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Abstract

This paper zeroes in on the existence result of solutions to a fractional Kir-
chhoff equation with doubly critical exponents, mixed nonlinear terms and a
continuous potential V. After utilizing some energy estimates, one obtains the
effect of exponents p and ¢ on the existence of constrained minimizers,
namely, the connection between the existence of normalized solutions and
exponents p, q.
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1. Introduction

This paper is focused on the fractional Kirchhoff equation with combined non-
linearities as follows:
2

dx |(-A) u+V (x)u=Au +c|u|p*2 u+d |u|q*2 uin R (1.1)

a+bf , (—A)g u

where a is a positive constant, which will be defined specifically in the sequel,
b>0, 1<N<3, 0<s<1, 2<q<p=4=2; and ¢>0, d=0, A is a La-
grange constant. The fractional Laplacion (—A)S (S € (0,1)) can be defined as

v(x)-v(y) v -v(y),

(_A)SV(X):CSP'V' &N N+2s Nvzs OY
x| Y|

dy = Cs !‘i*)ngJ‘RN\Bg(X) |X _
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for ve S(RN ) , where S(RN) is the Schwartz space of rapidly decaying C”
function, B,(x) denotes an open ball of radius & centered at xeR" and

-1
the constant CS=['[ ]'_Ls(ézl)] .

rN N+2s
q

For the case of a>0, b>0, s=1, problem (1.1) is a classical Kirchhoff
equation. And this type of equation has been associated with the following equa-

tion
2 .
un—(a+b_[RN|Vu| dx)Au:f(x,u) in Qx(0,0). (1.2)

Problem 1.2 was proposed by Kirchhoff [1] in 1883 at the outset, where he
obtained the classical D’Alembert wave equation, where the nonlinearity
f(x,u) is of general type. Besides, the physical and biological background of
(1.2) can be found in [2] [3] and the references therein. And it has brought itself
into notice after the seminal contribution of [4]. Next let’s study this type of eq-
uation:

s 2
a+b_[RN (-A)2u| dx |(-A) u—Au=f(xu)inR". (1.3)

When s=1, equation (1.3) is a type of typical Kirchhoff equation. And in the
recent years, it has been studied by many authors. For example, in [5], He and
Zou obtained the existence and concentration behavior of positive solutions for
a Kirchhoff equation. In [6], Figueiredo ef al. studied the existence and concen-
tration results for a Kirchhoff type equation with general nonlinearities. For
more results about the existence of solutions to the Kirchhoff type equation like
(1.3) with s =1, we refer readers to [7] [8] and the references therein.

Moreover, for the case of 0<s <1, namely, for the nonlocal operator (—A)s ,
its background can be found in several areas such as fractional quantum me-
chanics [9], physics [10] and so on. About the fractional Kirchhoff problems, to
the best of our knowledge, a lot of authors have obtained fruitful results. For
example, in [11], Caffarelli and Silvestre introduced the harmonic extension
method changing this nonlocal problem into a local one in higher dimensions.
In [12], Gu and Yang studied a singular perturbation fractional Kirchhoff equa-
tion in the critical case. Furthermore, readers can refer to [13] [14] and the ref-
erences therein for more results on the existence of solutions for the fractional
Kirchhoff equation (1.3).

Motivated by Li and Chen ([15] and [16]), the aim of this paper is to general-

ize their results to the case of mixed nonlinearities.
By direct computation, it is easy to find that if N =4s, the critical Sobolev

. 2N
exponent 2 = N

5 and the fractional Gagliardo-Nirenberg-Sobolev critical
— ¢S

2N 2N +8s
N -2s N
this paper, we study the case of N =4s, namely, the doubly critical exponents

=4. And in

. 8s
exponent 2g, =2+W are equal, moreover,
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case. Besides, we have

if N=1,thens :i,
4
. 1
if N :2,thens:z, (1.4)
if N=3,thens =§.
4
It is customary that a (weak) solution of problem (1.1) is a critical point of the
energy functional
s 2 L b s 12y
c a 2 2
Ey (u) :EIRN (-A)2ul dx +EJRN V (x)u?dx +Z[_[RN (-A)2u dx}

_% ]ul” dx —%'[RN |u[* dx,
constrained on
S, = {u eH [ |uf* dx=1},
where
HS :={u € HS(RN):IRNV (X)UZdX<oo}.

