošković, B.; Mernik, M.; Zumer, V. Self-Adapting Control Parameters in Differential Evolution: A

Comparative Study on Numerical Benchmark Problems. IEEE Trans. Evol. Comput. 2006, 10, 646–657. [CrossRef]
28. Zhang, J.; Sanderson, A.C. JADE: Adaptive Differential Evolution with Optional External Archive. IEEE Trans. Evol. Comput.

2009, 13, 945–958. [CrossRef]
29. Gong, W.; Fialho, Á.; Cai, Z.; Li, H. Adaptive Strategy Selection in Differential Evolution for Numerical Optimization: An

Empirical Study. Inf. Sci. 2011, 181, 5364–5386. [CrossRef]
30. Tanabe, R.; Fukunaga, A. Success-History Based Parameter Adaptation for Differential Evolution. In Proceedings of the 2013

IEEE Congress on Evolutionary Computation, CEC 2013, Cancun, Mexico, 20–23 June 2013.
31. Tanabe, R.; Fukunaga, A.S. Improving the Search Performance of SHADE Using Linear Population Size Reduction. In Proceedings

of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014, Beijing, China, 6–11 July 2014.
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