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communication, contributing to
varied overall survival outcomes
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and Junfeng Pu3*
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2Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism
Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical
Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China, 3Department of
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Background: Hepatocellular carcinoma (HCC), a prevalent cancer, is linked to

cuproptosis in tumor progression. However, cuproptosis's impact on HCC

prognosis and its role in the tumor microenvironment remain unclear. We

aimed to explore the correlation between cellular cuproptosis and the immune

microenvironment in HCC, providing potential immunotherapeutic insights.

Methods: Examining cuproptosis-related genes and the immune

microenvironment through consensus clustering and WGCNA. Risk models

were constructed using LASSO Cox analysis and validated in an independent

cohort. Gene expression data from The Cancer Genome Atlas (TCGA) database

and single-cell RNA sequencing (scRNA-seq) data from the Gene Expression

Omnibus (GEO) database were utilized. We scored cuproptosis expression and

explored immunoinfiltration and cell-cell communication. Differential signals in

T_memory cells were compared across different cuproptosis levels.

Results: Cuproptosis genes associated with fibroblast recruitment (GLS) and

macrophage infiltration (FDX1). Liver cancer patients categorized into two

subtypes based on cuproptosis gene expression. High expression of DLAT,

GLS, and CDKN2A linked to immunosuppression (TGF-b), while high FDX1,

MTF1, LIAS, and LIPT1 expression enhanced communication with non-immune

cells. Developed reliable prognostic signature score and nomogram using

cuproptosis-related genes. Single-cell analysis revealed differences in

T_memory and TAM infiltration based on cuproptosis scores, with SPP1 and

MIF as dominant signaling molecules. Finally, the results of in vitro experiments

showed that when DLAT or CDKN2A was knocked down, the proliferation,

migration, and invasion of HCC cells were significantly decreased.
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Conclusion: Our study demonstrates that cuproptosis affects the immune

microenvironment and cell-cell communication. Identified 9 genetic markers

predicting survival outcomes and immunotherapy responses. Evaluating

cuproptosis signaling can optimize immunotherapeutic strategies for

hepatocellular carcinoma.
KEYWORDS

hepatocellular carcinoma, cuproptosis, TME, prognosis, scRNA-seq, cell-
cell communication
1 Introduction

Hepatocellular carcinoma (HCC) is a prevalent form of primary

liver cancer (1). Surgical interventions like hepatectomy or liver

transplantation are typically employed as curative measures,

complemented by percutaneous ablation, radiotherapy, transarterial

therapy, and systemic therapy options (2), including immunotherapy

(3). Despite these treatment modalities, the 5-year survival rate

remains low at 21%, and the mortality rate has shown a distressing

increase in recent decades (4).The lack of specific biomarkers is one of

the important reasons for the very poor prognosis of most patients

(5). Therefore, identifying novel prognostic biomarkers is crucial to

enhance survival rates in liver cancer patients.

Regulatory cell death (RCD), also referred to as programmed

cell death (PCD), plays a pivotal role in tumorigenesis (6). Copper

ions are vital for maintaining normal cellular function and

homeostasis. However, an accumulation of copper ions can

induce cellular damage (7). Evidence suggests that copper

signaling is associated with cell proliferation, tumor growth, and

metastasis in cancer (8). Previous studies have identified cell death

induced by copper ions through protein lipid acylation, which is

called cuproptosis (9). Nevertheless, the precise biological

mechanisms underlying cuproptosis and its potential as an

indicator for evaluating HCC remain poorly understood.

The tumor immune microenvironment (TME) plays a

significant role in HCC development and patient prognosis (10).

The tumor immune microenvironment (TME) is a dynamic system

composed of multiple cell types and complex cellular components

(10, 11). Furthermore, TME-based immunotherapy has shown

promise in treating hepatocellular carcinoma (12). Evidence

suggests that regulatory cell death (RCD) plays a significant role

in tumor immunity and the tumor microenvironment (TME),
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thereby affecting the efficacy of immunotherapy (13). However,

the relationship between cuproptosis and TME in hepatocellular

carcinoma remains unclear. Therefore, this study systematically

investigated the association between cuproptosis and TME in liver

cancer, utilizing data from The Cancer Genome Atlas (TCGA). The

findings revealed that cuproptosis was linked to an active immune

microenvironment characterized by strong immunogenicity.

The utilization of single-cell RNA sequencing technology has

greatly contributed to our understanding of cancer development,

particularly in unraveling the immune microenvironment of cancer

and identifying potential immunotherapeutic targets (10, 14, 15). In

this study, we further explored the connection between cuproptosis

and the immune microenvironment by analyzing single-cell

transcriptome data. We compared the differences in cell

communication, specifically focusing on T_memory cells. The

results further confirmed the impact of cuproptosis on the

immune microenvironment of liver cancer, highlighting its

potential as a marker for immunotherapy.
2 Method

2.1 Data sources

To conduct our analysis, we obtained the gene expression,

mutation data, and clinical information from the TCGA-LIHC

project via the UCSC Xena platform (http://xena.ucsc.edu). We

included a total of 377 patients, and for the follow-up analysis, we

also selected 50 normal individuals. Additionally, we acquired a single-

cell RNA sequencing dataset (accession number: GSE149614)

consisting of 10 samples and 34,414 cells from the GEO database to

validate the immune characteristics of hepatocellular carcinoma.
2.2 Immune infiltration analysis

For immune infiltration analysis, we employed the ESTIMATE

algorithm (16) to evaluate the ratio of stromal and immune cells in

the tumor microenvironment as well as tumor purity. Furthermore,

we utilized EPIC algorithms (17) to compute the proportions of
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immune cells in each tumor microenvironment. Additionally, we

downloaded the activation levels of the seven-step anti-tumor

immune cycle from the TIP database (18).
2.3 Subtyping and differential gene analysis

To subtype the liver cancer patients and perform differential

gene analysis, we employed a consensus clustering algorithm based

on the expression of cuproptosis-related genes. This approach

classified the patients into two subtypes: Group A (high

expression of DLAT, GLS, and CDKN2A genes) and Group B

(high expression of PDHA1, FDX1, MTF1, LIAS, and LIPT1 genes).