The fractional Sobolev space H°® (RN ) is defined as

He ()= du e 12 (&) 200U o)

N+2s

-yl 2

1
2 2
+|u|2de ,

with the norm

S

(-a)°u

u

H3(RN) T J.RN[

where

s |2

(-A)?u

o, 080

2
IJRN Rr2N |X _ |N+ZS dXdy

By remark 1.5.1 of [17], we know the fact that a (local) point of minimum of a
differentiable functional is a critical point. Then we study the minimization

problem with respect to the fractional Kirchhoff functional on the L’-constrained
manifold:

m, (¢):= inf E5 (u). (15)

This paper ||p denotes the norm of L° (RN) defined by |u|z = -[IRN |u|p dx. If
V =0, we denote the space H; by H;,theset S, by S, the functional E/
by Eg,and m,(c) by my(c) respectively.

By the above notations, we are ready to give the main result of this paper,

namely, a result about the minimization problem (1.5).
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2(q-2)

2dSZ|(-A)2u [ouV (x)uldx

Theorem 1.1. Let 2<q<p=4, ax 5

and a>0 (where S, is defined in Lemma 2.1), ¢>0, d>0, and V(-) sa-
tisfies the following condition:
(C) V eC(RY,[0,0)), limV(x)=co, infV(x)=0, and there exists a suf-

[x|>o0 xeRN
ficiently small €,>0 such that meas ({V (x)< 80}) <g.

Then, there exists a positive constant C, such that if 2<0<p=4, then
c, =bS? and

m, (¢)e(—»,0), ifce(0,c,),
m, (¢) =0, if c=c,,
m, (C):—oo, if Ce(C*,oo).

Furthermore, E{(u) has an energy minimizer for C<C,, and has no mini-
mizers for C>cC,.

Remark 1.1. By Theorem 1.1, we get a threshold value of ¢ >0 which sepa-
rates the existence and nonexistence of minimizers, which improves ([15],
Theorem 1.2), where the existence of minimizers for (1.1) with s=1 and
d =0 Is obtained. The main obstruction is to impose energy estimates to cha-
racterize the threshold value ¢, and the infimum energy level m,(c) for
2<q<p=4.

Remark 1.2. Theorem 1.1 is also true in the case of d <0, with only a small
change in the case of d >0, which we omit here.

Remark 1.3. For V(x)= |X|2, readers can verity that it satisfies the condition
(QO) in Theorem 1.1.

This paper is organized as follows: We first list some preliminaries in Section
2, the main proof of Theorem 1.1 will be given in Section 3 and finally, we sum-

marize the main contents of this paper in Section 4.

2. Preliminaries

In this section, some results which will be used frequently throughout the rest of
the paper are firstly listed below.

Lemma 2.1. ([18]) Let se(0,1) and pe[l,+x) be such that sp<N .
Then, there exists a positive constant S, =S ( N, p,s) such that, for any mea-
surable and compactly supported function u:R" — R, one has

ol EORTEY v,

%= N+2s
s |X—

is the so-called fractional critical Sobolev exponent. More-

S, u

(2.1)

where 2 =

-2s
N-2s

over, equality (2.2) holds if and only if l]:IC(,uz+|X—XO|2)_T with
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KeR\{0}, >0, x,eR" fixed constants, S is the best Sobolev embed-

S

ding constant.
Lemma 2.2 ([19]) Let pe [0,2: —2) and ueH® (RN ), then inequality
Np
D+ 2 s |2 4s 2ps—Np+4s
p+2 > 2 s
[oulu] dx< o @By [Lu|(=A)?ul dx (IRN lul dx) 4 (2.2)
2
Np
— 4s
holds, where «, =L, B, = 2ps—Np+4s and the function
2ps—Np+4s Np

Q(x) optimizes (2.2) and is the unique nonnegative radically solution of the

fractional nonlinear equation
(-A) Q+Q-[Q°Q=0 inR".

According to Lemma 2.1 and Lemma 2.2, when N =4s and |u|,=1, the
fractional Sobolev inequality (2.1) and the Gagliardo-Nirenberg-Sobolev inequa-
lity (2.2) can be rewritten, in other words, the fractional Sobolev inequality (2.1)
turns into

s P
(-A)?ul dx |, ueH® (RN ) (2.3)

Sf_[RN |u|4 dx < [I}RN

If we change p into p—-2 in (2.2), then the fractional Gagliar-

do-Nirenberg-Sobolev inequality (2.2) becomes

S

(-A)?u

2 p-2
dx| , ueH(RY), (2.4)
Q| ] ()

IRN |u]® dx < %apﬂp {IRN
2

N
with the equality holds when u=A12 Q(ﬁX)/|Q|2 , where a, :41 and

Particularly, when U =0T Ll , where U:~L~,one has
SSE |U 2
s 4
(-A)?U P
SZ=l——12 82=|(-A)2U| =|U]..
ARV e

Similar to ([20], Lemma 5.1), one gets the result about the embedding as fol-
lows:

Lemma 2.3. Assume that \V/ (X) satisfies condition (C), then the embedding
Hy <L” (RN ) Is compact for pe[2,4).

