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Abstract

The use of tunable metasurface technology to realize the underwater tracking function of

submarines, which is one of the hotspots and difficulties in submarine design. The structure-

to-sound-field metasurface design approach is a highly iterative process based on trial and

error. The process is cumbersome and inefficient. Therefore, an inverse design method was

proposed based on parallel deep neural networks. The method took the global and local tar-

get sound field feature information as input and the metasurface physical structure parame-

ters as output. The deep neural network was trained using a kernel loss function based on a

radial basis kernel function, which established an inverse mapping relationship between the

desired sound field to the metasurface physical structure parameters. Finally, the sound

field intensity modulation at a localized target range was achieved. The results indicated

that within the regulated target range, this method achieved an average prediction error of

less than 5 dB for 92.9% of the sample data.

1. Introduction

Acoustic super-surface materials, utilizing the technology of modifying material properties

based on the generalized Snell’s law, possess exceptional acoustic control abilities at subwave-

length scales. Therefore, they have emerged as research hotspots in areas such as acoustic

lenses, noise reduction, and acoustic stealth [1–4]. Pentamode acoustic metasurface can fur-

ther compensate for the narrow-band limitations of traditional metasurfaces [5,6]. So far,

researchers have achieved some sound field modulation works through the use of various

structural designs such as Helmholtz resonators, coiled channels, mazes, and cavities [7–13].

Also, the researchers have utilized combinations of different materials, such as a combination

of water and silicone rubber or polyurethane composites, to achieve the goal of reflective

sound field modulation [14,15], other researchers use bottom-up inversion optimization algo-

rithms to design metasurfaces [16–19]. While these phase mutation methods can achieve

acoustic field modulation [20–25], it is noteworthy that all of the aforementioned methods

have been studied based on the forward model of the sound field and finite element simula-

tion. This research process requires a substantial amount of time from the researchers.
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Considering the limitations of conventional metasurface research methods, machine learn-

ing methods have been applied to the acoustic metasurface inverse design process, which

enabled the optimization of structural parameters. Some results have been achieved [26–28].

Among them, Zhao et al. used a convolutional neural network model to establish a mapping of

the local acoustic field to the phase gradient of the metasurface to achieve regional control of

the local acoustic field [27]. Li et al. proposed a tandem neural network approach to reverse-

engineer the phase of a metasurface unit such that the energy loss of an acoustic wave in the

return direction is greater than 10 dB [28]. Long, Chen et al. used genetic algorithms to respec-

tively design metasurface structures for sound absorption [26,29]. Li, Lin, et al. have respec-

tively used machine learning for encoding metasurfaces to enable the modulation of the sound

field by arranging these logical units into specific sequences [30,31]. These studies have taken

advantage of the benefits of machine learning methods for model construction, which can

help weaken complex physical mechanisms and reduce the need for model accuracy. This

shows that the addition of deep learning is relevant to metasurface modulation techniques.

This paper introduces a novel metasurface inverse design method leveraging parallel deep

neural networks (PDNN). The method respectively extracts the key information of the acous-

tic field and the metasurface as the input and output of the PDNN network. With the help of

the kernel loss function and the constraint performance provided by the constraint network, it

establishes an inverse mapping relationship between the target acoustic field and the physical

structure parameters of the super-surface. Model validation show that this method can realize

the regulation of local sound field intensity. This may be a novel way to achieve stealth for sub-

marine vehicles.

2. Physical model of the metasurface local sound field

Turing the process of realizing intensity modulation of the target acoustic field, a physical

model of the metasurface local sound field was used to acquire the dataset. The pentamode

metasurface was chosen for sound field simulation because of its advantages of impedance

matching with the ambient medium and wide frequency [32]. For a pentamode metasurface

based on the generalized Snell’s law, the material density distribution ρ(x) is the decisive

parameter affecting the reflected acoustic field. When the sound wave is vertically incident on

the pentamode metasurface with the acoustic velocity c0, its ideal density distribution ρ(x) sat-

isfies Eq (1) [33]:

rðxÞ ¼ ðsinðyrÞx=2h þ C0Þr0; 0 � x � L ð1Þ

where L is the length of the metasurface, C0 is the integration constant, θr is the reflection

angle, ρ0 is the density of incident medium, h is the normal thickness of metasurface, and x is

the position. Artificial periodic structures cannot realize a continuous material density distri-

bution on the theoretical metasurface. To approximate this continuous distribution, the theo-

retical metasurface can be discretized into n cells along the length (i = 1, 2, . . ., n). The density

of each discrete cell is characterized by the density ρi at its center position [34,35].