We repeated the hierarchical clustering 500 times, each time

selecting 80% of the samples. Finally, we determined the optimal

number of clusters based on the cumulative distribution function

and selected stable clustering results.

To screen for differentially expressed genes in both isoforms, we

used the R package DESeq2 (19) with a significance threshold of |

log2FoldChange| > 1 and an adjusted P-value < 0.05. Subsequently, the

differential genes were subjected to gene ontology (GO) functional

enrichment analysis using the R package ClusterProfiler (20). We also

performed functional analysis based on the KEGG database using the

GSEA algorithm. The ssGSEA (21) method was employed to measure

the activity of cancer markers in tumor samples, and the enrichment

scoring method was set as “singscore.” Furthermore, we analyzed the

difference in marker activity between the two subtypes using the

Wilcox test.
2.4 Weighted gene co-expression
network analysis

We conducted co-expression network analysis of the differential

genes using the WGCNA package in R. For this analysis, we set 4 as

the soft threshold. Through clustering analysis, we identified highly

similar modules. We then assessed the correlation between these

modules and various factors such as stromal score, immune score,

tumor purity, and different immune cell ratios. To further

investigate the role of methylation, we examined the methylation

patterns in the UALCAN database (22). This allowed us to identify

key genes associated with methylation. Specifically, we focused on

genes that exhibited higher methylation levels in the tumor group

compared to the normal group.
2.5 Construction of risk scores

To ascertain the predictive capabilities of our model, we

randomly divided the TCGA dataset into a training and test set.

In the training set, we utilized the glmnet R package to construct a

LASSO Cox regression model, employing the key genes identified

earlier. This model was then evaluated in the test set to assess its

validity. Next, we employed the median risk score as a threshold to

partition the patients into high and low-risk groups. The Kaplan-

Meier method was employed to generate survival curves for these
Frontiers in Immunology 03
groups, and the log-rank test was utilized to determine any

significant differences in survival. Additionally, we calculated the

time-dependent AUC by utilizing the R package timeROC (23) to

evaluate the accuracy of our predictions. To further visualize the

prognostic value of our model, we employed the R package rms to

create a nomogram that incorporates pooled clinical variables. We

employed calibration curves to assess the concordance between the

predicted and observed risks indicated by the nomogram.

Moreover, decision curve analysis was performed to measure the

net benefit (NB) of utilizing the nomogram as a screening tool to

determine if interventions are warranted for truly high-

risk patients.
2.6 Mutation analysis

The R package maftools was used to analyze the mutation data

obtained from patients with liver cancer. By employing waterfall

plots, we visualized the mutation profile of the patients.

Additionally, we calculated the tumor mutation load (TMB) by

determining the total number of mutations present in each patient.

To assess the mutation differences between the two groups of

patients, we conducted the Fisher test.
2.7 scRNA-seq data clustering and
dimensionality reduction

The Seurat (24) package was used to perform unsupervised

clustering of individual cells, and we performed principal

component analysis using the top 2000 high variance features in

the dataset and downstream analysis using the top 20 principal

components. Cell subclusters were identified using the

“FindClusters” function (resolution = 0.6) and visualized using

Uniform Manifold Approximation and Projection (UMAP).
2.8 Cuproptosis score calculation and cell-
cell communication analysis

The irGSEA R package is used to calculate cuproptosis

associated gene scores, obtained using the singscore algorithm.

The scores of all cells in the samples were averaged, and all

samples were divided into groups with high expression and low

expression of cuproptosis related genes in a ratio of 1:1.

The R package Cellchat (25) was used to analyze cell-cell

communication in single cell data and to compare the differences

in cell-cell communication between the high and low expression

groups of hepatocytes.
2.9 Cell culture and transfection

Human liver cancer cells HepG2 and SMMC7721 were

procured from the Chinese Cell Bank (Shanghai, China). They

were cultured in Dulbecco’s modified Eagle’s medium (DMEM,
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Gibco, NY, USA) supplemented with 10% fetal bovine serum and

100 U/ml penicillin-streptomycin, maintained at 37°C with 5%

CO2. siRNAs targeting DLAT and CDKN2A, along with their

respective negative control (NC) sequences, were obtained from

RiboBio Co., Ltd. (Guangzhou, China). Cell transfections were

carried out using Lipofectamine 3000 reagents (Invitrogen, Grand

Island, NY, USA) in accordance with the manufacturer’s guidelines.

After a 48-hour incubation period with Lipofectamine 3000, the

HepG2 and SMMC7721 cells were harvested and utilized for the

pertinent experiments. The sequences of siRNAs targeting DLAT

were as follows: 5’-CAGTGAATTGTCTTTTAGACAAC-3’;

siCDKN2A: 5’-GAUGCUUCGUCUACGAGAATT-3’; si-NC:

Ribobio, # siN0000001-1.
2.10 Western blot assay

The HepG2 and SMMC7721 cells were harvested and rinsed

with ice-cold PBS solution for the Western blot assay. Subsequently,

cell lysis was carried out in RIPA cell lysis buffer (Solaibao, Beijing,

China), supplemented with complete™ Protease Inhibitor Cocktail.

Protein concentrations in the resulting supernatant were

determined using the bicinchoninic acid (BCA) Assay (Solaibao,

Beijing, China). The protein extracts were resolved on 10% SDS-

PAGE gels and subsequently transferred onto PVDF membranes

(Immobilon-P, CA, USA). After blocking with 5% skimmed milk,

these membranes were subjected to overnight incubation at 4°C

with DLAT (Cat#: 12362, Cell Signaling Technology, USA) or

CDKN2A (Cat#: 18769, Cell Signaling Technology, USA)

antibodies. Following three washes in TBST, the membranes were

exposed to the secondary antibody at room temperature for 1 hour.

