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Abstract: The design of an aircraft’s internal structure, and therefore the appropriate choice of
material type, is a direct function of the performed tasks and the magnitude and type of the acting
loads. The design of a durable aircraft structure with appropriate stiffness and lightness requires
knowledge of the loads that will be applied to the structure. Therefore, this paper presents the results
of an aerodynamic experimental test and numerical analysis of a newly designed jet-propelled aerial
target. The experimental tests were carried out in a low-speed wind tunnel for a wide range of angles
of attack and sideslips. Moreover, they were performed for various configurations of the airplane
model. In addition, the results of the experimental test were supplemented with the results of the
numerical analysis performed using computational fluid dynamics methods. During numerical
analysis, specialized software based on solving partial differential equations using the Finite Volumes
Method was used. This article presents the methodology of the conducted research. The results of
the aerodynamic analysis are presented in the form of diagrams showing the aerodynamic force
and moment components as a function of the angle of attack and sideslip. In addition, qualitative
results of the flow around the plane have been presented. The results obtained prove that the adopted
methods are sufficient to solve these types of problem. The aerial system was positively verified
during the qualification tests of the system at the Polish Air Force training range and finally received
the type certificate.

Keywords: aerospace engineering; composite materials; aerial target design; aerodynamics; computational
fluid dynamics CFD; wind tunnel tests

1. Introduction

In 1951, the Rayan Aeronautical Company designed the Firebee, the first turbojet
powered air target [1], which is used successfully to this day, and soon other designs of
this type appeared on the market [2–6]. Today, the American company Kratos is a leading
provider of state-of-the-art, high-performance aerial target drones [4,5] the BQM 177 series.
Reusable, turbojet-powered, target drones are primarily used for testing surface-to-air
missile systems or practice engagements for fighters and air-to-air missiles.

In 2013, the Polish Ministry of Defence commissioned the development of a similar
system in the country. The consortium, consisting of the Air Force Institute of Technology,
the MSP Szender Company, the Warsaw University of Technology, and the Military Uni-
versity of Technology, was selected to implement the project under the name “ZOCP-JET2
Programmable Air Target”. The prototype set of five UAVs was deployed to the Polish
Armed Forces in 2021 for further evaluation.

The Military University of Technology (MUT), as a member of the consortium, was
responsible for determining the aerodynamic properties and characteristics of the aircraft
(JET2), so that its performance met the requirements imposed by the MoD, i.e., a maximum
speed of 150 m/s, a flight duration of 60 min, and an operational altitude of 5000 m.
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The purpose of this article is to present the process of obtaining data on the aero-
dynamic characteristics of the designed aerial target, using experimental and numerical
methods. This type of research and its results are necessary to assess the correctness of
the implemented design of the flying object. The aerodynamic characteristics presented
in this article, or, more precisely, the values of the coefficients of forces and moments, are
necessary to assess the stability, controllability, and maneuverability of the flying object as
well as to carry out further work on the structure. They allow for the estimation of the loads
that the composite structure of the aerial target must carry. Many publications contain the
results of experimental tests of the model in wind tunnels [7–9] and their comparison with
numerical results. It concerns the study of the entire set [10] and the impact of its individual
elements [11,12]. The aim of our research, apart from the need to obtain aerodynamic
characteristics in a large range of attack and sideslip angles, with elevator deflections, was
also to obtain data for validation of the numerical model, similarly to [13,14].

These are both static and functional tests [15]. Nowadays, models for tests in wind
tunnels are made with 3D printing technology [16,17].

This paper is organized as follows: the research methods are described in Section 2,
where the mathematical model, which is the basis for the parametric programming, is
defined, and, in the second part of this section, the CFD and panel method settings are
given; the obtained results are shown in Section 3 and concluded in Section 4.

2. Materials and Methods
2.1. Wind Tunnel Tests

The carbon fiber composite airframe of the aerial target was manufactured by the MSP
InnTech Ltd. (Warsaw, Poland) [18,19] while the 1:4 scale aircraft model for wind tunnel
testing was designed and “printed” using FDM (Fused Deposition Modelling) technology
at the MUT. Experimental tests were carried out in a low-speed wind tunnel with a test
space diameter of D = 1.1 m. The silhouette of the model under test, suspended on an
annular aerodynamic balance for testing in symmetric and asymmetric flow, is shown in
Figure 1, while Figure 2 shows a schematic of the measurement system in the wind tunnel.
The methodology and calculation program for aerodynamic characteristics were developed
based on the literature [20–28].
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Figure 1. The MUT wind tunnel with the scale model of the jet aerial target. Figure 1. The MUT wind tunnel with the scale model of the jet aerial target.