In this paper, we started from the idea of parametric modeling without structural con-

straints on the metasurface structural units. Simplified parameters were used instead of meta-

surface structural units. With the method of unit combination, the phase mutation was

adjusted at the same time to realize the local tuning of the acoustic field. The hypersurface has

a normal thickness of 0.12m and a length of 1m. In the example of a sonar-detecting subma-

rine shown in Fig 1(A), the incident acoustic wave can be viewed as a plane wave. When the

incident acoustic wave contacts the surface of the submersible, the main reflected acoustic

field is adjusted from the 90˚ direction to the other direction through the acoustic field
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modulation technique. The intensity of the acoustic field in the return direction is also

changed. Therefore, we established the physical model of the sound field following the

approach illustrated in Fig 1(B). A plane wave incident vertically underwater is used as the

background field. The metasurface covered the backing plate surface and consisted of n meta-

surface structural units arranged along the x-positive direction. When a plane wave is incident

on the metasurface in the y-reverse direction, the reflected waves generated by the n metasur-

face structural units interacting with each other make up the entire reflected acoustic field. The

physical structural parameters of each structural unit could be different. In this paper, the

physical structural parameters of each unit were obtained according to a gradient arrange-

ment, which satisfied the requirements of the intensity characteristics of the desired sound

field distribution, set n to 25, so the length of each hypersurface structural unit is 0.04m.

3. Inverse design method based on parallel deep neural networks

3.1. Extraction of sound field features

In order to predicted the intensity of the target sound field, this paper drew on the idea of

multi-scale that was to extract the global and local feature information of the sound field. The

goal is the modulation of the local acoustic field, but the entire reflected acoustic field is a joint

action of all metasurface structural units. In particular, the coupling relationship between indi-

vidual structural units will have a significant impact on the reflected acoustic field characteris-

tics. This coupling relationship will greatly increase the complexity of the model [36].

Therefore, when using local sound field intensity values as parallel deep neural network inputs,

it was necessary to include feature information of the global sound field to constrain this pre-

diction process.

The prediction of target sound field strength required the selection of global and local fea-

ture information. According to Fig 2, it can be seen that the main change features of the

reflected sound field are concentrated in the vicinity of the main reflection angle, the wave

crest and trough, so the selection of global feature information can be extracted at the main

change features. The local sound field intensity information was the value of the sound field

intensity within the selected tuning target. After the global and local sound field feature infor-

mation was extracted, it was used as an input to the parallel deep neural network.

3.2. Network model building

In this paper, a parallel deep neural network based on a fully connected architecture was used

to predict the physical structural parameters of metasurface structural units. The model inputs

were the extracted global and local feature information. The outputs were the density ρ and

the gradient value g of the first structural unit. The density distribution of the entire

Fig 1. a) Schematic of the sound field model. b) Schematic of the pentamode metasurface.

https://doi.org/10.1371/journal.pone.0301211.g001
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metasurface structural unit could be determined from the density ρ of the first structural unit

and the gradient value g [32]. As shown in Fig 3, the network model consists of two sub-net-

works, which are a constraint network with global sound field feature information as input

and a prediction network with local sound field intensity information as input. The parameter

Fig 2. Intensity distribution of the sound field.

https://doi.org/10.1371/journal.pone.0301211.g002

Fig 3. Structure of the parallel network model.

https://doi.org/10.1371/journal.pone.0301211.g003
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α in the figure was the weight factor, which was used to determine the weight of the constraint

network in the overall model and took values in the range of [0,1]. The specific neural network

topology consisted of an input layer, a hidden layer, and an output layer.

In the loss function selection, the MSE function is usually adopted as the loss function.