The proof of this lemma has already been given in ([16], Lemma 2.3), but for

the readers’ convenience, we sketch it here again.

DOI: 10.4236/0alib.1111433

5 Open Access Library Journal


https://doi.org/10.4236/oalib.1111433

T. Q. Zhang

Proof: Step 1. We first show that HS & L° (RN ) holds for p=2.

By the Sobolev embedding theorem, one gets that L° (RN ) Sk (RN ) conti-
nuously. Further, from H; o L° (RN ) continuously, we deduce that Hj <
L? (RN ) continuously.

Suppose that {un} c H is a sequence such that u, —0 in H;. Then one
gets u,—0 in HS(]RN) and u, >0 in L*(B;), where By is a ball in
RM with radius R centered at 0eR" .

From condition (C), one gets ‘)I(‘i_r)TlV (x)=o0, it follows that for any &>0,

there exists R >0 such that

‘ 1 <g for|x|>R.

V()

Thus,

u,|* dx

I]RN |un|2 dx = J'BR |un|2 dx + J.Bﬁ

£8+8IB§ % (x)||un|2dx

Sg+Cg(sup.[RN V(%)

From this, we conclude that

|un|2 dx).

u, >0in L*(R"),

Thus, HSo L (RN ) is compact.

Step 2. We prove the case of p>2.

Since HS o L2 (]RN) is compact by Step 1, one obtains that u, -0 in
L2 (RN ) By the following fractional Gagliardo-Nirenberg-Sobolev inequality
(pel2,4)),

N(p-2)

2ps—N(p-2)+4s

2 4s
R

we can deduce that u, >0 in Lp(RN) for pe[2,4). O

The following lemma is adapted from ([16], Lemma 2.5), for readers’ conven-

S

(-,

p
IRN Jul® dx < —|Q|p72 a,B, {LRN
2

ience, we provide a brief proof.
Lemma 2.4, Assume that 2<q< p=4,c>0,d >0 and the energy function-
al Eg(u) Is defined as

2

N
i s s d
E; (u):%J'RN (-A)2u (-A)2u de _%LRN |u|4 dx—ajRNMq dx.

b
dx+Z[jRN

Set ¢, =bSZ, my(c)= inf Es(u). Then my(c)=-w for C>c,, where
uesy

S, ={UE H (RY): [, |u|2dx:1}.

Proof. Choosing X, =0 in 0. Then
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N-2s
2\
2 X N-2s
K| u + T N\
~ SZs
u S 2 X
T a R Kt ’
25 2 S2s

S

where 6= KX . By the assumption of N =4s, it yields that for R>1,

|u 2
N-2s ]2
2\
.[ U 2dx :I 0| 1’ + X dx
R<[x|<2R R<|x|<2R 1
2
S2s
< Q22 N-1,.-4s
<S20%w, IR«ZRr rsdr (2.5)

<2S20%w, = A,

. . . N
where @, is the surface area of unit spherein R", and

2 2

S S
J.\x\>R (_A)ZU dXSIRN (_A)ZU dX:SSZ' (26)
N-2s 4
2\ 2
j u* x:f 6| u? + dx
xR wer| O H T
SSZS
2 —4s
<t'oy[ | | dr 2.7)
SE
_ Ss494a’N ::i
NRM RN
For 2<(q<4,thereis
N-2s 4
2\ 2
[ Uiax=[ 6] u2+ - dx
[X>R [X>R 1
SSZS
2\
_ r
<Oo,f M —| | dr (2.8)
SSZS
:—Ssngw'\‘ ::i_
NRM RN

Since 0<s<1 and N =4s, we consider the computation of -[M(RU dx in

three cases as below:
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1) If N =1, then S:% and

2)If N=2,then Szé and

0% w,S? (
2

[, U%dx= In
[X|<R

R+ (418, )’| ~In|(us,)

2).