Signal detection was accomplished using an enhanced

chemiluminescence (ECL) kit (Immobilon-P, CA, USA), and

band visualization was facilitated by the ChemiDoc™ Touch

Imaging System (Bio-Rad). Relative quantification was performed

by utilizing b-actin as an internal reference for normalization.
2.11 Cell counting kit−8

Cell proliferation capacity was assessed using the Cell Counting

Kit‐8 purchased from Dojindo Laboratories (Japan). Initially, cells

were plated at a density of 3×103 cells/well in 100 mL of medium

within 96‐well microplates (Corning, NY, USA). Following 24

hours of incubation, 10 mL of CCK‐8 reagent was added into each

well and allowed to incubate for 1.5 h. Subsequently, the absorbance

was measured at 450 nm using a microplate reader (Molecular

Devices, Sunnyvale, USA). Cellular proliferation was quantified

based on the absorbance readings.
2.12 Colony formation assay

The HepG2 and SMMC7721 cells were collected, resuspended

in complete medium, and then inoculated into the wells at a density

of 2000 cells per dish. The culture medium was changed periodically
Frontiers in Immunology 04
until visible colonies formed. Finally, the colonies were fixed with

methanol and stained with a crystal violet solution (Beyotime

Biotechnology, China). This experiment was repeated three times.
2.13 Migration and invasion assay

Transwell assays were conducted utilizing 8-mm pore transwell

compartments (Cat. No. PTEP24H48, Millipore, Billerica, USA). In

the migration assay, 200 µL of HepG2 and SMMC7721 cells (1×105)

were placed in the upper chamber with serum-free medium, while

the lower chamber held 800 µL of DMEM supplemented with 10%

FBS. For invasion assay, Matrigel (BD Biosciences, USA) was

diluted in serum-free medium at a ratio of 1:19, then added to

each well, and 1×105 cells were suspended in the upper

compartment. The subsequent steps mirrored those of the

migration assay. Following incubation at 37°C for 24 h, the

medium was discarded, and cells that had invaded the lower

surface of the membrane were fixed in methanol for 30 minutes.

Staining was performed using crystal violet (Beyotime

Biotechnology, China) for 30 minutes at room temperature. The

migrated and invaded cells were counted in 5 separate visual fields

at ×20 magnification using an Olympus microscope.
2.14 RNA extraction and quantitative real
time polymerase chain reaction

The SMMC7721 and HepG2 cells were seeded in 6-well plates at a

density of 2 × 105 cells/well and treated using Elesclomol 200 nM for

24 h. The total RNA was extracted using Trizol reagent (Invitrogen,

Carlsbad, CA). The cDNA synthesis was performed using RevertAid

First Strand cDNA Synthesis kit (Thermo Fisher Scientific). The

PowerUp SYBR Green Master Mix (Applied Biosystems) was used

for qRT-PCR on an FTC-3000p Real-Time PCR System (Funglyn

Biotech, China). The relative gene expression was determined using the

2-DDCT method with actin as the reference gene. The primer sequences

are for BCAT1: forward, 5′-GTGGAGTGGTCCTCAGAGTTT-3′ and
reverse, 5′-AGCCAGGGTGCAATGACAG-3; for TLR8: forward, 5′-
ATGTTCCTTCAGTCGTCAATGC-3′ and reverse, 5′-TTGCT
GCACTCTGCAATAACT-3; for IL4I1: forward, 5′-TGATGTC
CGAGGATGGCTTCT-3′ and reverse, 5′-TGTACTGGAGTCT
GTCGCTGA-3; for CASP5: forward, 5′-TCACCTGCCTGCA
AGGAATG-3′ and reverse, 5′-TCTTTTCGTCAACCACAGTGTAG-
3; for FCRL5: forward, 5′-ATGTTCCTTCAGTCGTCAATGC-3′ and
reverse, 5′-CCTCAAGGATATTGTCTGGGGTT-3; for CCR8:

forward, 5′-CTGTCTGACCTGCTTTTTGTCT-3′ and reverse, 5′-
CCACTTTGCACATTACAGTCCC-3; for PDCD1: forward, 5′-
CCAGGATGGTTCTTAGACTCCC-3 ′ and reverse , 5 ′-
TTTAGCACGAAGCTCTCCGAT-3; for IFI30: forward, 5′-
CCCCTCTGCAAGCGTTAGAC-3′ and reverse, 5′-CCCGCAGGTA
TAGATTGCCT-3; for MMP12: forward, 5′-GATCCAAAGGCCGTA
ATGTTCC-3′ and reverse, 5′-TGAATGCCACGTATGTCATCAG-3;
for Actin: forward, 5′-TCCCTGGAGAAGAGCTACGA-3′ and reverse,
5′-TACAGGTCTTTGCGGATGTC-3; The cells without Elesclomol

treatment is selected as control.
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2.15 Statistical analysis

The above statistics and analysis were performed using R (v

4.1.3) software. Figures were stitched together by Adobe Illustrator

software. Comparative analysis of differences in box plots was

performed using Wilcoxon rank sum test. Spielman’s coefficient

was used for correlation analysis. The chi-square test (Fisher exact

test if necessary) was used for comparison of clinical characteristics

between the two groups. Multifactorial logistic regression analysis

was used to assess the clinical characteristics affecting clustering.

Kaplan Meier method was used to plot survival curves. Cox analysis

was used to assess the characteristics associated with survival. All

hypothesis tests were two-sided, and p-values for multiple tests were

corrected by the FDR method, and corrected P-values <0.05 were

considered significant.
3 Results

3.1 Differential cuproptosis-associated
gene expression in hepatocellular
carcinoma drives distinct prognoses
among subtypes, linked to the
immune microenvironment

To investigate the relationship between cuproptosis and

hepatocellular carcinoma (HCC), we analyzed the differential

profile of 10 cuproptosis-related genes (9) in tumor versus

normal tissues. Our findings revealed that these cuproptosis-

related genes were expressed at higher levels in tumor tissues

compared to normal tissues (Figure 1A). Subsequently, we

categorized liver cancer patients into two groups based on the

median expression of these genes, separating them into high and

low expression groups. By analyzing the prognostic differences

between these groups, we observed that patients with low

expression of DLAT and CDKN2A had significantly better

prognosis compared to those with high expression (Figure 1B).

These results indicated a close relationship between hepatocellular

carcinoma and the expression levels of cuproptosis-related genes.