However, the MSE loss function cannot accurately assess the nonlinear characteristics of the

error and is sensitive to outliers. This problem can be solved by modifying the loss function

using the radial basis kernel function. The modified loss function LKernel-MSE-Single can be writ-

ten as Eq (2) [37]:

LKernel� MSE� Single ¼
1

N

XN

t¼1

½1 � expð� ðyt � ŷtÞ
2
=2s2Þ� ð2Þ

where N was the number of samples and σ was the parameter of the loss function itself, yt and

ŷt respectively represented true and predicted values. We set φ = (y- ŷ)2 and λ = 2σ2, where y
was the true value and ŷ was the predicted value, so φ was the squared error between the true

value and the predicted value. According to Eq (2) and Fig 3, the final loss function LK-MSE

expression was shown in Eq (3):

LK� MSE ¼
1

N

XN

t¼1

fa½1 � expð� φt1=l1Þ� þ ð1 � aÞ½1 � expð� φt2=l2Þ�g ð3Þ

where φt1 and φt2 respectively represented the squared errors of the true and predicted values

of the constraint network, the prediction network. λ1 and λ2 were respectively the number of

input features for the constraint and prediction networks. The modified loss function com-

puted the gradient to the network parameters and completed the update to the network

parameters.

4. Analysis of model validation results

4.1 Dataset preparation and setup parameters

The specific composition process of the dataset was shown in Fig 4, which consisted of two

parts: labels and inputs. The labeling part consisted of the first metasurface unit density ρ and

gradient value g. We randomly generated 30,000 sets of first block metasurface structural unit

densities ρ and gradient values g. The metasurface density distributions could be calculated

from the generated data, which were inputted into a physical model of the acoustic field to

derive the corresponding acoustic field intensity distributions. The input parts were global

sound field feature information and local sound field intensity information, which could be

obtained by feature extraction of the sound field intensity distribution. In Fig 1(A), the

reflected wave will be reflected along the echo direction (y reverse direction) when there is no

metasurface, so the global sound field range could be set to 0˚~180˚. The energy of the

reflected wave is mainly concentrated in the direction of the echo [38]. Therefore, we set the

target regulation interval as 85˚~95˚. When extracting the sound field intensity values within

the tuning target range, we sampled at 0.5˚ equal intervals with a dimension of 1×21. The

sound field in the range of 0˚~180˚ was divided into 6 intervals at equal step. The rules for

extracting global sound field features were as follows:

Step 1, Within each interval, select: 1. The sound field intensity values and angles of the

maximum crest and two adjacent points on each side are required, 2. The sound field intensity

values and angles of the minimum trough trough and two adjacent points on each side are

required.
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Step 2: Within the global acoustic field, the act of selection: 1. The intensity value of the

main reflection angle sound field, 2. The number of maximum peaks.

The above features were selected to characterize the global feature information of the sound

field with a dimension of 1×122.

The number of neurons for the neural network model was set as shown in Table 1. The rel-

evant parameters for training the network model were set as shown in Table 2.

4.2 Network model training

In network model training, the constraint performance of the constraint network directly

affects the final network prediction results. If the constraint network weight α was too large

means that the network model prediction results were more biased towards the global sound

field distribution. Thus, the target sound field intensity prediction was not accurate enough. If

the constraint network weight α was small means that the link between the target sound field

intensity and the global sound field was weakened, and the coupling relationship between mul-

tiple structural units couldn’t be learned during the model training process. The prediction

results will also be inaccurate. Therefore, a key point in realizing local sound field intensity

prediction was to determine the optimal weighting of the constraint network in the overall

neural network by adjusting the weighting factors.

In this paper, the value of weight factor α was discussed. Under the unchanged conditions

of the aforementioned parameter settings, model training and generalization ability verifica-

tion were performed with different values of α (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9). The

Table 1. The establishment of neuronal population size.

Neuronal layer Predictive network Constrained network

Input layer 21 122

Hidden layer 100、300、600、1000、500、80 724、1000、543、200、100

Output layer 2

https://doi.org/10.1371/journal.pone.0301211.t001

Fig 4. The composing process of the dataset.

https://doi.org/10.1371/journal.pone.0301211.g004
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variation of the loss function is shown in Fig 5. When the model convergence at different val-

ues of α was stabilized, the last 20 batches after the convergence of the network model were

taken as the horizontal coordinates. Fig 5 shows that the loss function value is decreasing as

the value of α increases.

The loss function value can reflect the network model performance to some extent. Gener-

alization ability is also one of the important indexes to evaluate the performance of network

Table 2. Parameter configuration of predictive models.