3)If N =3, then s=% and

r<R

J'M(RU Ydx = 0%, | r*| uF+ T ar

2

Siu

) \2
=S20°w,| In|R+ R2+[Ss3,uJ —In

5 \2
R? +(S:,UJ
So, there existsa p >0 such that
LMU %dx = plIn(R? + uS?). (2.9)
Then we consider a radially symmetric cut-off function ¢eCy (RN ) , which
satisfies ¢=1 in By ={xeR":|<R}, =0 in Bj, ={xeR":|x>2R]

and 0<¢<1,

2
Vﬂsﬁ.

set G=M_ y =z

V1,

U (4X). Then it’s easy to get that U\U,eS, and

2 2
de

(-a): ()

s
=A)2 (V)| dX+——p o
(-aye( ﬂ ka@

25(q-2)
|4 dX _ dﬂ« -
algul;

cAN

2 VY
g

J'RN |pu|" dx.

According to the definition of function ¢, it follows that

J: dx= (I\x\sre + R<\x\s2R)
- I\x\sa

2 2

dx

N o»
N »

(=4)* (V) (=4)2 (V)

2 2

(-a)U (~A)? (4] o,

dx+.[

R<|x|<2R

where
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2

N

(-a)2 (V) dx

IR<\x\s2R

J.uzaN IR<M<2R

X)*|u(9)-u(y)

N+2s
y|

dxdy
X_

¢ (v)
.[RN JR<\><\<2R X|— y N+2s | dxdy

(U (Y)(U (x)-U ())(¢(x) - 4(y))

|X— y|N+25

+ ZIRN J.R<\x\§2R dxdy.

In addition, we get the following estimate

2

~A)2U| dx,

U(x)-U(y)
IRN J.R<\x\<2R | | dxdy < .f

X _ y|N+25 R<\x\<2R

4 (v)
I]RN J‘R<‘X‘<2R X|— y|N+2s | dxdy

C
B2

U 2
dedy
R

gl
RN J(xeRN Rx<2R [x-yj<R} |y _ y|N+2572

2
uly) dxdy

+ 4_[RN J.{XE]RN :R<\x\§2R,\x—y\zR} |X B y|N+25

< A
g

And it follows from Hoélder inequality that

ZJRNJMX\SZR #(x)U (y)(U(x)-U (y))(¢(x)—¢(y))dXdy

|X— y|N+25

N

N+2s

[JRN R<|x<2R |¢(X)_¢(y)| dxdy

X
o

U (x)
[J.]R{N J.R<|x|<2R ||X y|N+25 | dXdy
< i

Choosing L =max{A,, A}, we obtain that

J.RN dx < J'\x\<2R (_A

s 2

(=8)* (V)

In addition,

Joulugl!dx> | |u|quzij|u|qu_F;iN,

X|<R

where .[RN |U |q dx is bounded from above by (2.8) and Holder inequality. Then

one gets

DOI: 10.4236/0alib.1111433
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2s 4s 2 2
Es(U,)< a [Sf+&j+ A ((bsf—c)Sf+4bLS 4bL ﬁ]

R ] R
42256 e (2.10)
-— Tdx + i
q JRN | | a RN
algu ], aleu;

When c¢>c, =bS? and Ris sufficiently large, we get
4bLS?  4bl? CA2
S + 2s BN (
R R R
Thus, it follows from (2.10) that my(c)<Ej(u)—>- as A—w, e,
my(c)=- for c>c,. OJ

~bs?)s?.

In the following lemma, we give the estimates of ¢, for p=4.

Lemma 2.5. Suppose 2< (< p=4, dis a positive constant and V (Xx) satis-
fies condition (C). Let ¢, =bS?, then

m,(c)>0, ifce(0.c,),
m,(c)=0, ifc=c,,
m, (c)=—, if ce(c,, ).

Proof 1) If c<c,=bS?, we set y= min{so,st2 —-c —6‘0} and choose
g, <bSZ —c satisfying condition (C) in Theorem 1.1. Firstly, by Hélder inequa-
lityand ueS, , we have

[Laluldx=] , P o2 dx

q-2 4—q
9-2 5 4q

(Tl o] (1 e

4q

< (.[RN Ju[* dx)e|22 (IRN Juf* dx)T

:( [Lolur dx)L;z

Then by Sobolev inequality, Young’s inequality, Holder inequality and condi-
tion (C), we get for any UeS,,