To further explore the connection between cuproptosis-related

genes and the tumor immune microenvironment, we employed the

ESTIMATE algorithm. The analysis demonstrated significant positive

correlations of PDHB and LIAS with tumor purity, accompanied by

negative correlations with immune score and interstitial score

(Figure 1C). Additionally, we employed the EPIC method to assess

immune cell infiltration associated with cuproptosis. The results

indicated positive correlations between cuproptosis-related genes and

various non-immune cells, particularly fibroblasts (Supplementary

Figure S1A) and CD4+ T cells. Among macrophages, only FDX1

displayed a positive correlation (Figure 1D, Supplementary Figure

S1B), while the remaining nine cuproptosis-related genes exhibited

significant negative correlations. As an example, we can consider the

gene GLS (Figure 1D, Supplementary Figure S1C). Moreover, we

performed an analysis of the anti-cancer immune status and tumor-

infiltrating immune cells, investigating the seven-step cancer-immunity
Frontiers in Immunology 05
cycle using the TIP method specifically for cuproptosis-related genes.

We observed that the majority of genes were expressed in the initial step

of the cancer-immunity cycle, which involves the release of antigens

from cancer cells. Specifically, LIPT1 and LIAS displayed negative

correlations with the recruitment of various immune cells (Figure 1E),

whereas GLS was involved in multiple steps of the cycle. These findings

indicate a strong association between the regulation of cuproptosis and

the tumor immune microenvironment in hepatocellular carcinoma.

Subsequently, we conducted an analysis of cuproptosis subtypes in

hepatocellular carcinoma based on the expression of cuproptosis-related

genes, which exhibited significant correlations with each other

(Supplementary Figure S1D). Employing consensus clustering, we

grouped the hepatocellular carcinoma patients based on the expression

patterns of cuproptosis-related genes. With a chosen consistency matrix

k value of 2 (Figure 1F), the patients were divided into two distinct

groups, indicating different cuproptosis-related gene expression profiles.

Notably, patients in group B demonstrated a longer overall survival

compared to those in group A (P=0.00053, Figure 1G). Specifically, genes

DLAT, GLS, and CDKN2A were significantly overexpressed in group A,

while genes PDHA1, FDX1, MTF1, LIAS, and LIPT1 were significantly

overexpressed in group B (Figure 1H). Furthermore, we identified a

significant correlation between the cuproptosis subtypes and the immune

subtypes (26) (P=9.12e-07). However, the correlation with the TCGA

classification (P=0.1071) was not statistically significant (Figure 1H,

Supplementary Table 1), suggesting that the immune response subtype

was more prevalent among patients in group B.

We conducted further analysis to examine the variations in the

immune microenvironment between the two subtypes. The findings

revealed higher levels of proliferation, wound healing, macrophage

regulation, and lymphocyte infiltration in group A. Particularly,

there was a notable elevation in the transforming growth factor-b
response in group A, indicating a strong immunosuppressive effect

(Supplementary Figure S1E). Additionally, group A exhibited

higher levels of macrophage regulation, primarily observed in M0

macrophages. On the other hand, the functions of group B were

more related to communication with non-immune cells and cell

maintenance (Supplementary Figures S1F, S2E, S3).

These results indicate that the upregulation of cuproptosis

genes, such as DLAT, GLS, and CDKN2A, exerted a suppressive

effect on the tumor immune microenvironment. Consequently,

patients in group A had relatively poorer prognoses, while those

in group B demonstrated comparatively better outcomes.
3.2 Cuproptosis isoforms have different
biological pathway activities

To investigate the variations in biological pathways among the

different subtypes, differential expression analysis was initially

conducted. At a threshold of ploidy change greater than 2, and after

correcting for p-values less than 0.05, a total of 381 genes were up-

regulated, while 857 genes were down-regulated in group B compared to

group A (Figure 2A, Supplementary Table 2). GSEA analysis revealed

that PPAR signaling pathway, citrate cycle (TCA cycle), cytokine-

cytokine receptor interaction, JAK-STAT, and cell cycle were
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associated with regulation in the subtypes. Specifically, genes involved in

the PPAR signaling pathway and citrate cycle (TCA cycle) were

predominantly up-regulated, whereas genes in other pathways were

mainly down-regulated (Figure 2B). Gene function enrichment analysis

showed that the upregulated genes were primarily enriched in the

metabolism of metal ions and fatty acids (Figure 2C). On the other

hand, the downregulated genes were mainly associated with pathways

determining cell fate (Figure 2D). Furthermore, a hallmark differential

analysis confirmed that subtype A exhibited stronger activity in Wnt,

TGF_b, Notch, and other signaling pathways. Conversely, subtype B
Frontiers in Immunology 06
demonstrated increased levels of metabolic responses, specifically

involving KRAS and fatty acids (Figure 2E).
3.3 Identification of key modules
associated with immunity

To examine the correlation among differentially expressed genes,

we utilized the Weighted Gene Co-expression Network Analysis

(WGCNA) on TCGA-LIHC dataset, employing a soft threshold
B

C D E

F

G

H

A

FIGURE 1

Relationship between cuproptosis-related genes and tumor microenvironment (TME) in hepatocellular carcinoma and cuproptosis typing. (A) Expression of
cuproptosis-related genes between the tumor group and the normal group in hepatocellular carcinoma. (B) Survival analysis based on high and low
expression of DLAT (left) and CDKN2A (right) in hepatocellular carcinoma. (C) Relationship between cuproptosis-associated genes and immune scores based
on ESTIMATE method. (D) Relationship between cuproptosis-associated genes, immune score, and immune cell infiltration rate based on EPIC method. (E)
Relationship between cuproptosis-associated genes and immune cycle activity based on the TIP method. (F) Consensus clustering based on cuproptosis-
associated gene expression. (G) Comparison of overall survival rates between the two cuproptosis subtypes. (H) Heatmap displaying gene expression
patterns in samples from the two subtypes, with top annotations indicating patient stage, TCGA subtype, and immune subtype.
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(b=4) to construct co-expression modules (Figure 3A). The dynamic

tree-cut method identified a total of 14 modules (Figure 3B,

Supplementary Table 3), and these modules were depicted to reduce

dimensionality (Figure 3C). By analyzing module properties through a

heatmap, Module 10 was selected as the key module based on

immunoscore, immune-cell proportion, and CD8+ T-cell infiltration

(Figure 3D). In Module 10, a total of 31 key genes were identified by

integrating module membership and gene significance (Figure 3E,

Supplementary Table 3). This selection proved beneficial for a more in-

depth exploration of the relationship between cuproptosis and the

tumor immune microenvironment.
3.4 Different mutation profiles of
cuproptosis isoforms reveal
different immunogenicity

We first showed the mutation profiles of the two subtypes, where the

most severely mutated genes included TP53, TTN and MUC16
Frontiers in Immunology 07
(Figure 4A, Supplementary Figure S4). Then, we compared the

differences in mutation frequencies between the two subtype samples.