Classification Parameter name Parameter Settings

Dataset partitioning Training set 24000

Testing set 6000

Network Configuration Learning rate 0.005

Activation function LeakyReLu

Optimizer Adam

Dropout 0.1

Training Process Epoch 800

Batch size 64

https://doi.org/10.1371/journal.pone.0301211.t002

Fig 5. The loss function value corresponding to different values of α.

https://doi.org/10.1371/journal.pone.0301211.g005
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model. To verify the generalization ability of the network model, we randomly selected 1000

sets of acoustic data from the dataset that were not involved in the model training. These data

were then input into the network model with different values of α. Predictions of the density

of metamaterial unit cells were obtained. The density prediction values obtained were used to

predict the sound field intensity through finite element analysis. The average error e between

these predicted values and the corresponding local sound field intensity values in the sample

data was calculated. The validity of the metasurface inverse design method was verified. The

average error e is calculated as follows:

e ¼
1

11

XN

i

ðjP � P̂jÞ; i ¼ 85; 86; . . . . . . ; 95 ð4Þ

Fig 6. Proportion of modulation intervals with mean error values less than 5 dB for different values of α.

https://doi.org/10.1371/journal.pone.0301211.g006
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In the above equation e is the mean error, P is the true value and P(ˆ) represents the pre-

dicted value. Fig 6 illustrates that the proportion P of cases where e is less than 5 dB varies with

different values of α. The optimal generalization ability was achieved at 92.9% when α = 0.4. A

comparison of Figs 5 and 6 shows that the generalization ability of the network models corre-

sponding to different values of α do not increase as the loss function decreases. Fig 7(A)–7(I)

show the real and predicted sound field distributions at different α when validation parameters

are the same. Fig 7(D) shows the sound field distribution under the optimal parameter α = 0.4.

As shown in Fig 7(A)–7(C), when the α value is 0.1, 0.2, and 0.3, it represents weaker con-

straint capabilities. When the model is trained with more focus on local sound field character-

istics. Information on the coupling relationship between multiple structural units is missing

when constructing the mapping relationship between the sound field distribution to the struc-

tural parameters, which leads to inaccurate prediction of the local sound field. Fig 7(E)–7(I)

illustrated the case of high constraint capacity. The network model learns more about global

features. Constructing mapping relationships between sound field distributions to structural

parameters focuses more on the entire sound field, which leads to neglecting local sound field

feature information.

Based on the above model validation results, the model performance is best when the

weighting factor α = 0.4. Fig 8 shows the loss function variation of the network model when α
= 0.4. Fig 9 demonstrates the curves of the true and predicted values of a certain group of

acoustic field intensities at α = 0.4. Fig 9 shows that the predicted values of the sound field

intensity are in general agreement with the trend of the real values. In the local control range

(i.e., within 85˚~95˚), the error between the predicted sound field intensity values and the true

Fig 7. (a)-(i) respectively showed the real and predicted sound field distributions at α = 0.1~0.9 for a certain set of parameters.

https://doi.org/10.1371/journal.pone.0301211.g007
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values is approximately 1 dB. The specific distribution curve can be seen in Fig 10. As shown

in Fig 11, among the randomly selected 1000 sets of data not involved in training, 92.9% of the

sample data have an average error e of less than 5 dB in the modulation interval. The model

can establish the mapping relationship from the local acoustic field to the metasurface struc-

tural parameters, which realizes the accurate prediction of the metasurface structural parame-

ters. The modulation of the target acoustic field intensity is realized and has a good

generalization ability.

4.3 Loss function comparison model validation

This study introduced a comparative model validation between the K-MSE loss function and

other commonly used loss functions which were SmoothL1, Quantile, Huber, MAE, and MSE.

Their specific formulas were given as Eqs (5)–(9). Comparative model validation could dem-

onstrate that the K-MSE loss function can help to construct a mapping relationship between

Fig 8. Loss function curve at α = 0.4.

https://doi.org/10.1371/journal.pone.0301211.g008
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the physical structure parameters and the local sound field intensity. The training parameters

of the network model were set according to Tables 1 and 2, while α = 0.4. Only the loss func-

tion changed throughout the training process.