Aerodynamic tests of the aerial target model were carried out in symmetric and
asymmetric flow. These tests were carried out at a velocity pressure of q = 500 [Pa]
(V = 30 m/s with Reynolds number Re = 207,000 in angles of attack α = ±30◦ and sideslip
angles β = ±30◦ with an increment of 2◦). The aerodynamic coefficients in symmetric flow
were referred to as the model wing area of Smod = 0.084375 m2 and mean aerodynamic
chord of bA = 0.11475 m, and, for asymmetric flow, was referred to as the surface area of
the model’s wing Smod = 0.084375 m2 and its wingspan Lmod = 0.7125 m. For the model
of the aircraft in a “clean” configuration (dH = 0◦, da = 0◦, dV = 0◦, where dH is elevator
deflection, da is aileron deflection, and dV is rudder deflection) tests were performed for
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the position of the center of the mass of the aircraft 440 mm from the nose of the fuselage.
The investigated model was installed in the wind tunnel test chamber so that the axis of
the pitching moment of the tunnel balance passed through the point corresponding to the
center of mass of the aircraft and the longitudinal axis of the model coincided with the axis
of the aircraft weight drag.
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Figure 2. Schematic of the MUT wind tunnel measurement system (Fl—lift force, Fd—drag force, M—pitch
moment, V—velocity vector, A—A-lift force axis, B—B-drag force axis, C—C-pitch moment axis).

This location allowed us to determine the following:

- Drag force, i.e., the component of the resultant aerodynamic force in the direction of
the longitudinal axis of the tunnel (this required the installation of an aerodynamic
balance column enabling rotation about the A–A axis);

- Lift force, i.e., the component of the resultant aerodynamic force in the direction of the
horizontal axis, perpendicular to the longitudinal axis of the tunnel (supporting the
aerodynamic balance column allowing its rotation relative to the B–B axis);

- Pitching moment, i.e., the moment of force relative to the vertical axis of the tunnel
(with the installation of an aerodynamic balance column allowing rotation relative to
the C–C axis).

Aerodynamic tests of the aerial target in the wind tunnel were performed for the
model in a “clean” configuration and in elevator deflection in the range dH = −30◦ ÷ +30◦

with an increment of 5◦. The tests were carried out in the range of angles of attack α = ±30◦

with an increment of 2◦ and at a dynamic pressure of q = 500 Pa, corresponding to a relative
wind velocity of V ≈ 30 m/s and a Reynolds number Re ≈ 207,000. The strain gauges
of the measurement system gave results with an accuracy of ±0.01 N, while the pressure
transducer gave results with an accuracy of ±1 Pa. The forces acting on the object were
transferred through the string to the ring of the aerodynamic balance, which, rotating
around the A–A, B–B, or C–C axes, transferred the forces to the strain gauges.

2.2. Computational Fluid Dynamics Analysis

Dynamic development of microprocessor technology and methods of Computational
Fluid Dynamics has enabled the simulation of many phenomena occurring during the flow
of fluids around solid bodies. In the theory of fluid mechanics, movement of liquids and
gases is described by a system of differential equations [29,30]:

• The Navier Stokes equation (equation of momentum conservation) in the following form:
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result of flow through a dispersed phase;
=
τ—stress tensor.

=
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]
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where:

µ—kinematic viscosity;
I—unit matrix.

• Equation of flow continuity (mass conservation equation in relation to fluid treated as
a continuous medium) in the following form:

∂ρ

∂t
+∇·

(
ρ
→
v
)
= Sm (3)

where:

Sm—mass source (e.g., as a result of evaporation of the dispersed phase).

• Energy conservation equation in the following form:

∂
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where:

k—thermal conductivity;
E—total energy;(

τij
)

e f f —shear stress tensor.

(
τij
)

e f f = µe f f

(
∂uj

∂xi
+

∂ui
∂xj

)
− 2

3
µe f f

(
∂uk
∂xk

δij

)
(5)

Solving them in the general case is possible only by using numerical methods, e.g., finite
volume methods. The above equations are transformed into an integral form:

∂

∂t

y
QdV +

x
FdA = 0 (6)

in which Q is used to denote values that are subject to laws of conservation (of mass,
momentum, energy) inside a cell, F is a vector of quantities characterizing the stream
exchanged with the cell environment, V is the volume of a single control cell, and A is
its external surface. Equations written in this way are solved using the iterative method
(successive approximations). The size of cells in the domain reproducing the air area
around the studied geometry is selected so as to accurately reflect the unevenness of the
flow field. Unfortunately, this is a very demanding method when it comes to computing
resources, both in terms of used memory and computing performance. In the case of the
geometry of an entire aircraft, calculations are most often made on a computer consisting
of several to several dozen parallel working units (nodes), where each analyzes a separate
fragment of the computational mesh.