The results showed thatmost of themutation frequencies in groupAwere

significantly higher than those in group B, such as TP53, ADAM18,

CABIN1 and RB1, while only the mutation frequency of CTNNB1 gene

was significantly higher in group B than in groupA (Figure 4B). The large

number of mutations in oncogenes may be closely related to cuproptosis

and one of the reasons for the poor prognosis of patients in group A.We

then compared the immunogenicity differences between the two subtypes,

and we found that subtype A samples had higher number of segments,

homologous recombination defects and TCR abundance, indicating that

subtype A patients are more suitable for immunotherapy (Figure 4C).
3.5 The cuproptosis score as a prognostic
predictor in HCC patients

Subsequently, a scoring model was developed to assist in predicting

the prognosis of hepatocellular carcinoma patients based on the
B

C D

E

A

FIGURE 2

Pathways associated with cuproptosis subtypes. (A) Volcano plot displaying the differential expression of genes between the two subtypes. (B) GSEA
analysis illustrating the enrichment of differentially expressed genes. (C) Functional enrichment analysis of up-regulated genes. (D) Functional
enrichment analysis within different genomic regions of down-regulated genes. (E) Comparison of hallmark activity among different isoforms.
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identified key genes associated with cuproptosis and immune response.

The liver cancer samples were randomly divided into training and

validation sets. Using the LASSO Cox model, we determined a risk

scoring system comprising nine genes (BCAT1, TLR8, IL4I1, CASP5,

FCRL5, CCR8, PDCD1, IFI30,MMP12) by constraining the training set

(Figures 5A, B) with the coefficients presented in Figure 5B.

Furthermore, considering the close relationship between

tumorigenesis and methylation (27), we validated the methylation

patterns in the UALCAN database (Supplementary Figure S5). We

then evaluated the prognostic impact of the risk score in the training set

by classifying patients into two groups based on the median risk score.

The results demonstrated that patients with lower risk scores generally
Frontiers in Immunology 08
exhibited better survival outcomes compared to those with higher risk

scores (P=0.00038, log-rank test; Figures 5C, D). Moreover, the risk

score displayed excellent predictive accuracy at different follow-up times,

as indicated by ROC analysis (Figure 5E).

To verify that the risk scores retained similar prognostic value across

different populations, we applied them to the validation set. Notably, the

distribution of risk scores and survival status varied in the validation set

(Figure 5F). A significant difference in survival time was observed

between the high-risk and low-risk groups (P=0.0078, log-rank test;

Figure 5G). The risk score also exhibited outstanding predictive

accuracy when assessed in an independently validated

cohort (Figure 5H).
B
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D

E

A

FIGURE 3

WGCNA analysis of differentially expressed genes. (A) Parameter selection for WGCNA analysis. (B) Gene modules obtained from WGCNA. (C)
Validation of differentially expressed genes through downscaled analysis, with dot colors representing the modules. (D) Association of modules with
the immune microenvironment. (E) Identification of key genes within the modules.
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In comparison with the normal group, the genes expression of BCAT1,

IL4I1, CASP5, CCR8, PDCD1, IFI30, and MMP12 were significantly

increased in liver cancer patients in the UCSC Xena database

(Figure 6A). We confirmed the nine cuproptosis-related genes using RT-

qPCR in order to verify our results. The HepG2 and SMMC7721 cells were

seeded treated using Elesclomol 200 nM for 24 h (Figures 6B, C). In

comparison with the control group, the expression of BCAT1, TLR8, IL4I1,

CASP5, FCRL5, CCR8, PDCD1, IFI30, and MMP12 were significantly

down-regulated in Elesclomol treatment group (Figures 6B, C).

We downloaded the standardized expression data and clinical

information of pancancer from the UCSC Xena database, extracted

the information of liver Cancer patients, divided them into Normal

and cancer according to the characteristics of ID, and analyzed the

differential expression of target genes. According to the median

expression of a gene, the patients were divided into high expression

group and low expression group, and the survival analysis of the

gene in the tumor was performed. According to the median

expression of a gene, the patients were divided into high

expression group and low expression group, and the survival

analysis of the gene in the tumor was performed. The survival

analysis curves of these nine genes are shown in Figure 6D.
3.6 Nomogram development for predicting
clinical benefit in hepatocellular
carcinoma patients

A prognostic nomogram was developed using a multifactorial

Cox regression model (Figure 7A). This model integrated the risk
Frontiers in Immunology 09
score along with two independent predictors, namely age and

grading, to better predict the prognosis of patients with

hepatocellular carcinoma. The performance of the nomogram was

evaluated in both the training set and the independent validation

set, demonstrating its effectiveness in predicting patient survival

(Figures 7B, C). To assess the clinical benefit of the nomogram

model, decision curve analysis was conducted on both the training

and independent validation sets. The analysis, using 4-year survival

as the endpoint, compared the net clinical benefit of the nomogram

with several competing intervention strategies, such as intervention

for all, intervention for none, and intervention based on different

clinical indicators (Figures 7D, E). The decision curve analysis

revealed that the nomogram provided greater net clinical benefit

compared to the other strategies, indicating its potential as a

valuable tool for clinical decision-making.
3.7 The involvement of cuproptosis in the
invasion of T_memory and
macrophage_FCN1+ immune cells in
primary hepatocellular carcinoma

To explore the impact of cuproptosis on the microenvironment, we

analyzed the GSE149614 scRNA-seq dataset for primary hepatocellular

carcinoma. Figure 8A shows the patient origin of each sample, which was

further classified into 23 cell types (Figure 8B, Supplementary Table 5).