2
-2l 22l d
5 ()= 2(-8)7 ol +2|(-a)ul +2[V (x)udx— |, ol
2
q-2
2SI 5 LV ouox-d o)
1 -2
S (x))udequluli ~ g -a (o) 7
1
y 1 [1 2 2 o7
<5 Gk V@ [ [ e G50l ()
1 2
“(r-v(x) i
y 1 4 7u 2
ZE_EJv(x)gf 2 | ™3 (b32‘°)|”|4_d(|“|:)2
vy 1 ] 2 bSSZ—C—}/ 4 4 2
o U=V 0 0 2l -a )
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a-2
2, by direct computation, one gets

:be—C—y_(q—Z)dtq—;‘.

and

9-2
q

=]

Td(q; e e

If y=¢,,namely g, <bS’-c—g,,weset d>0 satisties the condition that
q-2

21 1 ]
d 1—— 2d(q-2) J+0 = —— =
( j[ (a-2)]" (bsz—c goj “8

and if y=bS’-c-¢,, ie, bSZ—c—¢g,<g,, we set d >0 satisties the condi-
tion that

N

a-2

q-2 a-2 1 1)+ 1
d|l1-——||2d(q-2) |*9 ——| — =.
( 2 j[ (g )] qusz—c—go[goJ <8

Then we get E; (u) S% . This indicates that m, (c)>0 forall c<c, =bS’.

2)If ¢>c, =bS?, then by (2.10) of Lemma 2.4, we obtain

E¢(U,)= j V (x)U 2dx
s—“zl(szf—f)‘ ﬁi&c—b%)sﬁ——““ﬁ
2|pu], R/ 4fgul, R
2
_4:;_2':___ |¢U|zj vV ( lx)zu(lx)zdxj
dAZS(q 2) q d/lzs q-2) %
q J. | | q RN '
alpu ], algu ],
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Similar to the proof of Lemma 2.4, we choose R large enough such that
4bLS? :
R R R
For A1>1, we obtain that

P(AX)U (Ax) < (x)U (X), (Ax)U (Ax) >0 as A — 0.

<%(c—b8§)8§.

It follows from the Lebesgue dominated convergence theorem that
- 2 2
lim [,V (x)$(Ax)"U (2x)" dx =0.

Therefore, according to the above inequalities and the definition of infimum,
we deduce that

m, (¢)<limEy (U, ) =—.

A—>o

3) If c=c, =bS?, then using the Sobolev inequality and Hélder inequality as
in case (1), we have

2 4
c a > b s cpe 1 d
By (u)=5|(-4)"u +z(—A)2“2—Z|“|4+§ RNV(X)“ZdX—E|“|:
a s [ 1 1 4 0
25(—A)2u +§IRNV(X)“2dX+Z(b53_C)|u|4_d(|“|4) 2
s 2 s 2(q—2) 1
a = _ =
:E(—A)Zuz—dssz a (—A)Zu2 +EJ'RNV(x)u2dx.

Choosing appropriate a>0 (Actually, we set
s [Aa-2)

2dS7%|(-A)zu
2

.[RN V (x)u?dx

a 5 and a>0 in Theorem), we conclude

S

(-A)2u

2

m, (c)=0 for c=c,.

Further, we prove that m, (c)<0 for c=c,. Analogous to the proof of
Lemma 2.4, we get that there existsa R(g)>0 satisfying for R>R(¢),
2

([ 2 [, Ul dxz pin(R + 157) 2,

Repeating the previous proof, we get
lim [V (x)¢(4x)°U (4x)" dx=0.
So, there exists A(s)>0 such that
Vv (x)p(Ax)°U (Ax)*dx<&® for 1> A(s).

According to the previous analysis, we obtain

m, (c.)<Ey (U,)
2s 2s(q-2) 25(q-2)
. 2( 52+2_|S_j+d/1 DA G g
2Jul,\ - R alguf; RT gy,
DOI: 10.4236/0alib.1111433 12
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A% (4bLSZ 4p|2 cA2

e T B AW LY 0980 a3

4s 2 2
<y [4bLSS , 4oL +ﬁ]

4|¢lJ |: RZS RN
4s
—+ A 7 )N \Y (X)¢(ﬂ,x)2 u (lX)z dX+C252125(q—2) _C38ﬂ,25(q72)
2|gu,

<Cea® +C' ™ +C£‘92/125(q 2) o 1200 2)’

where C,,C,, C3,C~,C’,C£ ,C; are all positive constants.
1

1 —
Setting lzmax{ﬁ(g),g_“}, we get m, (c,)<Ceg?, namely, m,(c,)<0.

Thus, we deduce m, (c,)=0. U]

3. Proof of the Main Result

In this section, we prove the main result of this paper.