At the stage of the evaluation of the aerial target configuration, numerical analysis
was performed using Computational Fluid Dynamics methods (Figure 3). Calculations
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were performed using ANSYS Fluent software ver. 15 based on the finite-volume differ-
ential equation (FVM) [29,30]. The software allows for the analysis of incompressible and
compressible flows, with optional consideration of flow viscosity [31,32]. When numerical
aerodynamic analysis was performed in symmetrical flow, the symmetry of the flow field
was assumed, and the flow was assumed to be stationary and stabilized. In numerical
studies, the Spalart–Allmaras turbulence model was used, which is a typical model in the
field of numerical analysis of external flows of flying objects. The ICEM CFD software
ver. 15, part of the ANSYS package ver. 15, was used to generate computational meshes.
This software is an advanced preprocessing tool that allows fully preparing a geometric
model, i.e., building or importing geometry from CAD software Siemens NX 2020, as well
as repairing and simplifying such geometry [33–38].
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3. Results and Discussion
3.1. Aerodynamic Characteristics of an Aerial Target Model in Symmetric Flow

The results of the wind tunnel tests are depicted in the form of graphs showing the
values of aerodynamic coefficients and tables with the most important results:

- In symmetric flow

(a) CD = f(α)—drag coefficient as a function of angle of attack (AOA);
(b) CL = f(α)—lift force coefficient as a function of AOA;
(c) Cm = f(α)—pitching moment coefficient as a function of AOA;
(d) E = L/D = f(α)—aerodynamic efficiency in function of AOA;
(e) CL = f(CD)—lift force coefficient as a function of the drag force coefficient.

- In asymmetric flow

(a) CD = f(β)—drag coefficient as a function of the sideslip angle;
(b) Cy = f(β)—lateral force coefficient as a function of the sideslip angle;
(c) Cn = f(β)—coefficient of yawing moment as a function of the angle of side inclination.

Symmetric flow tests were performed on a wide range of changes in elevator deflection.
Knowledge of the object’s behavior at various elevator deflections is extremely important
from the point of view of static longitudinal stability. This allows you to assess whether the
deflection of the wheel does not cause a loss of stability. At the same time, the influence of
elevator deflection on other aerodynamic characteristics was also examined.
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3.1.1. Aerodynamic Drag Coefficient CD = f(α, dH)

The influence of elevator deflection on the characteristic of the drag coefficient is
shown in Figure 4, while Table 1 summarizes the most important data. The curves obtained
have a somewhat parabolic shape. The minimum drag coefficient values were noted for
angles of attack α = 2◦ and α = 0◦. Among all the configurations of the tested models, the
lowest value of the drag coefficient was obtained for the model with elevator deflection
dH = −10◦, and it was CD = 0.01599.
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Table 1. The impact of elevator deflection on the drag coefficient.

dH
◦ −30◦ −20◦ −10◦ 0◦ 10◦ 20◦ 30◦

α◦ (CD min) 2 2 2 2 0 0 0
CD min 0.03162 0.02663 0.01599 0.02136 0.02352 0.03363 0.03528

CD (α = −30◦) 0.61855 0.60718 0.58583 0.58911 0.58438 0.55594 0.57084
CD (α = −10◦) 0.1501 0.13894 0.13428 0.13237 0.12347 0.12647 0.11383
CD (α = −4◦) 0.05926 0.04835 0.04077 0.03544 0.03888 0.04248 0.04689
CD (α = 0◦) 0.03309 0.02963 0.02746 0.02253 0.02352 0.03363 0.03528
CD (α = 4◦) 0.03661 0.03732 0.02446 0.02998 0.03376 0.04272 0.04925

CD (α = 10◦) 0.07361 0.07455 0.07626 0.07619 0.08473 0.08854 0.103
CD (α = 30◦) 0.50115 0.49621 0.51205 0.52973 0.54183 0.55702 0.56464