We show the markers of clusters (Figure 8C, Supplementary Figure S6)

and the distribution and proportion of immune and non-immune cells

in them (Supplementary Figures S7A, B).We examined the expression of
B

C

A

FIGURE 4

Genomic differences between the two cuproptosis subtypes. (A) Mutation profile of liver cancer samples. (B) Differences in mutation frequencies
between the two subtype samples. (C) Differences in immunogenicity between the two subtype samples.
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cuproptosis-related genes within each cell cluster and found that these

genes were predominantly expressed at higher levels in non-immune

cells (Supplementary Figure S7C). To assess the variability in gene

expression, we used the singscore method and observed distinct

expression patterns among samples and clusters (Figure 8D,

Supplementary Table 6). Consequently, we divided the samples into
Frontiers in Immunology 10
two groups based on high and low expression of cuproptosis-related

genes, equally distributed (Supplementary Figure S7D). The expression

and distribution of cuproptosis-related genes were then analyzed across

different cell subpopulations (Figure 8E). Furthermore, we compared the

proportions of immune cells in the high and low cuproptosis-related

gene expression groups. Notably, T_memory and Macrophage_FCN1+
B
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FIGURE 5

Risk score model based on key genes. (A) Parameter screening using Cox-Lasso regression. (B) Gene coefficients within the risk scores. (C) Relationship
between the risk score and patient survival status in the training group. (D) Difference in survival time between the high-risk score and the low-risk score
groups in the training group. (E) AUC values of risk scores predicting survival in the training group. (F) Relationship between the risk score and patient survival
status in the validation group. (G) Difference in survival time between high and low risk score groups in the validation group. (H) AUC values of the risk scores
predicting survival in the validation group.
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were significantly lower in the high-expression group compared to the

low-expression group (Figure 8F, Supplementary Table 7). Previous

studies have highlighted the role of FCN+ macrophages in recognizing

and eliminating tumor cells by detecting abnormal glycosylation patterns

on their surface (28, 29). Additionally, the infiltration of T memory cells

within tumors allows for quicker and stronger immune responses (30).

Thesefindings suggest that a low-score cuproptosis environment can activate

the immune system, promote inflammation, and facilitate the recruitment of

immune cells, thereby enhancing the ability to attack tumor cells.
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3.8 The cell-cell communication among
T_memory cells exhibit significant variation
based on the expression levels of
cuproptosis-related genes

Based on the expression levels of cuproptosis-related genes, we

categorized the T_memory and Macrophage_FCN1+ cells into high

and low expression groups (Figures 9A, B). Our investigation focused

on understanding the differences in cell-cell communication and
B C

D

A

FIGURE 6

Key genes for validating risk scoring models. (A) The genes expression of BCAT1, IL4I1, CASP5, CCR8, PDCD1, IFI30, and MMP12 were significantly
increased in liver cancer patients in the UCSC Xena database. (B, C) RT-qPCR indicated that expression of BCAT1, TLR8, IL4I1, CASP5, FCRL5, CCR8,
PDCD1, IFI30, and MMP12 were significantly down-regulated after Elesclomol treated with HepG2 and SMMC7721 cells for 24h. Data are presented
as mean ± SD, n=3. *P< 0.05, **P< 0.01, ***P< 0.001. (D) The survival analysis curves of these nine genes.
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signaling between these groups, with a goal of identifying the key

factors contributing to phenotypic variation. Notably, we found no

significant differences in the number of interactions and interaction

weights/strength between Macrophage_FCN1+ cells, regardless of

whether they acted as signal senders or receivers (Supplementary

Figures S8A–D). Similar results were observed when T_memory cells

were the signal receivers (Supplementary Figures S8E, F). However, we

observed distinct patterns when T_memory cells were the signal

senders. Specifically, T_memory_low cells emitted a higher number

of signals compared to T_memory_high cells. Additionally, in terms of

signal intensity, T_memory_low cells generally exhibited stronger
Frontiers in Immunology 12
signaling towards non-immune cells, while T_memory_high cells

displayed stronger signaling towards immune cells (Figures 9C, D).

In our further analysis, we investigated the signaling pathways involved

in T_memory_high and T_memory_low cells. Notably, T_memory_high

cells displayed stronger MIF signals towards almost all other cells, while

T_memory_low cells predominantly sent SPP1 signals (Figure 9E,

Supplementary Figure S9A). Furthermore, we identified receptor-ligand

pairs that played a pivotal role in these signaling pathways. T_memory_low

cells communicated SPP1/CD44 signals to all other immune cells,

indicating a high degree of immune infiltration. Additionally, non-

immune cells, such as SPP1-(ITGAV+ITGB5), received SPP1 signals.
B C

D E

A

FIGURE 7

Risk score nomogram. (A) Nomogram based on the risk score, age and stage. (B) Calibration curves of the column line plot in the training set. (C) Decision
curve analysis of the nomogram in the training set. (D) Calibration curves for the calibration curves in the validation set. (E) Decision curve analysis of the
nomogram in the validation set.
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The IFNG pathway exhibited significant variation, primarily observed in

macrophages and a subset of hepatocytes, with the main receptor-ligand

pair being INFG-(IFNGR1+IFNGR2). Macrophages also released CCL

signals. On the other hand, the MIF signaling pathway was predominantly

enriched in T_memory_high cells and relied onMIF-(CD74+CXCR4) and

MIF-(CD74+CD44) interactions. This signaling cascadewas responsible for

communication with T cells, B cells, and macrophages (Figure 9F,

Supplementary Figure S9B).
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3.9 Knockdown of DLAT and CDKN2A
shows tumor−suppressive effects

We knocked down DLAT and CDKN2A expression by using

siRNAs in HepG2 and SMMC7721 cells, which was verified by

western blot (Figures 10A, B). CCK-8 and colony formation assays

were used to evaluate the proliferation of HepG2 and SMMC7721

cells. We found that DLAT and CDKN2A knockdown significantly
B
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FIGURE 8

Single-cell overview of primary liver cancer with cuproptosis scores. (A) UMAP containing ten different samples. (B) UMAP of 23 cell clusters.
(C) Bubble diagrams of each Cluster’s markers. (D) Cuproptosis scores based on the singscore method. (E) UMAP of cuproptosis high
expression group and cuproptosis low expression group in all cells. (F) The proportion of each cluster in cuproptosis high expression group
and cuproptosis low expression group.
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inhibited cell proliferation (Figures 10C, D). Cells of different

treatment groups were inoculated into 6-wellplates. The plates

were seeded with 2000 cells (HepG2) or 2500 cells (SMMC7721).