LSmoothL1 ¼

1

N

XN

i¼1

0:5ðyi � ŷiÞ
2
; jyi � ŷij < 1

1

N

XN

i¼1

jyi � ŷij � 0:5; jyi � ŷij � 1

ð5Þ

8
>>>><

>>>>:

LQuantile ¼

1

N

XN

i¼1

qðyi � ŷiÞ; yi > ŷi

1

N

XN

i¼1

ð1 � qÞðŷi � yiÞ; yi � ŷi

ð6Þ

8
>>>><

>>>>:

LHuber ¼

1

N

XN

i¼1

ðyi � ŷiÞ
2
=2; jyi � ŷij < d

1

N

XN

i¼1

dðjyi � ŷij � d=2Þ; jyi � ŷij � d

ð7Þ

8
>>>><

>>>>:

LMAE ¼
1

N

XN

i¼1

jyi � ŷij ð8Þ

LMSE ¼
1

N

XN

i¼1

ðyi � ŷiÞ
2

ð9Þ

Fig 9. Distribution curves of true and predicted sound field intensity.

https://doi.org/10.1371/journal.pone.0301211.g009
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where yt was the true value, ŷt was the model predicted value, and N was the number of sam-

ples. In Eq (6), q was the quantile, q = 0.8. In Eq (7), δ was the hyperparameter of LHuber, δ =

0.5.

The generalization ability of the network model under the six loss functions was also veri-

fied using a randomly sampled set of 1000 data sets that were not involved in training. The per-

formance of the network model with different loss functions is shown in Table 3. The K-MSE

loss function achieves P percentage of 92.9% when e is less than 5 dB in the target control

range. It also has the smallest loss function value and the fastest convergence rate, which indi-

cates its optimal optimization performance for the prediction network. The predicted sound

field distribution for the same set of randomly selected parameters is shown in Fig 12. Fig 12

(A)-12(E) demonstrates that the errors in the main reflection angles of the predicted and real

sound fields are within 15˚. The envelope trend of the sound field intensity distribution of the

predicted sound field and the real sound field are similar, but the number of peaks and valleys

Fig 10. Curves of real and predicted local sound field strengths.

https://doi.org/10.1371/journal.pone.0301211.g010
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and the difference of the local sound field intensity between the two are large. As shown in

Fig 12(F), the distribution of the model predicted sound field under the K-MSE loss function

can have the same distribution trend as that of the real sound field, and the error of the sound

field intensity value in the modulation range is about 1 dB. The K-MSE loss function helps the

network model to accurately measure the nonlinearity of the error. The mapping relationship

between the physical structure parameters to the sound field intensity is helped to be

constructed.

Fig 11. The average error between the true value of the local sound field intensity and the predicted value.

https://doi.org/10.1371/journal.pone.0301211.g011

Table 3. Comparison of loss functions.

name SmoothL1 Quantile Huber MAE MSE K-MSE

value of the loss function 1.7586 e-05 0.0017 1.7766 e-05 0.0036 6.1846 e-05 2.9612 e-06

astringent batch 622 697 531 592 492 475

P 28.2% 38.2% 59.5% 65% 69.1% 92.9%

https://doi.org/10.1371/journal.pone.0301211.t003
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5. Conclusions

This paper proposed a metasurface inverse design method based on parallel deep neural net-

works (PDNN). The method respectively established a prediction network with local target

acoustic field intensity and metasurface physical structure parameters as input and output.

The global acoustic field features were used as inputs to the constraint network. The weight of

the constraint network in the whole PDNN network was adjusted by adjusting the weight fac-

tor. The loss function based on the radial basis kernel function was used to train the whole net-

work model and construct the mapping relationship from the desired sound field to the

metasurface physical structure parameters. The predicted metasurface structural unit parame-

ters could be derived from the desired acoustic field. Ultimately, the modulation of local acous-

tic field intensity was realized. The model validation results demonstrate that the predicted

Fig 12. (a)-(f) refer to the actual sound field and predicted sound field distributions under different loss functions for the same parameter.

https://doi.org/10.1371/journal.pone.0301211.g012
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sound field intensity curve obtained by this method closely follows the variation trend of the

simulated sound field intensity curve. Additionally, it achieves a percentage of 92.9% for the

sample data in which the average error between the predicted sound field intensity values and

the true values falls within the specified control target range of less than 5 dB.
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