3.1.2. Lift Force Coefficient CL = f(α, dH)

The influence of elevator deflection on the characteristic of the lift force coefficient is
presented in Figure 5, while Table 2 summarizes the more relevant data. Characteristic
curves are linear in the range of angles of attack from α = −10◦ to α = 10◦. It should be
noted that for the studied model there is no classic sharp drop in the values of the lift
force coefficient after exceeding αcr. Here, we see that after exceeding αcr there is a gentle
decrease in the value of the lift force coefficient CL, and then we observe a small continuous
increase in the value of this coefficient up to α = 30◦.
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Table 2. Influence of elevator deflection on lift force coefficient.

dH
◦ −30◦ −20◦ −10◦ 0◦ 10◦ 20◦ 30◦

α◦ (CL = 0) 2 1.5 1 1 0.5 0 0.5
CL (α = −10◦) −0.89919 −0.8909 −0.85761 −0.7930 −0.75293 −0.73197 −0.68523

CL (α = 0◦) −0.1699 −0.1425 −0.1178 −0.079 −0.0394 −0.0047 0.02893
CL (α = 10◦) 0.57024 0.6099 0.63362 0.68967 0.72973 0.75795 0.79622

CL min −0.9675 −0.9937 −0.9402 −0.9100 −0.8646 −0.8349 −0.8252
αcr

◦ 12 12 12 12 12 12 12
CL max 0.8030 0.8101 0.8405 0.8611 0.8734 0.8912 0.90296

3.1.3. Pitching Moment Coefficient Cm = f(α, dH)

The curves of the pitching moment coefficient as a function of the angle of attack are
shown in Figure 6a, while Figure 6b shows the pitching moment coefficient as a function of
the lift force coefficient. The most important values are listed in Table 3. The characteristics
obtained show that the deflection of the elevator causes the characteristic Cm = f(α) to shift
downward. In each of the cases studied, derivative 7 has a similar value.

∂Cm

∂α
(7)

which means the same value of static longitudinal stability.

Table 3. Influence of elevator deflection on pitching moment coefficient.

dH
◦ −30◦ −20◦ −10◦ 0◦ 10◦ 20◦ 30◦

α◦ (Cm = 0) 26 17 14 2 −11 −12 −15
Cm (α = −10◦) 0.51132 0.41521 0.33886 0.12631 −0.08181 −0.15985 −0.2618

Cm (α = 0◦) 0.3866 0.1785 0.1417 −0.0287 −0.1967 −0.2942 −0.3984
Cm (α = 10◦) 0.21151 0.1502 0.01633 −0.19469 −0.37356 −0.46317 −0.5879

Cm (α kr) 0.2377 0.1811 0.0165 −0.1790 −0.3436 −0.4462 −0.5051
Cm min −0.1245 −0.0205 −0.1988 −0.2577 −0.3894 −0.5154 −0.5328
Cm max 0.7609 0.6702 0.5533 0.4342 0.31089 0.2000 0.3080
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The static margin can be calculated by the derivative of 8 [24]:

∂Cm

∂CL
=

xQ

bA
− xF

bA
(8)

where:

xQ is the center of mass;
xF is the aerodynamic center;
bA is the mean aerodynamic chord.

The characteristics of the pitch moment coefficient showed the aerial target model is
statically stable longitudinally when the value of the angle of attack exceeds α = −16◦. At
positive deflections of the elevator, the model starts to be statically unstable longitudinally
when α = 12◦ is exceeded.

3.1.4. Aerodynamic Efficiency (Lift-to-Drag Ratio) E = f(α, dH)

The aerodynamic efficiency curves as a function of the AOA E = f(α, dH) are shown in
Figure 7, while, in Table 4, the numerical values at the characteristic points are shown.
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Table 4. Influence of elevator deflection on aerodynamic efficiency.

dH
◦ −30◦ −20◦ −10◦ 0◦ 10◦ 20◦ 30◦

−αopt
◦ −8 −6 −6 −4 −6 −8 −8

Emin −8.437 −10.094 −10.799 −10.880 −10.263 −8.377 −8.337
E (α = 0◦) −5.1342 −4.808 −4.291 −3.529 −1.676 −0.141 0.820

αopt
◦ 8 8 8 8 8 6 8

Emax 7.794 9.256 10.790 11.865 11.397 10.043 9.207

As can be seen in the graphs, for all the configurations of the tested models, the
optimum angle of attack is αopt = 8◦. The maximum value of aerodynamic efficiency was
obtained for dH = 0◦.