The cells were fixed after 14 days of culture, stained with crystal

violet and then counted. The results showed that the colony

formation rate was significantly lower in the DLAT and

CDKN2A knockdown group than in the control groups

(Figures 10E, F). Our studies indicated that inhibition of DLAT

and CDKN2A expression significantly reduced the proliferation of

liver cancer cells. The effect of knocked down DLAT and CDKN2A

on the in vitro tumor cell migration and invasion was investigated

using the Transwell migration and Matrigel invasion assay,

respectively. Under light microscope, the crystal violet-stained

HepG2 and SMMC7721 cells demonstrated reduced motility after

knocked down DLAT and CDKN2A (Figures 10G–J).
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4 Discussion

The role of cuproptosis, a newly discovered regulated cell death

mechanism, in cancer is not yet fully understood (31). In this study,

we conducted a systematic analysis to explore the relationship

between cuproptosis and the immune microenvironment in

hepatocellular carcinoma, and we identified three key findings: (1)

We developed a cuproptosis-related prognostic model, which was

validated as a reliable tool for predicting clinical patient outcomes.

(2) Using the WGCNA algorithm, we identified key immune-

related gene modules among differentially expressed genes with

distinct cuproptosis patterns. This analysis allowed us to establish a

risk scoring system consisting of 9 genes. (3) At the single-cell level,

we identified cell populations associated with cuproptosis. We

divided the samples into high and low cuproptosis groups based
B
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FIGURE 9

Cell-cell communication in groups with different cuproptosis-related gene expression levels. (A) UMAP of cell types added to the cuproptosis
group. (B) Cuproptosis groups of T_memory and Macrophage_FCN1+. (C) T_memory_high and T_memory_low are presented as a cell-cell
communication network of the signaling sender with all other cells, with a circle diagram showing the numbers of interactions between any two
cell groups. (D) T_memory_high and T_memory_low are presented as a cell-cell communication network of the signaling sender with all other
cells, with a circle diagram showing the interaction weights/strength between any two cell groups. (E) Chord diagram showing the difference
between the signals sent by T_memory_high and T_memory_low. (F) Bubble diagram showing ligand-receptor mediated cellular interactions
when cells act as signal transmitters.
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on their respective scores and compared the differences in cell-to-

cell communication.

In hepatocellular carcinoma, we observed two distinct patterns

of cuproptosis regulation. One subtype exhibited high expression of

three cuproptosis negatively regulated genes (DLAT, GLS, and

CDKN2A), which was associated with a lower survival rate. This
Frontiers in Immunology 15
subtype showed increased activation of the Wnt signaling pathway,

and recent studies have highlighted the link between cuproptosis

and Wnt signaling pathway (32). Furthermore, the TGF-b pathway

was found to be highly active in this subtype. TGF-b acts as an

immunosuppressive cytokine and exerts a broad suppressive effect

on the immune response through various mechanisms (33). In
B
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FIGURE 10

The effect of knockdown of DLAT and CDKN2A on cell proliferation, migration and invasion. (A) Western blot indicated that DLAT protein expression
levels were decreased after knockdown of DLAT in HepG2 and SMMC7721 cells (above). Bands were quantified with Image J software and evident
from the quantification of Histogram. b-actin was used as a loading control. Data are presented as mean ± SD, n=3. ***P< 0.001 (down). (B) Western
blot indicated that CDKN2A protein expression levels were decreased after knockdown of CDKN2A in HepG2 and SMMC7721 cells. (above). Bands
were quantified with Image J software and evident from the quantification of Histogram. b-actin was used as a loading control. Data are presented
as mean ± SD, n=3. ***P< 0.001 (down). (C, D) CCK-8 assay showed that cells proliferation was inhibited. Colony formation assays, with
representative images (E) and bar graphs (F) from three independent experiments, demonstrated that cells proliferation was inhibited in cells with
DLAT and CDKN2A knockdown. Data expressed as mean ± SD. ***P< 0.001. (G-J) Comparison of the migration and invasion of HepG2 and
SMMC7721 cells using transwell compartments. Representative images (G, I) and statistics (H, J) of migration and invasion assay were shown.
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early-stage tumors, the TGF-b pathway induces apoptosis and

inhibits tumor cell proliferation (34). Previous research has also

indicated a correlation between DLAT and programmed death

ligand 1 (PD-L1) (35). Differences in GLS expression may

influence cancer outcomes in humans (36). CDKN2A, known as

multiple tumor suppressor 1 (MTS1), is a biomarker for

immunoinfiltration in multiple cancers (37). Our study sheds

light on the relationship between cuproptosis and the immune

microenvironment in hepatocellular carcinoma, providing valuable

insights into potential prognostic markers and cellular pathways

involved in this context.

The other subtype, characterized by high expression of FDX1,

MTF1, LIAS, and LIPT1, exhibits elevated levels of cuprotosis

positive regulatory genes and a better prognosis. One of these

genes, FDX1, plays a crucial role in regulating Cu carrier-induced

cell death by converting Cu2+ into a more toxic form within cells

(9). MTF1, known as metal regulatory transcription factor 1,

regulates the expression of metallothioneins (MTs) and is closely

associated with the excretion of Cu and other metals (38). Recent

studies propose that the FDX1-LIAS axis, which consists of

Ferredoxin 1 and Lipoic Acid Synthetase, serves as a key signaling

pathway in cuprotosis. This pathway plays a significant role in

regulating cellular oxidative stress and directly influences cell

survival by inducing or promoting oxidative stress (39).