Proof of Theorem 1.1. By Lemma 2.5, we only need to prove that Ej(u)
has no minimizers for c=c, and it has an energy minimizer for all c<c,
when 2<q<p=4.

If p=4 and c=c,, using the fractional Sobolev inequality (2.3) and the
Holder inequality as in the proof of Lemma 2.5 and the assumption about a in

Theorem 1.1, we deduce

2

‘. a 3 1 d
E¢ ( )ZEIRN (-A)2u dx+EIRNV(x)u2dx—a|u|g
2 2
b C, S
+Z[1—EJ{IRN (-A)?u dx}
s d
a -
:EJ']RN (-A)2u dx+EJ]RNV(x)u2dx—a|u|2
a s | &2
2 2
ZEIRN (-A)2u| dx+= I u’dx — d(|u| ) 2
s 12 s [2a-2)
a = =
ZEIRN (-A)2u| dx+= j Ju®dx—dSZ|(- )2u2 >0.

c

Arguing by contradiction that m; can be obtained for c=c,. Then, by
Lemma 2.5, we deduce that
2(q-2)

(~A)u

s
—-A)2u

0=m,(c.)=

2
1 -
dx +§.[RN V (x)u’dx —dsZ™

2
From this, we get u=0 in D2 (]RN). So u=0 in L2 (RN), which is in
contradiction with |u|, =1. Therefore, Ej(u) has no minimizers for c=c,.
If p=4 and c<c,, let {u,} =S, be a minimizing sequence for m, (c),
then by the Fractional Sobolev inequality (2.3), we deduce that
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2

(=A)2u,| dx +%J'RN V (x)uldx

2 2
c d
u dx} —Z|un|j —a|un|2

2

a 2 1
ZE-[RN (-A)2u, dx+EIRNV(x)u§dx
bSZ —c

4

-[IRN lu, |4 dx —EIRN |u, |* dx.
q

+

From this, we can deduce {u,} isboundedin H.According to Lemma 2.3,
we may assume that there exists a ueH; such that u,—u in HJ and
u, —u in LP (RN) for pe(2,4), then ueS, and there exists & eR
such that

lim (E¢' (u,)—&u, ) =0.

n—o0

2

=B . Then

lim £, = lim (£ (u, ).ty ) = im| (EF' (4, )., ) ~4E5 (1) + 4m, (¢)
d(q-4)

Set lim|(-A)z u,

n—oo

2

(~a)u,

— [V (x)uldx - [ lug [ dx

= Iim[4m\, (c)-a
2

=£.
Choosing ¢ € H, , we get
0= I!L”JO(E\?'(un)_gnun’gé)
= lim((E5" (u,),¢) - &, [, u,90x)

n—w

= Iim[{a+b

—cfuigdx—d [ ultgdx ¢ [, un¢dx]

2

(-a)u

n

(3.1

S

=(a+bB)[ ,(-A)2u (—A)g gx+ [,V (x)ugdx—c_, u*gdx
—d [ uTgdx & ugdx
If we choose ¢=U in (3.1), then

2

(-A)2u dx+ [V (x)udx—c|_, u*dx—d] , u'dx.

§=(a+bB)_[RN

2 2

S
<liminf|(-A)2u,| =B, we obtain

n—oo

Since ueS, and ‘(—A);u

2
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2

. a 2 1
m, ()< E (u)_EJJRN (-A)2u dx+ELRNV(x)u2dx
2 (4-9)
b 2 c,« d d 4—q
s -[IRN (-A)2u| dx —Z|u|4 =7 Jen uqu_TJRN udx
a ! bB : [
<= Jan (-A)2u dx+§_[RNV(x)u2dx+T o [(=A)2ul dx
c 4 d d(4-q)
—Z|u|4 _Z-[]RN quX—T_[]RN ufdx
s |? 1 1, d(4-q)
a 2 - q
< Jen (-A)2u dx+ZJ'RNV(x)uzdx+Z§—T|u|q
S 2 _
<liminf %jRN (-A)2u, dx+%J'RNV(x)u,fdx+%§nJr%q4)|un|?4
=m, (c)

Therefore, Ej(u)=m,(c) and E;(u) hasan energy minimizer u.

4. Conclusion

In summary, in the previous sections, combining the fractional Gagliar-
do-Nirenberg-Sobolev inequality, and fractional Sobolev inequality with some
energy estimates, we obtained the existing result of the fractional Kirchhoff equ-

ation with doubly critical exponents and mixed nonlinearities. [
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