3.1.5. Lift Force Coefficient as a Function of Drag Force Coefficient CL = f(CD)

The drag polarity of the aerial target model is shown in Figure 8. Using these graphs,
various aerodynamic parameters can be determined, e.g., CL min, CL max, CDopt, Emax, and
Emin, which were given with the previously analyzed characteristics.
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3.2. Aerodynamic Characteristics of an Aerial Target Model in Asymmetric Flow

During project development, studies were also carried out on the aerodynamic charac-
teristics of the aerial target in asymmetric flow, that is, at different angles β. Shown below
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are the characteristics obtained for the optimization of the model streamlining at an angle
of attack α = 0◦.

The characteristic of the CD drag force coefficient as a function of the sideslip angle β
is shown in Figure 9. The characteristic has a parabolic shape. It is almost symmetric about
the OY axis. During the tests, the maximum value of the drag force coefficient CD = 0.178
was obtained for both the sideslip angles β = −30◦ and β = 30◦.
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Figure 9. Characteristics CD = f(β, α = 0◦).

Figure 10 shows the characteristic of the lateral force coefficient as a function of the angle
of sideslip. The characteristic obtained has a linear shape. Maximum values were obtained for
β = −30◦ as well as β = 30◦ for Cy = 0.27 and Cy = −0.27, respectively. For sideslip angle β
= 0◦, the value Cy = 0.0016 was obtained. The experimental results of the yawing moment
coefficient Cn as a function of the angle β are shown in Figure 11. The characteristic in the
investigated range of sideslip angles has a nearly linear course. In addition, its course shows
that the aerial target model is characterized by directional static stability, since the derivative
of the yawing moment coefficient due to sideslip angle is positive (3). More information on
the wind tunnel investigation of the air vehicle can be found [39].

∂Cn

∂β
> 0 (9)
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3.3. Numerical Analysis of the Aerodynamic Characteristics of an Aerial Target with and without
Engine Thrust Effect

A non-structural mesh was generated in the area surrounding the aircraft airframe.
The rectangular domain around the model size of 40 × 40 × 20 m represented half of the
geometry. Five layers of prism cells simulating the boundary layer were generated around
the walls of the aircraft. The thickness of the first mesh element (0.6 mm) corresponded to
the turbulence parameter y+ in the range <30–200>, which is recommended for the Spalart–
Allmaras turbulence model used. This model is adopted as a standard in the analysis of
external flows, especially in the range of Reynolds numbers used in aviation [31]. The
selected mesh size and turbulence model allowed for obtaining reliable results with a
reasonable calculation time. The influence of the turbulence model in terms of comparison
presented in this work [38] shows no significant change in the characteristics corresponding
to the linear part of the CL change.

Numerical analyses were performed in symmetric flow for a flight velocity V = 491 km/h
(Mach = 0.4), in the range of angles of attack α = −12◦ ÷ +16◦, at sea level altitude, for
standard atmospheric parameters: pressure p = 101,325 Pa, temperature T = 288.15 K,
and air density ρ = 1.225 kg/m3. Figures 12–14 present the effect of the engine thrust
on the selected aerodynamic characteristics of the aerial target (OCP-Jet aircraft). The
characteristics obtained for the case including engine thrust are described as follows for the
CFD OCP-Jet + eng. The effect of engine thrust on the value of the drag force and the lift
force coefficients is most evident in the polar diagram shown in Figure 14. Furthermore, it
can be seen from the characteristics of the drag force coefficient that the effect of the engine
thrust on its value becomes less as the angle of attack increases. Furthermore, for this case,
CDMIN ≈ CD0. The engine thrust in the numerical analysis did not change the slope of the
characteristic of the lift force coefficient characteristic ∂CL/∂α.

The results of the numerical analysis were compared with the experimental investiga-
tions [38,39] of the “clean” configuration OCP-Jet aircraft model (WT OCP-Jet). Attention is
drawn to the high correspondence between the results obtained in the numerical analysis
and the results of the experimental tests. This indicates the correctness of the numerical
model developed for the OCP-Jet plane for aerodynamic analysis. Possible differences
in values of individual aerodynamic coefficients result directly from the specifics of the
conducted experimental tests, among others from different values of criterion numbers.
The CFD model was tested in 1:1 scale but the wind tunnel model was built in 1:4 scale, so
it provides the opportunity to develop a laminar flow separation on the tail surfaces having



Materials 2024, 17, 3575 12 of 16

very short chords, which will be more visible in WTT and influence mostly the moments
rather than a force value.
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Figure 12. Aerodynamic drag characteristics of an aerial target with the engine thrust effect (CFD
OCP-Jet-eng) and without (CFD OCP-Jet).
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Figure 13. Aerodynamic lift characteristics of an aerial target with engine thrust effect (CFD OCP-Jet-eng)
and without (CFD OCP-Jet).