Furthermore, the knockdown of the LIPT1 gene has been shown

to inhibit the proliferation and invasion of hepatocellular carcinoma

cells. This finding suggests that LIPT1 may promote the

proliferation, invasion, and migration of hepatocellular carcinoma

cells (LIHC) (40). Additionally, this isoform demonstrates active

KRAS signaling and plays a role in fatty acid and bile acid

metabolism. This indicates that this particular isoform possesses

enhanced hepatocellular functions and exhibits stronger responses

in terms of oxidative stress and metabolism. In summary, the

subtype characterized by high expression of FDX1, MTF1, LIAS,

and LIPT1 represents a distinct group in relation to cuprotosis

regulation. Understanding the functions and pathways associated

with this subtype provides valuable insights into the molecular

mechanisms underlying hepatocellular carcinoma and its response

to oxidative stress and metabolic alterations.

Using the WGCNA algorithm, we discovered multiple modules

comprised of differentially expressed genes exhibiting diverse

protrusion patterns. Among these modules, we focused on those

highly relevant to immunity. Notably, the key gene PDCD1 serves

as an immune checkpoint (41). Additionally, we identified CSF3R

and FCGR1A as myeloid markers (42, 43), IL21R and IL4I1 as

cytokines and chemokines acting as immune modulators (44,

45).These findings suggest that the regulation of cuproptosis can

reshape the tumor microenvironment (TME) and consequently

impact the efficacy of immunotherapy. Furthermore, we developed

a scoring model comprising nine key genes (BCAT1, TLR8, IL4I1,

CASP5, FCRL5, CCR8, PDCD1, IFI30, MMP12) associated with

cuproptosis and TME. The validation set confirmed the model’s

favorable prognostic effect. RT-qPCR was conducted to validate our

findings, which were consistent with results obtained from

bioinformatics tools, thereby reaffirming the significant role of

cuproptosis-related biomarkers in HCC. BCAT1 is closely
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associated with autophagy in cancer cells (46). The TLR8-MyD88

signaling pathway regulates antigen specificity and the inhibitory

function of CD4 Treg cells (47). CASP5 is intricately involved in

copper metabolism, apoptosis, and autophagy (48). FCRL5 belongs

to the Ig superfamily of molecules known as Fc receptor-like

(FCRL), exhibiting tyrosine-based immunomodulatory potential

while being closely linked to B cell signaling (49). IFI30 has been

reported to be significantly and positively associated with immune

checkpoints that impede effective anti-tumor immune responses

(50). MMP12 is highly correlated with a poor prognosis in

hepatocellular carcinoma (51).

scRNA-seq has emerged as an invaluable tool for classifying cell

types based on transcriptional profiles in various cancer types. In this

study, we obtained single-cell data for primary liver cancer from the

GEO database and performed specific marker identification to assign

these cells into 23 distinct cell types. Notably, we observed similar

expression patterns of cuproptosis-associated genes across these cell

types. To quantitatively assess the expression of cuproptosis, we

applied singscore, resulting in the division of all samples into high

and low expression groups (1:1) based on their cuproptosis scores.

This categorization allowed us to make comparisons between different

cell types. We observed a significant difference between T_memory

cells and Macrophage_FCN1+ cells, indicating the involvement of

cuproptosis in reshaping the tumor immune microenvironment in

hepatocellular carcinoma. Specifically, we noticed variations in the

infiltration of memory T cells and TAM (tumor-associated

macrophages). Interestingly, cells with low cuproptosis scores,

including T_memory cells and Macrophage_FCN1+ cells, were

found to generate an activated immune microenvironment,

effectively exerting anti-tumor functions. Consequently, patients

with hepatocellular carcinoma exhibiting this immune

microenvironment experienced a more favorable prognosis.

Moreover, these findings have implications for the response of

hepatocellular carcinoma patients to immunotherapy, highlighting

the potential for cuproptosis regulat ion to influence

treatment outcomes.

Finally, we examined the differences in cell-cell communication

between memory T cells and TAM cells in relation to cuproptosis.

Notably, we observed distinct signaling patterns in the cuproptosis-

related cell communication of T memory cells, which may be closely

associated with tumor development. Further analysis revealed that

T_memory_high cells predominantly exhibited stronger MIF

signals, while T_memory_low cells displayed higher levels of

SPP1 signals. In terms of specific ligand-receptor interactions, we

found that SPP1/CD44 mediated the interactions of T_memory

cells with other immune cells, whereas other ligands of SPP1 were

involved in interactions with non-immune cells. SPP1/CD44 is

commonly known to facilitate the interaction between cancer cells

and TAM, thereby promoting cancer progression (52). Our findings

indicate diverse immune cell interactions that may impact

T_memory infiltration and immunotherapy. Furthermore, we

observed higher levels of CCL3/CCR1 (53) and IFNG-(IFNGR1

+IFNGR2) (54) in T_memory_low cells, which are associated with a

favorable tumor prognosis. In contrast, another subset of

T_memory cells representing samples with a high incidence of

cuproptosis exhibited a strong MIF signaling interaction with
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immune cells. Notably, MIF-(CD74+CXCR4) (55) played a

prominent role in this interaction, promoting tumorigenesis

through multiple mechanisms.

To further verify the role of DLAT and CDKN2A in HCC, we

performed in vitro experiments, including CCK-8, cell colony

formation, migration, and invasion assays. The results of in vitro

experiments showed that when DLAT or CDKN2A was knocked

down, the proliferation, migration, and invasion of HCC cells were

significantly decreased. However, the study still has some

limitations. Most of our results are limited to data mining

analysis results, and we need more in vitro and in vivo

experiments to investigate the exact mechanism of DLAT or

CDKN2A in LIHC.

While our study provided crucial insights into the association

between cuproptosis and the tumor microenvironment (TME)

through the analysis of a large number of tumor samples, the

experimental validation and large-scale clinical trials are necessary

to confirm these findings. This stands as a notable limitation of our

study, but it also highlights the need for future research in this area.

In conclusion, our study sheds light on the close relationship

between cuproptosis and TME, and the integration of cuproptosis

patterns holds promise for optimizing immunotherapy strategies

for patients diagnosed with hepatocellular carcinoma.
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