In addition, Figure 15 shows a qualitative comparison of the results obtained for
selected angles of attack in the form of a pressure map with the path lines shown on the
surface of the OCP-JET. Figures show that as the angle of attack increases, the area of
vacuum on the upper surface of the wing increases. For smaller angles of attack, the area of
negative pressure forms on the leading edge of the wings.
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Figure 14. Comparison of CL = f(CD) characteristics of an aerial target with engine thrust effect
(CFD OCP-Jet-eng) and without (CFD OCP-Jet).
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4. Results and Discussion

The primary objective of the aerodynamic tests and numerical analysis performed
was to obtain reliable information on the aerodynamic properties of the newly designed
Jet-propelled Aerial Target. Considering the assumed high maneuverability of this aerial
vehicle, it is extremely important to know this type of data during the design process.
Based on the results of this work, the following conclusions were pointed out:

• The lowest value of the drag coefficient was obtained for the model with elevator
deflection dH = −10◦ and it was CD = 0.01599;

• The characteristics of the lift force coefficient are linear in the range of angles of attack
from α = −10◦ to α = 10◦;

• The aerial target model is statically stable longitudinally in the range of the AOA from
α = −16◦ to α = 12◦;

• Elevator deflection causes the characteristic Cm = f(α) to shift downwards;
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• For all the configurations of the tested model, the optimum angle of attack is αopt = 8◦;
• The maximum value of aerodynamic efficiency was obtained for dH = 0◦;
• In an asymmetric flow, the maximum value of the drag force coefficient CD = 0.178

was obtained for both the sideslip angles β = −30◦ and β = 30◦;
• The aerial target model is statically stable directionally in the investigated range of

sideslip angles;
• The effect of engine thrust on the drag force coefficient value becomes less as the

AOA increases;
• The thrust of the engine did not change the slope of the characteristic of the lift force

coefficient characteristic ∂CL/∂α;
• A high and satisfied comparability was found between the results of the numerical

analysis and the experimental tests.

The results of the presented work were used to determine the external loads needed
for the strength analysis of the composite structure of the airframe.

5. Conclusions

Analysis and assessment of aerodynamic properties is a fundamental element of the
aircraft design process. In the case of the tested air target, both classic tests of the object
model in a wind tunnel and advanced CFD numerical methods were used to assess the
aerodynamics. The methods used separately are not perfect and only the use of both at the
same time allows for a more accurate assessment of the aerodynamic properties of the object.
This combined experimental and numerical research procedure was used for the tested air
target. Both methods confirmed that the required performance parameters will be met by the
designed aircraft. Moreover, it was confirmed by the aircraft’s flight qualification tests at the
Polish Air Force training range [40]. This way, errors and design corrections were avoided,
as well as building and testing another prototype. In our case, the first prototype already
achieved, and even exceeded, the required performance, clearly reducing the project costs.
The experience acquired by the team will be used to design new, both simple and complex,
aircraft, in accordance with the requirements of EASA CS 23 and CS 25.
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27. Damljanović, D.; Vuković, D.; Ocokoljić, G.; Ilić, B.; Rašuo, B. Wind Tunnel Testing of ONERA-M, AGARD-B and HB-2 Standard

Models at Off-Design Conditions. Aerospace 2021, 8, 275. [CrossRef]
28. Frant, M.; Majcher, M.; Omen, Ł.; Zalewski, P. Experimental Study of Air-Assisted Rocket System Models for Launching Payloads

into a Low Earth Orbit. Probl. Mechatron. Armament Aviat. Saf. Eng. 2022, 13, 67–82. [CrossRef]
29. Hirsch, C. Numerical Computational of Internal and External Flows; John Wiley & Sons: Bognor Regis, UK, 1988.
30. Ferziger, J.H.; Peric, M. Computational Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2022.
31. Available online: https://www.ansys.com/ (accessed on 25 February 2024).
32. Available online: https://www.3ds.com/products/catia/icem-surf (accessed on 25 February 2024).
33. Olejnik, A.; Zalewski, P.; Kiszkowiak, Ł.; Rogólski, R. Finite Element Analysis of the Suspended Satellite Rocket Weight Effect on

the Strength and Deformability of the MiG-29 Aircraft Structure. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2023, 237, 3285–3303.
[CrossRef]
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